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B. de Malafosse

ON THE SETS OF SEQUENCES THAT ARE STRONGLY

α−BOUNDED AND α−CONVERGENT TO NAUGHT WITH

INDEX p.

Abstract. In this paper we deal with sets of sequences generalizing the
well known spaces w p

∞ (λ) =
{

X/C (λ)
(
|X |p

)
∈ l∞

}
and c∞ (λ) =

(w∞ (λ))1(λ). We consider the set
(
w

p
α (λ)

)
1(µ)

and the cases when the
operators C (λ) and 1(µ) are replaced by their transposes. These results
generalize in a certain sense those given in [4, 10, 11, 13, 14, 16].

1. Notations and preliminary results.

For a given infinite matrix A = (anm)n,m≥1 we define the operators An for any integer
n ≥ 1, by

An (X) =
∞∑

m=1

anmxm

where X = (xm)m≥1, and the series are assumed convergent for all n. So we are led to
the study of the infinite linear system

(1) An (X) = bn n = 1, 2, ...

where B = (bn)n≥1 is a one-column matrix and X the unknown, see [1, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13]. Equation (1) can be written in the form AX = B, where AX =
(An (X))n≥1. In this paper we shall also consider A as an operator from a sequence
space into another sequence space.

A Banach space E of complex sequences with the norm ‖‖E is a BK space if
each projection Pn : X → Pn X = xn is continuous. A BK space E is said to have
AK, (see [17]), if for every B = (bm)m≥1 ∈ E , B =

∑∞
m=1 bmem , where em =

(0, . . . , 1, 0, . . .), 1 being in the m-th position, i.e.
∥∥∥∥∥∥

∞∑

m=N+1

bmem

∥∥∥∥∥∥
E

→ 0 (n → ∞) .

s, c0, c, l∞ are the sets of all sequences, the set of sequences that converge to zero, that
are convergent and that are bounded respectively. cs and l1 are the sets of convergent
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14 B. de Malafosse

and absolutely convergent series respectively. We shall use the set

U+∗ =
{
(un)n≥1 ∈ s / un > 0 ∀n

}
.

Using Wilansky’s notations [17], we define for any sequence α = (αn)n≥1 ∈ U+∗ and
for any set of sequences E , the set

α ∗ E =
{
(xn)n≥1 ∈ s /

(
xn

αn

)

n
∈ E

}
.

Writing

α ∗ E =





sα if E = l∞,
s

◦
α if E = c0,
s•
α if E = c,

we have for instance

α ∗ c0 = s
◦
α =

{
(xn)n≥1 ∈ s / xn = o (αn) n → ∞

}
.

Each of the spaces α ∗ E , where E ∈ {l∞, c0, c}, is a BK space normed by

(2) ‖X‖sα = sup
n≥1

( |xn|
αn

)
,

and s
◦
α has AK, see [10].

Now let α = (αn)n≥1 and β = (βn)n≥1 ∈ U+∗. By Sα,β we denote the set of
infinite matrices A = (anm)n,m≥1 such that

(anmαm)m≥1 ∈ l1 for all n ≥ 1 and
∞∑

m=1

|anm|αm = O (βn) (n → ∞) .

Sα,β is a Banach space with the norm

‖A‖Sα,β = sup
ν≥1

( ∞∑

m=1

|anm| αm

βn

)
.

Let E and F be any subsets of s. When A maps E into F we shall write A ∈ (E, F),
see [2]. So for every X ∈ E , AX ∈ F , (AX ∈ F will mean that for each n ≥ 1
the series defined by yn =

∑∞
m=1 anmxm is convergent and (yn)n≥1 ∈ F). It has been

proved in [13] that A ∈
(
sα, sβ

)
iff A ∈ Sα,β . So we can write that

(
sα, sβ

)
= Sα,β .

When sα = sβ we obtain the Banach algebra with identity Sα,β = Sα , (see [1, 4, 5])
normed by ‖A‖Sα = ‖A‖Sα,α .

We also have A ∈ (sα, sα) if and only if A ∈ Sα . If ‖I − A‖Sα < 1, we shall say
that A ∈ 0α . Since Sα is a Banach algebra with identity, we have the useful result: if
A ∈ 0α , A is bijective from sα into itself.
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If α = (r n)n≥1, 0α , Sα , sα , s
◦
α and s•

α are replaced by 0r , Sr , sr , s
◦
r and s•

r respec-
tively (see [1, 4, 5, 6, 7, 8]). When r = 1, we obtain s1 = l∞, s

◦
1 = c0 and s•

1 = c, and
putting e = (1, 1, ...) we have S1 = Se. It is well known, see [2] that

(s1, s1) = (c0, s1) = (c, s1) = S1.

For any subset E of s, we put

AE = {Y ∈ s / ∃X ∈ E Y = AX} .

If F is a subset of s, we shall denote

F (A) = FA = {X ∈ s / Y = AX ∈ F} .

We can see that F (A) = A−1 F .

2. Some properties of the operators 1 (λ), 1+ (λ) and 6+ relative to the sets sα ,
s

◦
α and s•

α .

Here we shall deal with the operators represented by C (λ), C+ (λ),1(λ) and1+ (λ).
Let U =

{
(un)n≥1 ∈ s / un 6= 0 ∀n

}
. We define C (λ) = (cnm)n,m≥1 for λ =

(λn)n≥1 ∈ U , by

cnm =





1

λn
if m ≤ n,

0 otherwise.

