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LOCAL SOLVABILITY FOR SEMILINEAR PARTIAL

DIFFERENTIAL EQUATIONS OF CONSTANT STRENGTH

Abstract. The main goal of the present paper is to study the local solv-
ability of semilnear partial differential operators of the form

F(u) = P(D)u + f (x, Q1(D)u, ......, QM (D)u),

where P(D), Q1(D), ..., QM (D) are linear partial differntial operators of
constant coefficients and f (x, v) is a C∞ function with respect to x and
an entire function with respect to v.
Under suitable assumptions on the nonlinear function f and on
P, Q1, ..., QM , we will solve locally near every point x 0 ∈ Rn the next
equation

F(u) = g, g ∈ Bp,k,

where Bp,k is a wieghted Sobolev space as in Hörmander [13].

1. Introduction

During the last years the attention in the literature has been mainly addressed to the
semilinear case:

(1) P(x, D)u + f (x, Dαu)|α|≤m−1 = g(x)

where the nonlinear function f (x, v), x ∈ Rn , v ∈ CM , is in C∞(Rn,H(CM)) with
H(CM) the set of the holomorphic functions in CM and where the local solvability of
the linear term P(x, D) is assumed to be already known.
See Gramchev-Popivanov[10] and Dehman[4] where, exploiting the fact that the non-
linear part of the equation (1) involves derivatives of order ≤ m − 1, one is reduced
to applications of the classical contraction principle and Brower’s fixed point Theo-
rem, provided the linear part is invertible in some sense. The general case of P(x, D)
satisfying the (P) condition of Nirenberg and Trèves [21] has been settled in Hounie-
Santiago[12], by combining the contraction principle with compactness arguments.
Corcerning the case of linear part with multiple characteristics, we mention the
recent results of Gramchev-Rodino[11], Garello[6], Garello[5], Garello-Gramchev-
Popivanov-Rodino[7], Garello-Rodino[8], Garello-Rodino[9], De Donno-Oliaro[3],
Marcolongo[17], Marcolongo-Oliaro[18], Oliaro[22].
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The main goal of the present paper is to study the local solvability of semilinear partial
differential operators of the form

(2) F(u) = P(D)u + f (x, Q1(D)u, ..., QM (D)u)

where P(D), Q1(D), ..., QM (D) are linear partial differential operators with constant
coefficients and f (x, v) is as before a C∞ function with respect to x and an entire
function with respect to v.
We will introduce suitable assumptions on the nonlinear function f and on
P, Q1, ..., QM in order to solve locally near a point x 0 ∈ Rn the next equation

(3) F(u) = g, g ∈ Bp,k,

where Bp,k is a weighted Sobolev space as in Hörmander [13], with 1 ≤ p ≤ ∞ and k
temperate weight function. Hörmander introduced these spaces exactly in connection
with the problem of the solvability of linear partial differential operators with constant
coefficients, namely one can find a fundamental solution T of P(D) belonging locally
to B∞, P̃ , see [13].
There are suitable assumptions on the temperate weight function k under which the
space Bp,k forms an algebra, see [20], [19]. In [20] we have also proved, under the
same conditions, invariance after composition with analytic functions. These results
allow us to look for a solution u, in a related Bp,k , giving meaning to the nonlinear
term of (2).
More precisely, from basic properties of these spaces (see [13], [24] and the next Sec-
tion 2 for notations and results), we know that if u ∈ Bp,k P̃ then P(D)u ∈ Bp,k and
Qi (D)u ∈ Bp,k P̃/Q̃i

for i = 1, ..,M . Assuming that P � Qi for every i , we get

(4) Bp,k P̃/Q̃i
↪→ Bp,k,

then, one should require k satisfying the hypotheses which grant
f(x,Q1(D)u, ...,QM (D)u) ∈ Bp,k . Under these conditions the equation (3) will be
well defined in the classical sense, for g ∈ Bp,k and u ∈ Bp,k P̃ .
In this paper we will prove two theorems about the local solvabilty of (3) under dif-
ferent assumptions on the non-linear function f and the linear terms P, Q1, ..., QM ,
completing the results of [20].

In the first theorem, Theorem 11, we assume Q̃i (ξ)

P̃(ξ)
→ 0 when |ξ | → ∞ for

i = 1, ...,M . From this hypothesis it follows that the inclusion Bp,k P̃/Q̃i
↪→ Bp,k

is compact (see [13]).
However here we assume on the nonlinearity f (x, 0) = 0, corresponding to the
standard setting in literature; this is essentially weaker than the hypotheses in [20]
f (x0, v) = 0 for every v ∈ CM .
In the proof, we will generalize a well-known property of the standard Sobolev spaces
to the case of the weighted spaces Bp,k , namely, if k1 and k2 are temperate weight
functions, k2(ξ) ≥ N > 0 for all ξ ∈ Rn , x0 is a point in Rn and

(5)
k2(ξ)

k1(ξ)
→ 0 for |ξ | → ∞
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then

(6) ‖u‖p,k2 ≤ C(ε)‖u‖p,k1 ∀u ∈ Bp,k1 ∩ E
′(Bε(x0))

where Bε(x0) = {x ∈ Rn/‖x − x0‖ < ε} and C(ε) → 0 for ε → 0.
Applying the previous property and the Schauder Fixed Point Theorem, we will con-
clude that the equation (3) is locally solvable at every x 0 ∈ Rn , and the solution belongs
to Bp,k P̃ .
In the second result, Theorem 12, the assumptions are weaker than those in the first
theorem, but the functional frame is now limited to suitable spaces Hk := B2,k .
More precisely, we suppose g ∈ Hk having the algebra property, and k of the partic-
ular form k = ψr , with r ∈ R, ψ ∈ C∞ satisfying the ”slowly varying” estimates,
stronger than the temperate condition. These estimates were introduced by Beals [1],
cf. Hörmander [14], in connection with the pseudodifferential calculus. Namely, as a
particular case of the classes of Beals [1], we may consider the classes of symbols Sνψ ,
whose definition is obtained by replacing (1 + |ξ |) in the classic Sν1,0 bounds with the
weight ψ(ξ). The corresponding pseudodifferential operators O PSνψ have a natural
action on the weighted Sobolev spaces Hψr . For most of the related properties and
definitions recalled in the following let us refer to Rodino [23].
After having transformed the equation (3) into an equivalent fixed point problem, we
will deduce, using the assumption Q i ≺≺ P and applying the properties of the pseu-
dodifferential calculus, that there exists C(ε) such that C(ε) →ε→0 0 and

‖Qi (D)u‖Hk ≤ C(ε)‖P(D)u‖Hk

for i = 1, ...,M and every u ∈ Hk P̃ ∩ E ′(Bε(x0)), x0 any point in Rn .
The Contraction Principle will allow us to conclude again that the equation (3) is locally
sovable, and the solution belongs to Hk P̃ , at every point of Rn.
We end this introduction by giving a simple example of an operator with multiple
characteristics to which our Theorems 11 and 12 apply. Namely consider

(7) D4
x1

u − L2u + f (u, (D2
x1

− L)u, (D2
x2

+ L)u) = g.

where L is a constant vector field in Rn . Our results will provide for (7) solutions
in different scales of functional spaces Bp,k , cf. Section 2, exibiting novelty in com-
parison with the papers mentioned at the beginning. We also point out that even for
some semilinear partial differential equations with simple characteristics Theorem 11
and Theorem 12 imply new results for the local solvability in more general functional
spaces.

2. Preliminary results

We begin with a short survey on Bp,k spaces.

DEFINITION 1. A positive function k defined in Rn is called a temperate weight
function if there exist positive constants C and N such that

(8) k(ξ + η) ≤ (1 + C|ξ |)N k(η) ; ξ, η ∈ Rn.
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The set of all such functions will be denoted by K.

EXAMPLE 1. The basic example of a function in K, is the function P̃ defined by

(9) P̃2(ξ) =
∑

|α|≥0

|P(α)(ξ)|2

where P is a polynomial and so that the sum is finite. Here P (α) = ∂αP. It follows
immediately from Taylor’s formula that

P̃(ξ + η) ≤ (1 + C|ξ |)m P̃(η)

where m is the degree of P and C is a constant depending only on m and the dimension
n.

The proofs of the following results are omitted for shortness; let us refer for them
to [13].

DEFINITION 2. If k ∈ K and 1 ≤ p ≤ +∞, we denote by Bp,k the set of all
distributions u ∈ S ′ such that the Fourier Transform û is a function and

(10) ‖u‖p,k =
(
(2π)−n

∫
|k(ξ )̂u(ξ)|pdξ

)1/p

< +∞.

When p=+∞ we shall interpret ‖u‖p,k as ess.sup|k(ξ )̂u(ξ)|. We shall also write
Hk := B2,k , endowed with the natural Hilbert structure.

EXAMPLE 2. The usual Sobolev spaces H(s) correspond to the temperate weight
function ks(ξ) = (1 + |ξ |2)s/2, with p = 2.

Bp,k is a Banach space with the norm (10). We have

(11) S ⊂ Bp,k ⊂ S ′

also in topological sense.

THEOREM 1. If k1 and k2 belong to K and there exists C > 0 such that

k2(ξ) ≤ Ck1(ξ), ξ ∈ Rn,

it follows that Bp,k1 ↪→ Bp,k2 .

REMARK 1. Let k ∈ K , in view of estimate (8) with η = 0 and Theorem 1, one
can find s ∈ R such that Bp,(1+|ξ |2)s/2 ↪→ Bp,k .

We shall now study how differential operators with constant coefficients act in the
spaces Bp,k . Recall that if P(ξ) is a polynomial in n variables ξ1, ..., ξn with complex
coefficients, then a differential operator P(D) is defined by replacing ξ j by D j =
−i∂/∂x j and the function P̃ is defined by (9).
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THEOREM 2. If u ∈ Bp,k it follows that P(D)u ∈ Bp,k/ P̃ .

THEOREM 3. If u1 ∈ Bp,k1 ∩ E ′ and u2 ∈ B∞,k2 , it follows that u1 ∗ u2 belongs to
Bp,k1k2 , and we have the estimate

(12) ‖u1 ∗ u2‖p,k1k2 ≤ ‖u1‖p,k1 ‖u2‖∞,k2 .