So, we put C+ (λ) = C (λ)t . It can be proved that the matrix1 (λ) =
(
c′

nm

)
n,m≥1 with

c′
nm =





λn if m = n,
−λn−1 if m = n − 1 and n ≥ 2,

0 otherwise,

is the inverse of C (λ), see [13]. Similarly we put 1+ (λ) = 1(λ)t . If λ = e we get
the well known operator of first difference represented by 1 (e) = 1 and it is usually
written 6 = C (e). Note that 1 = 6−1 and 1 and 6 belong to any given space SR

with R > 1. Writing Dλ = (λnδnm)n,m≥1, (where δnm = 0 for n 6= m and δnn = 1
otherwise), we have 1+ (λ) = Dλ1+. So for any given α ∈ U+∗, we see that if
αn−1
αn

∣∣∣ λn
λn−1

∣∣∣ = O (1), then 1+ (λ) = Dλ1+ ∈
(

s( α
|λ|
), sα

)
. Since K er1+ (λ) 6= 0,

we are led to define the set

s∗
α

(
1+ (λ)

)
= sα

(
1+ (λ)

)⋂
s( α

|λ|
) =

{
X = (xn)n≥1 ∈ s( α

|λ|
) / 1+ (λ) X ∈ sα

}
.

It can be easily seen that

s∗(
α
|λ|
)
(
1+ (e)

)
= s∗(

α
|λ|
)
(
1+) = s∗

α

(
1+ (λ)

)
.

We obtain similar results with the set s
◦∗
α

(
1+ (λ)

)
= s

◦
α

(
1+ (λ)

)⋂
s

◦(
α
|λ|
).



16 B. de Malafosse

2.1. Properties of the sequence C (α) α.

We shall use the following sets

Ĉ1 =
{
α ∈ U+∗/

1

αn

(
n∑

k=1

αk

)
= O (1) (n → ∞)

}
,

Ĉ =



α ∈ U+∗/

(
1

αn

(
n∑

k=1

αk

))

n≥1

∈ c



 ,

Ĉ+
1 =

{
α ∈ U+∗⋂ cs /

1

αn

( ∞∑

k=n

αk

)
= O (1) (n → ∞)

}
,

0 =
{
α ∈ U+∗ / limn→∞

(
αn−1

αn

)
< 1

}

and

0+ =
{
α ∈ U+∗ / limn→∞

(
αn+1

αn

)
< 1

}
.

Note that α ∈ 0+ if and only if 1
α

∈ 0. We shall see in Proposition 1 that if α ∈ Ĉ1, α
tends to infinity. On the other hand we see that 1 ∈ 0α implies α ∈ 0. We also have
α ∈ 0 if and only if there is an integer q ≥ 1 such that

γq (α) = sup
n≥q+1

(
αn−1

αn

)
< 1.

We obtain the following results in which we put [C (α) α]n = 1

αn

(
n∑

k=1
αk

)
.

PROPOSITION 1. Let α ∈ U+∗. Then

i)
αn−1

αn
→ 0 if and only if [C (α) α]n → 1.

ii) [C (α) α]n → l implies that
αn−1

αn
→ 1 − 1

l
.

iii) If α ∈ Ĉ1 then there are K > 0 and γ > 1 such that αn ≥ Kγ n for all n.

iv) α ∈ 0 implies that α ∈ Ĉ1 and there exist a real b > 0 and an integer q, such
that

[C (α) α]n ≤ 1

1 − χ
+ bχn for n ≥ q + 1 and χ = γq (α) ∈]0, 1[.

v) α ∈ 0+ implies α ∈ Ĉ+
1 .
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Proof. i), ii), iii) and iv) have been proved in [10].

Assertion v). If α ∈ 0+, there are χ ′ ∈]0, 1[ and an integer q ′ ≥ 1 such that

αk

αk−1
≤ χ ′ for k ≥ q ′.

Then we have for every n ≥ q ′

1

αn

( ∞∑

k=n

αk

)
=

∞∑

k=n

(
αk

αn

)
≤ 1 +

∞∑

k=n+1

[
k−n−1∏

i=0

(
αk−i

αk−i−1

)]
≤

∞∑

k=n

χ ′k−n = O (1) .

This gives the conclusion.

REMARK 1. Note that as a direct consequence of Proposition 2.1, we have

Ĉ ⊂ 0 ⊂ Ĉ1.

We also have Ĉ 6= 0, see [4]. On the other hand we see that Ĉ1
⋂

Ĉ+
1 = 0

⋂
0+ = φ.

2.2. The spaces w p
α (λ), w

◦ p
α (λ) and w•p

α (λ) for p > 0.

In this subsection we recall some results on the sets that generalize the sets w p
∞ (λ),

w
p
0 (λ) and wp (λ) for given real p > 0.

For any given real p > 0 and every sequence X = (xn)n≥1, we put |X |p = (
∣∣x p

n
∣∣)n

and

wp
α (λ) =

{
X ∈ s / C (λ)

(
|X |p) ∈ sα

}
,

w
◦ p
α (λ) =

{
X ∈ s/ C (λ)

(
|X |p) ∈ s

◦
α

}
,

w•p
α (λ) =

{
X ∈ s / X − let ∈ w◦ p

α (λ) for some l ∈ C
}
.