THEOREM 4. If u ∈ Bp,k and φ ∈ S, it follows that uφ ∈ Bp,k and that

(13) ‖φu‖p,k ≤ ‖φ‖1,Mk ‖u‖p,k ,

where Mk ∈ K is defined by Mk(ξ) = supη
k(ξ+η)

k(η) .

LEMMA 1. Let k ∈ K . For every φ ∈ S there exists an equivalent weight function
h (i.e. C−1k(ξ) ≤ h(ξ) ≤ Ck(ξ)) such that

(14) ‖φu‖p,h ≤ 2‖φ‖1,1‖u‖p,h .

We stress that the weight h depends on φ. We will use Lemma 1 later.

THEOREM 5. If k1 and k2 belong to K and H is a compact set in Rn, the inclusion
mapping of Bp,k1 ∩ E ′(H) into Bp,k2 is compact if

(15)
k2(ξ)

k1(ξ)
→ 0 for |ξ | → ∞.

Conversely, if the mapping is compact for one set H with interior points, it follows that
(15) is valid.

The Frèchet space B loc
p,k is defined in the standard way and corresponding properties are

valid for it, in particular we have the following variant of Theorem 3.

THEOREM 6. Let u1 ∈ Bp,k1 ∩ E ′ and u2 ∈ B loc
∞,k2

, it follows that u1 ∗ u2 belongs

to B loc
p,k1k2

.

Under suitable conditions regarding a temperate weight function k the corresponding
space Bp,k is an algebra; for the proof of the next theorems, let us refer to [20].

THEOREM 7. Let 1 < p < +∞, 1/p + 1/q = 1, u, v ∈ Bp,k and K (ξ, η) =
k(ξ)

k(ξ−η)k(η) satisfy

(16) sup
ξ

∫
|K (ξ, η)|qdη ≤ C0 < +∞.

then uv∈Bp,k and ‖uv‖p,k ≤C‖u‖p,k‖v‖p,k .

The previous theorem can be generalized to the invariance of the spaces B p,k under the
composition with entire functions.
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DEFINITION 3. We write f (x, v) ∈ C∞(Rn
x ,H(C

M )), where H(CM ) is the set of
the entire functions in CM , if f (x, v) =

∑
|α|≥0 cα(x)vα where cα(x) ∈ C∞(Rn)

and for every compact subset H⊂ Rn , there exist Cβ(K), λα(K) > 0 such that
supx∈K |∂βcα(x)| < Cβλα,

∑
|α|≥0 λαv

α being an entire function of v ∈ CM .

THEOREM 8. Let f (x, v) ∈ C∞(Rn
x ,H(C

M)), u1, ..., uM ∈ Bp,k with k satisfying
the hypotheses of Theorem 7, then f (x, u1(x), ..., uM(x)) ∈ B loc

p,k .

Now we recall two particular definitions of comparison between differential polynomi-
als and related theorems of characterization (see Hörmander [13], Trèves [24] for the
proofs).

Let � be an open subset of Rn, P, Q two differential operators with C∞ coeffi-
cients in �.

DEFINITION 4. We say that P is stronger than Q in� if to every relatively compact
open subset �′ of �, there exists a constant C(P, Q, �′) such that, for all functions
ψ ∈ C∞

0 (�
′),

(17)
∫

|Q(x, D)ψ(x)|2dx ≤ C(P, Q, �′)
∫

|P(x, D)ψ(x)|2dx .

DEFINITION 5. Let x0 be a point of �. We say that P is infinitely stronger than
Q at x0 if to every ε > 0 there exists η > 0 such that, for all functions ψ ∈ C∞

0 (�)

having their support in the open ball centered at x 0, with radius η,

(18)
∫

|Q(x, D)ψ(x)|2dx ≤ ε

∫
|P(x, D)ψ(x)|2dx .

In other words, P is infinitely stronger than Q at x 0 if estimate (17) holds for some
open neighborhoord�′ of x0, and if we may choose the constant C(P, Q, �′) so that
it converges to zero when �′ converges to the set {x0}. If P is stronger than Q and Q
stronger than P in �, we say that P and Q are equally strong or equivalent in �.
If P and Q have constant coefficients, the validity of Definition 4 does not depend on
�. In this situation, we simply say that P(D) is stronger than Q(D) and we shall write
P(D) � Q(D). Similarly, the translation invariance of P(D) and Q(D) implies that
if P(D) is infinitely stronger than Q(D) at some point of Rn, this is also true at any
other point of Rn . Thus we shall say that P(D) is infinitely stronger than Q(D), and
write P(D) �� Q(D).

THEOREM 9. Let P(D), Q(D) be two differential polynomials in Rn. The follow-
ing properties are equivalent:

(a) P(D) is stronger than Q(D);

(b) the function Q̃(ξ)
P̃(ξ)

is bounded in Rn;

(c) the function |Q(ξ)|
P̃(ξ)

is bounded in Rn .



Local solvability for semilinear partial differential equations of constant strength 39

REMARK 2. With reference to operator (2), let us observe the following. If we

assume that Qi ≺ P for every i = 1, ...,M , in view of Theorem 9, we have Q̃i (ξ)

P̃(ξ)
≤ C ;

therefore for every k ∈ K

(19) k(ξ) ≤ C
k(ξ)P̃(ξ)

Q̃i(ξ)
.

In view of Theorem 1 and (19) we obtain

(20) B
p, k P̃

Q̃i

↪→ Bp,k, ∀i = 1, ...,M.

We conclude this section by recalling the definition and the main properties of the pseu-
dodifferential operators with symbols in the classes Sψ , particular case of the classes
of Beals [1].
We say that a positive continuous function ψ(ξ) in Rn is a basic weight function if
there are positive constants c,C such that

(1) c(1 + |ξ |)c ≤ ψ(ξ) ≤ C(1 + |ξ |),
(2) c ≤ ψ(ξ + θ)ψ(ξ)−1 ≤ C, if |θ |ψ(ξ)−1 ≤ c.

(21)

For ν ∈ R we define Sνψ to be the set of all a(x, ξ) ∈ C∞(Rn × Rn) which satisfy the
estimates

(22) |Dα
x Dβ

ξ a(x, ξ)| ≤ cαβψ(ξ)
ν−|β|, x ∈ Rn, ξ ∈ Rn.

Let

(23) A f (x) = a(x, D) f (x) = (2π)−n
∫

[i xξ ]a(x, ξ) f̂ (ξ)dξ , f ∈ C∞
0 (R

n),

with a(x, ξ) ∈ Sνψ . The standard rules of the calculus of the pseudo-differential opera-
tors hold for operators of the form (23). Let us review shortly the properties which we
shall use in the following.
Recall first that for every basic weight function ψ(ξ) we may find a smooth ba-
sic weight function ψ0(ξ), which is equivalent to ψ(ξ) (i.e. ψ0(ξ)ψ(ξ)

−1 and
ψ0(ξ)

−1ψ(ξ) are bounded in Rn), such that

(24) |Dβ

ξ ψ0(ξ)| ≤ cβψ0(ξ)ψ0(ξ)
−|β|, ξ ∈ Rn.

Note that, let ψ be a smooth function satisfying (24) and (21), then ψ is a temperate
weight function.
Equivalent basic weight functions define the same class of symbols; therefore we may
assume in the following that ψ(ξ) satisfies (24).
Moreover from (24) it follows that ψ ∈ S1

ψ and so, for every r ∈ R, ψr ∈ Sr
ψ .

The operator A in (23) maps continuously C∞
0 (R

n) into C∞(Rn) and it extends to a
linear continuous operator from E ′(Rn) to D′(Rn).
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According to the previous notations, write Hψν for the Hilbert space of the distributions
f ∈ S ′(Rn) which satisfy

(25) ‖ f ‖2
Hψν

=
∫
ψ(ξ)2ν | f̂ (ξ)|2dξ < ∞.

If A has symbol in Sνψ , then for every s ∈ R:

(26) A : Hψν+s → Hψ s continuously.

A map A : C∞
0 (R

n) → D′(Rn) is said to be smoothing if it has a continuous extension
mapping E ′(Rn) into C∞(Rn); for given operators A1, A2 : E ′(Rn) → D′(Rn) we
shall write A1 ∼ A2 if the difference A1 − A2 is smoothing.
If a(x, ξ) is in ∩νSνψ , then a(x, D) is smoothing.

THEOREM 10. Let a1(x, ξ) be in Sν1
ψ , let a2(x, ξ) be in Sν2

ψ . Then the product

a1(x, D)a2(x, D) is in Sν1+ν2
ψ with symbol

(27) a(x, ξ) ∼
∑

α

(α!)−1∂αξ a1(x, ξ)D
α
x a2(x, ξ).

3. Statement of the main results

We will study the following semilinear partial differential operator (2) where

(1) P(D) is a linear partial differential operator with constant coefficients;

(2) f (x, v) ∈ C∞(Rn
x ,H(C

M )) and f (x, 0) = 0 for every x ∈ Rn;

(3) Q1(D), ..., QM (D) are linear partial differential operators with constant coeffi-
cients such that Qi(D) ≺ P(D) for i = 1, ...,M .

We want to solve locally near every point x 0 ∈ Rn the equation (3) under the following
stronger assumptions on Qi (D), cf. Introduction.

THEOREM 11. Let g ∈ Bp,k , with k satisfying the assumptions of Theorem 7 and
k(ξ) ≥ N > 0, ∀ξ ∈ Rn, 1 < p < ∞. Consider the operator F defined by (2) where,
for i = 1, ...,M,

(28)
Q̃i (ξ)

P̃(ξ)
→ 0, when |ξ | → ∞;

then for every x0 ∈ Rn one can find a constant ε0 > 0 and u0 ∈ Bp,k P̃ such that

(29) F(u0)(x) = g(x), ∀x ∈ �

where � = {x ∈ Rn/‖x − x0‖ < ε0}.
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THEOREM 12. Let g ∈ Hk, k satisfying the assumptions of Theorem 7 with p = 2
be such that k = ψr with r ∈ R, ψr (ξ) ≥ N > 0 for every ξ ∈ Rn and assume that
(21) holds. Consider the operator F defined by (2) where, for i = 1, ...,M,

(30) Qi ≺≺ P;

then for every x0 ∈ Rn one can find a constant ε0 > 0 and u0 ∈ Hk P̃ such that

(31) F(u0)(x) = g(x), ∀x ∈ �

where � = {x ∈ Rn/‖x − x0‖ < ε0}.