For instance we see that

wp
α (λ) =

{
X = (xn)n ∈ s / sup

n≥1

(
1

|λn|αn

n∑

k=1

|xk|p

)
< ∞

}
.

If there exist A and B > 0, such that A < αn < B for all n, we get the well known
spaces wp

α (λ) = w
p
∞ (λ), w

◦ p
α (λ) = w

p
0 (λ) and w•p

α (λ) = wp (λ), see [14, 15]. In
the case when λ = (n)n≥1, the previous sets have been introduced in [3] by Maddox
and it is written wp

∞ (λ) = w
p
∞, wp

0 (λ) = w
p
0 and wp (λ) = wp. It is proved that each

of the sets wp
0 and wp

∞ is a p−normed FK space for 0 < p < 1, (that is a complete
linear metric space in which each projection Pn is continuous), and a BK space for
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1 ≤ p < ∞ with respect to the norm

‖X‖ =





supν≥1

(
1
2ν

(
2ν+1−1∑
n=2ν

|xn|p

))
if 0 < p < 1,

supν≥1

(
1

2ν

(
2ν+1−1∑
n=2ν

|xn|p

)) 1
p

if 1 ≤ p < ∞.

w
p
0 has the property AK, and every sequence X = (xn)n≥1 ∈ wp

(
(n)n

)
has a unique

representation

X = let +
∞∑

n=1

(xn − l) et
n ,where l ∈ C is such that X − let ∈ wp

0 ,

When p = 1, we omit the index p and write w p
α (λ) = wα (λ), w

◦ p
α (λ) = w

◦
α (λ) and

w
•p
α (λ) = wα (λ). It has been proved in [14], that if λ is a strictly increasing sequence

of reals tending to infinity then w0 (λ) and w∞ (λ) are BK spaces and w0 (λ) has AK,
with respect to the norm

‖X‖ = ‖C (λ) (|X |)‖l∞ = sup
n

(
1

λn

n∑

k=1

|xk|
)
.

Recall the next results given in [10].

THEOREM 1. Let α and λ be any sequences of U +∗.

i) Consider the following properties

a) αn−1λn−1
αnλn

→ 0;

b) s•
α (C (λ)) = s•

αλ.

c) αλ ∈ Ĉ1;

d) wα (λ) = sαλ;

e) w
◦
α (λ) = s

◦
αλ;

f) w•
α (λ) = s

◦
αλ.

We have a)⇒b), c)⇔d) and c)⇒e) and f).

ii) If αλ ∈ Ĉ1, wα (λ), w
◦
α (λ) and w•

α (λ) are BK spaces with respect to the norm

‖X‖sαλ = sup
n≥1

( |xn|
αnλn

)
,

and w
◦
α (λ) = w•

α (λ) has AK.
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2.3. Properties of some new sets of sequences.

In this subsection we shall characterize the sets E (1 (µ)), E
(
1+ (µ)

)
for E ∈{

sα, s
◦
α, s•

α

}
, and the sets w p

α (λ), w
+p
α (λ) and w

◦+p
α (λ).

In order to state some new results we need the following lemmas. First recall the
well known result.

LEMMA 1. A ∈ (c0, c0) if and only if

{
A ∈ S1,

limn anm = 0 for each m ≥ 1.

The next result has been shown in [11].

LEMMA 2. If 1+ is bijective from sα into itself, then α ∈ cs.

We also need to state the following elementary result.

LEMMA 3. We have

6+ (1+X
)

= X ∀X ∈ c0 and 1+ (6+ X
)

= X ∀X ∈ cs.

Put now

w+p
α (λ) =

{
X ∈ s / C+ (λ)

(
|X |p) ∈ sα

}
,

w
◦+p
α (λ) =

{
X ∈ s / C+ (λ)

(
|X |p) ∈ s

◦
α

}
,

see [11]. Letting β− = (βn−1)n≥1, with β0 = 1, for any β = (βn)n≥1 ∈ U+∗, we can
state the following results.

THEOREM 2. Let α ∈ U+∗, λ, µ ∈ U and p > 0. We successively have

i) a) sα (1 (µ)) = s( α
|µ|
) if and only if α ∈ Ĉ1;

b) s
◦
α (1 (µ)) = s

◦(
α
|µ|
) if and only if α ∈ Ĉ1;

c) s•
α (1 (µ)) = s•(

α
|µ|
) if and only if α ∈ Ĉ.

ii) a) sα
(
1+ (µ)

)
= s(

α
|µ|

)− if and only if
α

|µ| ∈ Ĉ1;

b)
αn−1

αn

µn

µn−1
= o (1) implies s

◦
α

(
1+ (µ)

)
= s

◦
(
α
|µ|
)−;

c)
α

|µ| ∈ Ĉ+
1 if and only if s∗

α

(
1+ (µ)

)
= s( α

|µ|
);

d)
α

|µ| ∈ Ĉ+
1 if and only if s

◦∗
α

(
1+ (µ)

)
= s

◦(
α
|µ|
).
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iii) a) sα
(
6+) = sα if and only if α ∈ Ĉ+

1 and s
◦
α

(
6+) = s

◦
α if and only if α ∈ Ĉ+

1 .

b) α ∈ Ĉ+
1 if and only if w

+p
α (λ) = s

(α|λ|)
1
p
,

c) if α ∈ Ĉ+
1 , then w

◦+p
α (λ) = s

◦

(α|λ|)
1
p

,

d) α |λ| ∈ Ĉ1 if and only if wp
α (λ) = s

(α|λ|)
1
p
.

e) If α |λ| ∈ Ĉ1, then w
◦ p
α (λ) = s

◦

(α|λ|)
1
p

.

Proof. Assertion i) has been proved in [10]. Throughout the proof of part ii) we shall
put β = α

|µ| .

Assertion ii) a). First we have sα
(
1+ (µ)

)
= sβ

(
1+). Indeed,

X ∈ sα
(
1+ (µ)

)
⇔ Dµ1

+X ∈ sα ⇔ 1+X ∈ sβ ⇔ X ∈ sβ
(
1+) .

To get a), it is enough to show that β ∈ Ĉ1 if and only if sβ
(
1+) = sβ− . We assume

that β ∈ Ĉ1. From the inequality

βn−1

βn
≤ 1

βn

(
n∑

k=1

βk

)
= O (1) ,

we deduce that
βn−1

βn
= O (1) and 1+ ∈

(
sβ−, sβ

)
. Then for any given B ∈ sβ the

solutions of the equation1+X = B are given by x1 = −u and

(3) −xn = u +
n−1∑

k=1

bk , for n ≥ 2,

where u is an arbitrary scalar. So there exists a real K > 0, such that

|xn|
βn−1

=

∣∣∣∣∣u +
n−1∑
k=1

bk

∣∣∣∣∣
βn−1

≤
|u| + K

(
n−1∑
k=1

βk

)

βn−1
= O (1) ,

since iii) in Proposition 1 implies |u|
βn−1

= O (1). So X ∈ sα and we conclude that 1+

is surjective from sβ− into sβ . Then β = α
|µ| ∈ Ĉ1 implies

sα
(
1+ (µ)

)
= s(

α
|µ|
)− .

Conversely, assume that sα
(
1+ (µ)

)
= s(

α
|µ|
)− . If we take B = β, we get xn =

x1 −
n−1∑
k=1

βk , where x1 is an arbitrary scalar and

xn

βn−1
= x1

βn−1
− 1

βn−1

(
n−1∑

k=1

βk

)
= O (1) .
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Putting x1 = 0, we conclude that β ∈ Ĉ1.

ii) b) First we have 1+ ∈
(

s
◦
β−, s

◦
β

)
because

βn−1

βn
= O (1). Let us show that

1+ is surjective from s
◦
β− into s

◦
β . For this, let B = (bn)n≥1 ∈ s

◦
β . The solutions

X = (xn)n≥1 of the equation1+X = B are given by (3). We have

xn

βn−1
= o (1)−

n−1∑
k=1

bk

βn−1
,

because from Proposition 2.1, the condition
βn−1

βn
= o (1) implies β ∈ Ĉ1 and β →

∞. Since B ∈ s
◦
β there is a sequence ν = (νn)n≥1 ∈ c0, such that bn = βnνn . Then we

have for a real M > 0
∣∣∣∣∣
n−1∑
k=1

bk

∣∣∣∣∣
βn−1

≤ 1

βn−1

(
n−1∑

k=1

βkνk

)
for all n ≥ 2.

It remains to show that 1
βn−1

n−1∑
k=1

βkνk = o (1). For this consider any given ε > 0. Since

β → ∞ there is an integer N such that

Sn = 1

βn−1

∣∣∣∣∣

N∑

k=1

βkνk

∣∣∣∣∣ ≤ ε

2

for n > N , and

sup
k≥N+1

(|νk |) ≤ ε

2 supn≥2
(
[C (β) β]n−1

) .

Writing Rn = 1

βn−1

∣∣∣∣∣
n−1∑

k=N+1
βkνk

∣∣∣∣∣ for n > N + 2, we deduce that

Rn ≤
(

sup
N+1≤k≤n−1

(|νk |)
)

[C (β) β]n−1 ≤ ε

2
.

Finally, we obtain

|xn|
βn−1

=

∣∣∣∣∣∣
1

βn−1

(
N∑

k=1

βkνk

)
+ 1

βn−1




n−1∑

k=N+1

βkνk



∣∣∣∣∣∣
≤ Sn + Rn ≤ ε for n ≥ N,

and X ∈ s
◦
β−. So we have proved ii) b).
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Assertion ii) c). Necessity. Assume that β = α

|µ| ∈ Ĉ+
1 . Since we have

s∗
α

(
1+ (µ)

)
= s∗

β

(
1+) = sβ , it is enough to show that 1+ is bijective from sβ to

sβ . We can write that 1+ ∈
(
sβ , sβ

)
, since

(4)
βn+1

βn
≤ 1

βn

( ∞∑

k=n

βk

)
= O (1) (n → ∞) .

Further, from sβ ⊂ cs, we deduce using Lemma 3 that for any given B ∈ sβ ,

1+ (6+ B
)

= B. On the other hand 6+ B =
( ∞∑

k=n
bk

)

n≥1

∈ sβ , since β ∈ Ĉ+
1 .

So 1+ is surjective from sβ into sβ . Finally, 1+ is injective because the equation

1+ X = O

admits the unique solution X = O in sβ , since K er1+ =
{
uet/ u ∈ C

}
and et /∈ sβ .