4. Proof of the results

To prove Theorem 11 we will apply a property of the Sobolev spaces true also for the
weighted Sobolev spaces (see [16]).

THEOREM 13. If k1 and k2 belong to K, k2 ≥ N > 0, x0 is a point in Rn and

(32)
k2(ξ)

k1(ξ)
→ 0 for |ξ | → ∞

then

(33) ‖u‖p,k2 ≤ C(ε)‖u‖p,k1 ∀u ∈ Bp,k1 ∩ E
′(Bε(x0))

where Bε(x0) = {x ∈ Rn/‖x − x0‖ < ε} and C(ε) → 0 for ε → 0.

Proof. First of all note that from the Theorem 5 it follows that the injection of B p,k1 ∩
E ′(Bε(x0)) into Bp,k2 is compact.
To prove the Theorem we have to verify that

(34) sup
u∈Bp,k1 ∩E ′(Bε(x0))

‖u‖p,k2

‖u‖p,k1

= C(ε) where C(ε) → 0

that is equivalent to prove that

(35) sup
u∈Bp,k1∩E ′(Bε(x0)),‖u‖p,k1 =1

‖u‖p,k2 = C(ε) where C(ε) → 0.

We suppose, ab absurdo, that C(ε) does not tend to 0 when ε tends to 0, then there
exists a sequence {εν}ν∈N such that εν → 0 when ν → ∞ and C(εν) 9 0 when
ν → ∞. We can deduce that there exists a positive constant r and a subsequence
{εν j } j∈N such that εν j → 0 when j → ∞ and C(εν j ) > r for every j. Then we obtain
that

(36) sup
u∈Bp,k1 ∩E ′(Bεν j

(x0)),‖u‖p,k1 =1

‖u‖p,k2 = C(εν j ) > r for every j.
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From the definition of supremum there exists a sequence uν j ∈ Bp,k1 with support
contained in the ball of fixed center x 0 with radius εν j such that

(37) ‖uν j ‖p,k1 = 1 and ‖uν j ‖p,k2 ≥ r.

The sequence {uν j } j∈N is bounded in Bp,k1 , then, according to the compactness of

the injection of Bp,k1 ∩ E ′(Bεν j
(x0)) into Bp,k2 , we may assume that there exists a

subsequence, still denoted by uν j , and a distribution u ∈ Bp,k2 such that

(38) ‖uν j − u‖p,k2 → 0 when j → ∞.

But from the properties of the topology of Bp,k2 , see 11, we obtain that

(39) ‖uν j − u‖S ′ → 0 when j → ∞.

Since u necessarly has support contained in {x 0}, we have u=
∑

0≤|α|≤mcαδ
(α)

x0 . We have
two possibilities:

1. u ≡ 0, which is absurd, indeed ‖uν j ‖p,k2 → ‖u‖p,k2 when j → ∞ and
‖uν j ‖p,k2 ≥ r > 0 for every j ∈ N

2. u 6≡ 0, which is absurd, indeed a nontrivial linear combination of derivatives of the
distribution δx0 does not belong to Bp,k if k ≥ N > 0.

Proof of Theorem 11. Fix a point x 0 ∈ Rn , choose

(40) ϕ ∈ C∞
0 (R

n), suppϕ ⊂ B1(0), ϕ ≡ 1 in B1/2(0)

and define

(41) ϕε(x) = ϕ

(
x − x0

ε

)
.

We also introduce the functionψ ∈ C∞
0 (R

n) defined asψ(x) = ϕ(x−x0). We observe
that from the general theory of the linear partial differential operators with constant
coefficients (see [13]) it follows that there exists a fundamental solution T ∈ B loc

∞, P̃
of

the linear part P(D) of the semilinear operator F .
In order to obtain our result we shall replace the weight function k by an equivalent
function h ∈ K ; obviously we have Bp,k = Bp,h . The function h will be determined
later; Lemma 1 will play a crucial role in this connection (see Hörmander [14] Vol. II
Theorem 13.3.3 for a similar argument). Let us define

Bp,h;R = {u ∈ Bp,h/‖u‖p,h ≤ R}.

We can consider the operator

(42) F̃ε : Bp,h;R → Bp,h
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with R ≥ 2‖g‖p,h given by the following espression

(43) F̃ε[v] = g − ψ f (x, Q1(D)(ϕεψLψv), ..., QM (D)(ϕεψLψv))

where L := T ∗, T the fundamental solution of the operator P(D).
Note that, from the hypothesis (28),

(44)
h(ξ)

h(ξ) P̃(ξ)
Q̃i (ξ)

→ 0 when |ξ | → ∞

and so, for every i = 1, ..,M , the injection of B
p, h P̃

Q̃i

∩E ′(Bε(x0)) into Bp,h is compact.