Sufficiency. For every B ∈ sβ the equation1+ X = B admits a unique solution in
sβ . Then from Lemma 2, β ∈ cs and since sβ ⊂ cs we deduce from Lemma 3 that
X = 6+ B ∈ sβ is the unique solution of1+X = B. Taking B = β, we get6+β ∈ sα
that is β ∈ Ĉ+

1 .

As above to prove ii) d) it is enough to verify that β = α
|µ| ∈ Ĉ+

1 if and only

if s
◦∗
β

(
1+) = sβ . If β ∈ Ĉ+

1 , 1+ is bijective from s
◦
β into itself. Indeed, we have

D 1
β
1+ Dβ ∈ (c0, c0) from (4) and Lemma 1. Furthermore, since β ∈ Ĉ+

1 we have

s
◦
β ⊂ cs and for every B ∈ s

◦
β , 1+ (6+ B

)
= B. From Lemma 1, we have 6+ ∈(

s
◦
β, s

◦
β

)
, so the equation1+X = B admits in s

◦
β the solution X0 = 6+ B and we have

proved that 1+ is surjective from s
◦
β into itself. Finally, β ∈ Ĉ+

1 implies that et /∈ s
◦
β ,

so K er1+⋂ s
◦
β = {0} and we conclude that 1+ is bijective from s

◦
β into itself.

iii) a) comes from ii), since α ∈ Ĉ+
1 if and only if1+ is bijective from sα into itself

and is also bijective from s
◦
α into itself, and

6+ (1+X
)

= 1+ (6+X
)

= X for all X ∈ sα .

b) Assume that α ∈ Ĉ+
1 . Since C+ (λ) = 6+ D 1

λ
, we have

w+p
α (λ) =

{
X ∈ s /

(
6+D 1

λ

) (
|X |p) ∈ sα

}
=
{

X / D 1
λ

(
|X |p) ∈ sα

(
6+)} ;

and since α ∈ Ĉ+
1 implies sα

(
6+) = sα , we conclude that

w+p
α (λ) =

{
X ∈ s / |X |p ∈ Dλsα = sα|λ|

}
= s

(α|λ|)
1
p
.
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Conversely, we have (α |λ|)
1
p ∈ s

(α|λ|)
1
p

= w
+p
α (λ). So

C+ (λ)
[
(α |λ|)

1
p

]p
=
( ∞∑

k=n

αk |λk |
|λk |

)

n≥1

∈ sα,

i.e. α ∈ Ĉ+
1 and we have proved i). We get iii) c) reasoning as above.

iii) d) has been proved in [4]. iii) e) Assume that α |λ| ∈ Ĉ1. Then

w
◦ p
α (λ) =

{
X ∈ s / |X |p ∈ 1(λ) s

◦
α

}
.

Since 1(λ) = 1Dλ, we get 1(λ) s
◦
α = 1s

◦
α|λ|. Now, from i) b) we deduce that

α |λ| ∈ Ĉ1 implies that 1 is bijective from s
◦
α|λ| into itself and wα (λ) = s

◦

(α|λ|)
1
p

. We

get e) reasoning as above.

As a direct consequence of Theorem 2 we obtain the following results given in [11].

COROLLARY 1. Let r > 0 be any real. We get

r > 1 ⇔ sr (1) = sr ⇔ s
◦
r (1) = s

◦
r ⇔ sr

(
1+) = sr .

We deduce from the previous section the following.

3. Sets of sequences that are strongly α−bounded and α−convergent to zero with
index p and generalizations.

In this section we deal with sets generalizing the well known sets of sequences that are
strongly bounded and convergent to zero.

First we recall some results given in [10].

3.1. Sets cα (λ, µ), c
◦
α (λ, µ) and c•

α (λ, µ).

If α = (αn)n ∈ U+∗ is a given sequence, we consider now for λ ∈ U , µ ∈ s the space

cα (λ, µ) = (wα (λ))1(µ) = {X ∈ s / 1 (µ) X ∈ wα (λ)}

It is easy to see that

cα (λ, µ) = {X ∈ s / C (λ) (|1(µ) X |) ∈ sα} ,

that is

cα (λ, µ) =
{

X = (xn)n ∈ s / sup
n≥2

(
1

|λn|αn

n∑

k=2

|µk xk − µk−1xk−1|
)
< ∞

}
.



24 B. de Malafosse

See [10, 11, 13]. Similarly we define the following sets

c
◦
α (λ, µ) =

{
X ∈ s / C (λ) (|1(µ) X |) ∈ s

◦
α

}
,

c•
α (λ, µ) =

{
X ∈ s / X − let ∈ c

◦
α (λ, µ) for some l ∈ C

}

Recall that if λ = µ it is written that c0 (λ) = (w0 (λ))1(λ),

c (λ) =
{

X ∈ s / X − let ∈ c0 (λ) for some l ∈ C
}
,

and c∞ (λ) = (w∞ (λ))1(λ), see [16]. It can be easily seen that

c0 (λ) = c
◦
e (λ, λ) , c∞ (λ) = ce (λ, λ) and c (λ) = c•

e (λ, λ) .

These sets are called sets of sequences that are strongly bounded, strongly convergent
to 0 and strongly convergent. If λ ∈ U +∗ is a sequence strictly increasing to infinity,
c (λ) is a Banach space with respect to

‖X‖c∞(λ) = supn≥1

(
1

λn

n∑

k=1

|λk xk − λk−1xk−1|
)

with the convention x0 = 0. Each of the spaces c0 (λ), c (λ) and c∞ (λ) is a BK space,
with respect to the previous norm (see [14]). c0 (λ) has AK and every X ∈ c (λ) has a
unique representation given by

(5) X = let +
∞∑

k=1

(xk − l) et
k,

where X − let ∈ c0. The number l is called the strong c (λ)-limit of the sequence X .

We obtain the next result given in [10]:

THEOREM 3. Let α, λ and µ be sequences of U +∗.

i) Consider the following properties

a) αλ ∈ Ĉ1;

b) cα (λ, µ) = s
α λµ

;

c) c
◦
α (λ, µ) = s

◦

α λ
µ

;

d) c•
α (λ, µ) =

{
X ∈ s / X − let ∈ s

◦

α λµ
for some l ∈ C

}
.

We have a)⇔b) and a)⇒c) and d).
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ii) If αλ ∈ Ĉ1, then cα (λ, µ), c
◦
α (λ, µ) and c•

α (λ, µ) are BK spaces with respect
to the norm

‖X‖s
α λµ

= supn≥1

(
µn

|xn|
αnλn

)
.

c
◦
α (λ, µ) has AK and every X ∈ c•

α (λ, µ) has a unique representation given by
(5), where X − le ∈ s

◦

α λµ
.

We immediatly deduce the following:

COROLLARY 2. Assume that α, λ and µ ∈ U+∗.

i) If αλ ∈ Ĉ1 and µ ∈ l∞, then

(6) c•
α (λ, µ) = s

◦

α λ
µ

.

ii) λ ∈ 0 ⇒ λ ∈ Ĉ1 ⇒ c0 (λ) = s
◦
λ and c∞ (λ) = sλ.

3.2. Generalization

In this subsection we consider spaces generalizing the well known spaces of sequences
c∞ (λ) and c0 (λ) that are strongly bounded and convergent to naught.

For given real p > 0, let us put

cp
α (λ, µ) =

(
wp
α (λ)

)
1(µ)

=
{

X / C (λ)
(
|1(µ) X |p) ∈ sα

}
,

c
.+p
α (λ, µ) =

(
wp
α (λ)

)
1+(µ) =

{
X / C (λ)

(∣∣1+ (µ) X
∣∣p) ∈ sα

}
,

c+. p
α (λ, µ) =

(
w+p
α (λ)

)
1(µ)

=
{

X / C+ (λ)
(
|1(µ) X |p) ∈ sα

}
,

c+p
α (λ, µ) =

(
w+p
α (λ)

)
1+(µ) =

{
X / C+ (λ)

(∣∣1+ (µ) X
∣∣p) ∈ sα

}
.

When sα is replaced by s
◦
α in the previous definitions, we shall write c̃p

α (λ, µ),

c̃
.+p
α (λ, µ), c̃+. p

α (λ, µ) and c̃+p
α (λ, µ), instead of c p

α (λ, µ), c
.+p
α (λ, µ), c+. p

α (λ, µ)

and c+p
α (λ, µ). For instance, it can be easily seen that

cp
α (λ, µ) =

{
X = (xn)n≥1 / supn≥1

[
1

|λn |αn

(
n∑

k=1
|µk xk − µk−1xk−1|p

)]
< ∞

}
,

c
.+p
α (λ, µ) =

{
X = (xn)n≥1 / supn≥1

[
1

|λn |αn

(
n∑

k=1
|µk xk − µk+1xk+1|p

)]
< ∞

}
,

c+. p
α (λ, µ) =

{
X = (xn)n≥1 / supn≥1

[
1
αn

∞∑
k=n

(
1

|λk | |µk xk − µk−1xk−1|p
)]
< ∞

}
,

c̃+p
α (λ, µ) =

{
X = (xn)n≥1 / limn→∞

[
1
αn

∞∑
k=n

(
1

|λk | |µk xk − µk+1xk+1|p
)]

= 0

}
,

with the convention x0 = 0. We shall say that c p
α (λ, µ) and c̃p

α (λ, µ) are the sets
of sequences that are strongly α−bounded and α−convergent to 0 with index p. If
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λ = µ, α = e and p = 1, then c p
α (λ, µ) = c∞ (λ) and c̃p

α (λ, µ) = c0 (λ) are the sets
of sequences that are strongly bounded and strongly convergent to zero.

Now we shall put ζp = (α|λ|)
1
p

|µ| =
(
(αn |λn|)

1
p

|µn |

)

n≥1
, ζ−

p =
(
(αn−1|λn−1|)

1
p

|µn−1|

)

n≥1

with

(α0|λ0|)
1
p

|µ0| = 1 and κ =
((

αn−1
αn

∣∣∣λn−1
λn

∣∣∣
) 1

p
∣∣∣ µn
µn−1

∣∣∣
)

n≥2
. From the results of Section 2 we

obtain

THEOREM 4. i) If α |λ| ∈ Ĉ1 and (α |λ|)
1
p ∈ Ĉ1, then

(7) c p
α (λ, µ) = sζp and c̃p

α (λ, µ) = s
◦
ζp
.

ii) Assume that α |λ| ∈ Ĉ1.

a) If ζp = (α |λ|)
1
p

µ
∈ Ĉ1, then c

.+p
α (λ, µ) = sζ−

p
;

b) if κ = 0 (1), then c̃+. p
α (λ, µ) = s

◦
ζp

.

iii) Assume that α |λ| ∈ Ĉ1.

a) (α |λ|)
1
p ∈ Ĉ1 implies

c+. p
α (λ, µ) = sζp and c̃+. p

α (λ, µ) = s
◦
ζp
.

iv) Assume that α ∈ Ĉ+
1 .

a) if ζp ∈ Ĉ1 then c+p
α (λ, µ) = sζ−

p
;

b) if κ = o (1) then c̃+p
α (λ, µ) = s

◦

ζ−
p
.