In Theorem 11 we have also supposed that k(ξ) ≥ N > 0, then we obtain that

(45)
h(ξ)P̃(ξ)

Q̃i (ξ)
≥ C > 0 for every ξ.

From (44) and (45) it follows that the temperate weight functions h P̃
Q̃i

and h satisfy the

hypothesis of the Theorem 13. Note that, if v ∈ Bp,h;R then ψv ∈ Bp,h ∩ E ′; therefore
Lψv ∈ Bloc

p,h P̃
and ψLψv ∈ Bp,h P̃ so we obtain F̃ε[v] ∈ Bp,h and, let x0 be a fixed

point in Rn, for every i = 1, ..,M , there exists a function Ci of the variable ε such that
Ci (ε) → 0 when ε → ∞ and

(46) ‖u‖
p, h P̃

Q̃i

≤ Ci(ε)‖u‖p,h ∀u ∈ Bp,h ∩ E
′(Bε(x0)).

To prove Theorem 11 we will verify that there exists ε0 > 0 such that the corresponding
operator defined by

(47)
F̃ε0 : Bp,h;R → Bp,h

F̃ε0[v] = g − ψ f (x, Q1(D)(ϕε0ψLψv), ..., QM (D)(ϕε0ψLψv))

verifies the hypotheses of the Schauder Fixed Point Theorem, namely it is continuous,
it is defined from Bp,h;R to itself and it maps bounded sets into relatively compact sets.
First of all we will prove that F̃ε(Bp,h;R) is relatively compact for every ε > 0; to this
end we will consider a sequence {v j } j∈N of distributions in Bp,h;R and we will verify
that there exists a convergent subsequence in Bp,k of the sequence {F̃ε[v j ]} j∈N.
Set {u j } j∈N := {ϕεψLψv j } j∈N, then ‖u j ‖p,h P̃ ≤ R1(ε). Indeed, by Theorem 3 and
Theorem 4,

‖u j‖p,h P̃ = ‖ϕεψ(T ∗ ψv j )‖p,h P̃ =‖ϕεψ(ψ̃T ∗ ψv j )‖p,h P̃ ≤Cε‖ψ̃T ∗ ψv j ‖p,h P̃

≤ C1,ε‖ψ̃T ‖∞, P̃‖ψv j ‖p,h ≤ C2,ε‖ψ̃T‖∞, P̃‖v j ‖p,h ≤ C3,εR

(48)
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where ψ̃ ∈ C∞
0 and ψ̃ ≡ 1 in K= {x ∈ Rn/(x + suppψv j ) ∩ suppϕεψ 6= ∅}.

Set

{Eiv j }i=1,...,M={(E1v j , ..., EMv j )}:={Q(D)u j }={(Q1(D)u j , ..., QM (D)u j )};

by Theorem 2, we also obtain ‖Eiv j‖p, h P̃
Q̃i

≤ R2(ε) for every i = 1, ...,M and j ∈ N.

The sequences {Eiv j } j∈N are bounded in B
p, h P̃

Q̃i

and belong to E ′(Bε(x0)), indeed

{u j } ∈ E ′(Bε(x0)) and the differential operators Qi (D) do not increase the support.

Then, according to the compactness of the injection of B
p, h P̃

Q̃i

∩ E ′(Bε(x0)) into Bp,h ,

we may suppose that there exists a subsequence {v jν }ν∈N of {v j } j∈N and a distribution
z1 such that

‖E1v jν − z1‖p,h → 0 when ν → ∞.

The sequence {E2v jν }ν∈N is a subsequence of {E2v j } j∈N and so is still bounded in
B

p, h P̃
Q̃2

, then there exists {v jνl
}l∈N and a distribution z2 such that

‖E2v jνl
− z2‖p,h → 0 when l → ∞.

Iterating this process for every i = 1, ..,M we will find a subsequence {v jm }m∈N of
{v j } j∈N and M distributions z1, .., zM such that

‖Eiv jm − zi‖p,h → 0 when m → ∞.

From the continuity of the injection of B
p, h P̃

Q̃i

∩ E ′(Bε(x0)) into Bp,h, for every i , we

may assume that the sequences {Eiv jm }m∈N are bounded in Bp,h and so ‖Eiv jm ‖p,h ≤
R∗(ε) for every 1 ≤ i ≤ M and m ∈ N.
To complete the proof we have to verify that {ψ f (x, E1v jm , .., EMv jm )}m∈N is conver-
gent in Bp,h .
We will prove that the operator

(49) F : Bp,h;R∗ × Bp,h;R∗ × ...× Bp,h;R∗ → Bp,h

defined as

(50) F[w1, .., wM ] = ψ f (x, w1, .., wM )

is sequentially continuous, then

‖F̃ε[v jn ] + F[z1, .., zM ] − g‖p,h =
= ‖g − F[E1v jn , .., EMv jn ] + F[z1, .., zM ] − g‖p,h

will tend to zero if ‖F[E1v jn , .., EMv jn ] − F[z1, .., zM ]‖p,h tends to zero.
Let {wn}n∈N := {(w1

n, ..., w
M
n )}n∈N ∈ Bp,h;R∗× ... ×Bp,h;R∗ and w := (w1, .., wM ) ∈



Local solvability for semilinear partial differential equations of constant strength 45

Bp,h;R∗× ...×Bp,h;R∗ be such that (w1
n, ...w

M
n ) → (w1, ..., wM ) for n → ∞, we must

show that

(51) F[w1
n, ..., w

M
n ] → F[w1, ..., wM ].

Reminding the Cavalieri Lagrange Formula, we have to estimate

F[w1
n, ...w

M
n ] − F[w1, ...wM ]‖p,h =

‖ψ f (x, w1
n, .., w

M
n )− ψ f (x, w1, .., wM )‖p,h =(52)

‖ψ
M∑

i=1

(wi
n −wi )

∫ 1

0
∂vi f (x, w1 + t (w1

n − w1), .., wM
n + t (wM

n −wM ))dt‖p,h .

Set

(53) Gi(x, y, z) :=
∫ 1

0
∂vi f (x, y1 + t (z1 − y1), .., yM + t (z M − yM))dt

and note that G i(x, y, z) ∈ C∞(Rn
x ,H(C

2M)) for every i = 1, ..,M .
Then Gi(x, y, z) =

∑
|α|≥0 ai,α(x)(y, z)α where ai,α(x) ∈ C∞(Rn) and for

every compact subset H⊂⊂ Rn, there exist Cβ(H), λα(H) > 0 such that
supx∈H|∂βai,α(x)|<Cβλα , being

∑
|α|≥0 λα(y, z)α an entire function.

Applying Theorem 7, we may further estimate (52) by

(54) C
M∑

i=1

‖(wi
n −wi )‖p,h‖ψGi (x, wn, w)‖p,h .

Set H := suppψ , from the Fourier Transform properties we can deduce that there exist
s ∈ N and l ∈ N such that

(55) ‖ψai,α‖p,h ≤ A(H)‖ψai,α‖l
C (s), ∀α ∈ N.

Indeed, let us consider Bp,(1+|ξ |2)s′/2 such that s ′ ∈ N and Bp,(1+|ξ |2)s′/2 ↪→ Bp,h; set

1/p + 1/q = 1, if p ≥ 2 then 1 ≤ q ≤ 2 and the Sobolev space W q,s ′ = {u ∈
S ′/F−1((1 + |ξ |2)s ′/2û) ∈ Lq} is included with continuity in Bp,(1+|ξ |2)s′/2 . Then in
this case

‖ψai,α‖p,h ≤ ‖ψai,α‖W q,s′ =
∑

|β|≤s ′
‖∂β(ψai,α)‖Lq

≤
∑

|β|≤s ′

(∫

K
(sup(|∂β(ψai,α)|)q)dx

)1/q

= (measH)1/q
∑

|β|≤s ′
‖∂β(ψai,α)‖C0 = A‖ψai,α‖C (s′)
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where A := (measH)1/q.
If 1 < p < 2 we apply the Hölder inequality with r = 2/p:

‖ψai,α‖p
p,h =

∫
|h(ξ)ψ̂ai,α(ξ)|pdξ

=
∫
((1 + |ξ |2)s ′′ |h(ξ)ψ̂ai,α(ξ)|)p

(
1

(1 + |ξ |2)s ′′

)p

dξ

≤
(∫

((1 + |ξ |2)s ′′ |h(ξ)ψ̂ai,α(ξ)|)2dξ

)1/r (∫ 1

(1 + |ξ |2)s ′′ pr ′

)1/r ′

≤ D

(∫
((1 + |ξ |2)s∗ |ψ̂ai,α(ξ)|)2dξ

)1/r

= D‖ψai,α‖p
H(s∗)

,

where r ′ is such that 1/r+1/r ′ = 1, s ′′ is such that s ′′ pr ′ > n/2 and s∗ = s ′+s ′′ ∈ N.
But we have

‖ψai,α‖H(s∗) ≤ A′‖ψai,α‖C (s∗),

where A′ :=
√

measH, so in this case we have get (55) with l = p.
Therefore applying the algebra property of Bp,h, the estimate (55) and the algebra
property of C (s) we obtain

‖ψGi (x, wn, w)‖p,h ≤ A
∑

α≥0

‖ψai,α‖l
C (s)‖(y, z)α‖p,h

≤ A′‖ψ‖l
C (s)

∑

α≥0

‖ai,α |K‖l
C (s)

(
C |α|(‖y‖p,h, ‖z‖p,h)

α
)

≤ A′′(K)
∑

α≥0

max
|β|≤s

{C l
β}λα(C R∗)|α|

= A′′′(K)
∑

α≥0

λα(C R∗)|α| < D.

(56)

Replacing (56) in (54) we have

‖F[w1
n, ..., w

M
n ] − F[w1, ..., wM ]‖p,h ≤ D

M∑

i=1

‖wi
n −wi‖p,h

that tends to zero when ‖wi
n −wi‖p,h → 0 for every i = 1, ..M .