Proof. Assertion i). First, we have

cp
α (λ, µ) =

{
X / 1 (µ) X ∈ wp

α (λ)
}
;

and since α |λ| ∈ Ĉ1, we get from iii) d) in Theorem 2, w p
α (λ) = s

(α|λ|)
1
p

. Thus,

using the identities 1 (µ)−1 = C (µ) = D 1
µ
6 we get c p

α (λ, µ) = D 1
µ
6s

(α|λ|)
1
p

;

and since (α |λ|)
1
p ∈ Ĉ1, we deduce that 1 is bijective from s

(α|λ|)
1
p

into itself, i.e.

6s
(α|λ|)

1
p

= s
(α|λ|)

1
p

and we conclude that c p
α (λ, µ) = sζp . By a similar reasoning we

obtain c̃p
α (λ, µ) = s

◦
ζp

.

Assertion ii) a). Here we get

c
.+p
α (λ, µ) =

{
X / 1+ (µ) X ∈ wp

α (λ)
}
;
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and since α |λ| ∈ Ĉ1, we have wp
α (λ) = s

(α|λ|)
1
p

. So

c
.+p
α (λ, µ) = s

(α|λ|)
1
p

(
1+ (µ)

)
,

and from ii) a) in Theorem 2, we get

(8) s
(α|λ|)

1
p

(
1+ (µ)

)
= sζ−

p
if ζp ∈ Ĉ1.

This gives the conclusion.

Statement ii) b). As above we obtain using ii) b) in Theorem 2

c̃+p
α (λ, µ) = s

◦

(α|λ|)
1
p

(
1+ (µ)

)
= s

◦

ζ−
p
,

since κ = o (1).

iii) We have
c+. p
α (λ, µ) =

{
X / 1 (µ) X ∈ w+p

α (λ)
}
.

If α ∈ Ĉ+
1 , then w+p

α (λ) = s
(α|λ|)

1
p

and

c+. p
α (λ, µ) = C (µ) s

(α|λ|)
1
p

= D 1
µ
6s

(α|λ|)
1
p
.

From i) a) in Theorem 2, (α |λ|)
1
p ∈ Ĉ1 implies 6s

(α|λ|)
1
p

= s
(α|λ|)

1
p

and we conclude

that c+. p
α (λ, µ) = sζp . We get c̃+. p

α (λ, µ) = s
◦
ζp

reasoning as above.

iv) a) Since w+p
α (λ) = s

(α|λ|)
1
p

for α ∈ Ĉ+
1 , we deduce that

c+p
α (λ, µ) =

{
X / 1+ (µ) X ∈ w+p

α (λ) = s
(α|λ|)

1
p

}
= s

(α|λ|)
1
p

(
1+ (µ)

)
;

and we conclude using (8). b) can be obtained reasoning as in ii) b).

REMARK 2. Note that the previous sets are BK spaces and we can write for in-

stance that if α |λ| ∈ Ĉ1 and (α |λ|)
1
p ∈ Ĉ1, then c.+p

α (λ, µ) is a BK space with

respect to the norm ‖‖sξp
and c̃.+p

α (λ, µ) has AK.

COROLLARY 3. Assume that α |λ| ∈ 0. Then

i) cp
α (λ, µ) = c+. p

α (λ, µ) = sζp ;

ii) c̃p
α (λ, µ) = s

◦
ζp

and c̃+. p
α (λ, µ) = s

◦
ζp
.
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Proof. Since 0 ⊂ Ĉ1, it is enough to show that α |λ| ∈ 0 if and only if (α |λ|)
1
p ∈ 0

and apply i) and ii) in Theorem (4). So put q = 1/p > 0, ξ = α |λ| and show that ξ ∈
0 if and only if ξq ∈ 0. If ξ ∈ 0 there is an integer N such that supn≥N+1

(
ξn−1
ξn

)
< 1,

then (
ξn−1

ξn

)q

≤
[

sup
n≥N+1

(
ξn−1

ξn

)]q

< 1 for all n ≥ N + 1,

and ξq ∈ 0. Conversely, assume that ξ q ∈ 0, that is lim supn→∞
(
ξn−1
ξn

)q
< 1. By a

similar reasoning we get

ξn−1

ξn
≤
[

sup
n≥N+1

(
ξn−1

ξn

)q
] 1

q

< 1 for all n ≥ N + 1,

and ξ ∈ 0. We conclude applying Theorem (4).

In order to assert the next corollary, we need the following elementary lemma.

LEMMA 4. Let q > 0 be any real and α ∈ U+∗ a nondecreasing sequence. Then

i) α ∈ Ĉ1 implies αq ∈ Ĉ1, for q ≥ 1,

ii) αq ∈ Ĉ1 implies α ∈ Ĉ1, for 0 < q < 1.

Proof. Let q ≥ 1. Since α is nondecreasing we see immediatly that for any given

integer n ≥ 1: αk

n∑
k=1

(
α

q−1
n − α

q−1
k

)
=

n∑
k=1

(
α

q−1
n αk − α

q
k

)
≥ 0, and

(9)
1

αn

(
n∑

k=1

αk

)
≥ 1

α
q
n

(
n∑

k=1

α
q
k

)
.

Since α ∈ Ĉ1 implies
1

αn

(
n∑

k=1
αk

)
= O (1), we obtain i) using the inequality (9).

Now, writing β = αq ∈ Ĉ1 and applying i), we get α = β
1
q ∈ Ĉ1 for 0 < q < 1. This

permits us to conclude for ii).

COROLLARY 4. Assume that α, λ ∈ U+∗ and α |λ| is a nondecreasing sequence.

i) If p > 1, then (α |λ|)
1
p ∈ Ĉ1 implies

(10) c p
α (λ, µ) = sζp and c̃p

α (λ, µ) = s
◦
ζp

;

ii) if 0 < p ≤ 1, α |λ| ∈ Ĉ1 if and only if c p
α (λ, µ) = sζp .
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iii) If α |λ| ∈ 0, then (10) holds.

Proof. i). If p > 1, 0 < 1
p < 1 and from Lemma 4, (α |λ|)

1
p ∈ Ĉ1 implies α |λ| ∈ Ĉ1.

So we conclude using i) in Theorem 4.

Assertion ii). The necessity comes from i) in Theorem (4). Sufficiency. First, put

α̃ =


(−1)n

(αn |λn|)
1
p

µn




n≥1

.

We have α̃ ∈ c p
α (λ, µ) = sζp and using the convention α0 = 0, we can write

|1(µ) α̃| =



∣∣∣∣∣∣
µn (−1)n

(αn |λn|)
1
p

µn
− µn−1 (−1)n−1 (αn−1 |λn−1|)

1
p

µn−1

∣∣∣∣∣∣




n≥1

.

So

|1(µ) α̃|p =
((
(αn |λn|)

1
p + (αn−1 |λn−1|)

1
p

)p
)

n≥1
.

Then the condition 6 |1(µ) α̃|p ∈ sα|λ| implies that there is a real M > 0 such that
for every n:

1

αn |λn|

(
n∑

k=1

αk |λk |
)

≤ 1

αn |λn|

(
n∑

k=1

(
(αk |λk |)

1
p + (αk−1 |λk−1|)

1
p

)p
)

≤ M.

We conclude that α |λ| ∈ Ĉ1. So ii) can be deduced from Theorem (4).

In the next result we shall denote by c p
α (λ) the set c p

α (λ, λ).

Consider now the following identities.

(11) c p
α (λ) = s(

α
1
p |λ|

1
p −1

)

(12) c̃p
α (λ) = s

◦(
α

1
p |λ|

1
p −1

)

COROLLARY 5. Assume that α |λ| is nondecreasing.

i) If 0 < p ≤ 1, then

a) α |λ| ∈ Ĉ1 if and only if (11) holds.

b) α |λ| ∈ Ĉ1 implies that (12) holds.

ii) If p > 1, the condition (α |λ|)
1
p ∈ Ĉ1 implies that (11) and (12) hold.
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iii) α |λ| ∈ 0 implies (11) and (12).

Proof. i) a) comes from ii) in Corollary 4, where λ = µ. The proof of i) b) comes
from Lemma 4 and i) in Theorem (4). ii) comes from i) in Corollary 4. iii) comes from
Corollary 3.

Now we can give an application which can be considered as corollary.

COROLLARY 6. i) c p
∞ (λ) 6= l∞ in the following cases:

a) 0 < p < 1 and |λ| ∈ Ĉ1;

b) p > 1 and |λ|
1
p ∈ Ĉ1.

ii) c∞ (λ) = l∞ if and only if |λ| ∈ Ĉ1.

iii) Assume that α → ∞.

a) Let p > 1. If (α |λ|)
1
p ∈ Ĉ1, then

cp
α (λ) = l∞ implies |λn| → ∞ as n → ∞.

b) If 0 < p < 1 and α |λ| ∈ Ĉ1, then

cp
α (λ) = l∞ implies λ ∈ c0.

Proof. Case a). Since |λ| ∈ Ĉ1, we have c p
∞ (λ) = s

|λ|
1
p −1 . So the identity c p

∞ (λ) =
l∞ implies that there are K1 and K2 > 0 such that

(13) K1 ≤ |λn|
1
p −1 ≤ K2 for all n.

Since
1

p
− 1 > 0 and |λ| ∈ Ĉ1, we deduce that |λn|

1
p −1 → ∞ as n → ∞, which is

contradictory.

Case b). Here we get |λn|
1
p −1 = o (1) and (13) cannot be satisfied. ii) comes from

the equivalence a)⇔b) in i) of Theorem 3 in which we put α = e and λ = µ.

Assertion iii). Condition a) implies c p
α (λ) = s(

α
1
p |λ|

1
p −1

). From the identity

cp
α (λ) = l∞, there exist K1 and K2 > 0 such that

K1 ≤ α
1
p

n |λn|
1
p −1 ≤ K2 and

K1

α
1
p

n

≤ |λn|
1
p −1 ≤ K2

α
1
p

n

for all n ≥ 1.

Since 1
p − 1 < 0 we conclude that |λn| → ∞ as n → ∞. b) can be obtained by a

similar reasoning.
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