As second step of the proof, now we will prove that there exists ε0 > 0 such that the
corresponding operator F̃ε0 is defined from Bp,h;R to itself, namely let v ∈ Bp,h such
that ‖v‖p,h ≤ R then ‖F̃ε0[v]‖p,h ≤ R.
We have to estimate

(57) ‖F̃ε[v]‖p,h ≤ ‖ψ f (x, Q1ϕεψLψv, .., QMϕεψLψv)‖p,h + ‖g‖p,h .

We now determine our choice of the equivalent function h (see the beginning of the
proof). Namely we take, as a new equivalent weight, h such that h P̃ is equivalent to
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k P̃ , with k the original weight, and satisfies the estimate (14) in Lemma 1 with φ = ϕε .
We obtain

(58) ‖ϕεψLψv‖p,h P̃ ≤ 2‖ϕε‖1,1‖ψLψv‖p,h P̃ ≤ 2A‖ϕε‖1,1‖v‖p,h P̃ .

We introduce the function,8ε defined as 8ε(x) := ϕ(x/ε) so from the Fourier Trans-
form properties, we have that ‖ϕε‖1,1 = ‖8ε‖1,1, with ϕ,ϕε as in (40) and (41). Noting
that

(59) 8̂ε(ξ) = εnϕ̂(εξ)

we obtain

‖ϕε‖1,1 = ‖8ε‖1,1 = ‖8̂ε‖L1 =
∫

|εnϕ̂(εξ)|dξ

=
∫

|ϕ̂(z)|dz,
(60)

so we have proved that ‖ϕε‖1,1 does not depend on ε.
Replacing (60) in (58), we get ‖ϕεψLψv‖p,h P̃ ≤ A′‖v‖p,h = R3 and so
‖QiϕεψLψv‖

p, h P̃
Q̃i

≤ R4.

Applying Theorem 13 we obtain

‖QiϕεψLψv‖p,h ≤ Ci (ε)‖QiϕεψLψv‖
p, h P̃

Q̃i

≤ Ci (ε)R4

with Ci(ε) → 0 when ε → 0, for every i = 1, ..,M .
Set QiϕεψLψv := Ei,εv and C(ε) := maxi=1,..,M {Ci(ε)}, then C(ε) → 0 when
ε → 0 and ‖Ei,εv‖p,h ≤ C(ε)R4. But f (x, v) ∈ C∞(Rn

x ,H(C
M)) with f (x, 0) = 0,

then, by the same arguments used to obtain (56)

‖ψ f (x, Q1ϕεψLψv, .., QMϕεψLψv)‖p,h = ‖ψ f (x, E1,εv, .., EM,εv)‖p,h

= ‖ψ
∑

|α|>0

cα(x)(E1,εv, .., EM,εv)
α‖p,h

≤
∑

|α|>0

C1‖ψcα‖p,h(‖(E1,εv‖p,h, .., ‖EM,εv‖p,h)
αC |α|

≤
∑

|α|>0

C2λα(R4C(ε), .., R4C(ε))αC |α| =
∑

|α|>0

C2λα(C̃(ε))
|α|

=
∑

l>0

C2µl(C̃(ε))
l

(61)

where C̃(ε) → 0 when ε → 0 and
∑

l>0 µlv
l < +∞ for every v ∈ C.

If we have chosen ε sufficiently small, then C̃(ε) < 1 and we may further estimate
∑

l>0

C2µl(C̃(ε))
l = C2C̃(ε)

∑

l≥0

µl+1(C̃(ε))
l

≤ C2C̃(ε)
∑

l≥0

µl+1 = C4C̃(ε).
(62)
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Replace (61) and (62) in (57) and choose ε0 such that C̃(ε0) < 1 and C̃(ε0) ≤ R−‖g‖p,h
C4

,

then ‖F̃ε0 [v]‖p,h ≤ R for every v ∈ Bp,h;R.
At the end it is easy to verify that the operator F̃ε0 defined from Bp,h;R to itself is con-
tinuouos. We leave to the reader to check sequential continuity, by using the preceding
arguments.
According to the Schauder Fixed Point Theorem we can assume that there exists a fixed
point v0 ∈ Bp,h;R of the operator F̃ε0 :

v0 = g − ψ f (x, Q(D)(ϕε0ψLψv0)).

Multiply this espession for the function ψ , by convolution properties we then deduce
P L(ψv0) = ψv0, therefore

P L(ψv0) = ψg − ψ2 f (x, Q(D)(ϕε0ψLψv0));

we obtain that the distribution u0 := Lψv0 ∈ B loc
p,h P̃

satisfies the theorem, namely

shrinking ε0 we have
Pu0 = g − f (x, Q(D)u0)

in � = {x ∈ Rn/‖x − x0‖ < ε0}.

Proof of Theorem 12. Without loss of generality we suppose ψ ∈ C∞(Rn) and, for
every multi–index β, there exists cβ such that |∂βψ(ξ)|≤cβψ1−|β|(ξ), cf. (24).

Fix a point x0 ∈ Rn , choose ϕ ∈ C∞
0 (R

n), suppϕ ⊂ B1(x0), ϕ ≡ 1 in B1/2(x0)

and ϕε(x) = ϕ
( x−x0

ε

)
, and consider the operator

(63) F̃ε : Hk;R → Hk

where Hk;R = {u ∈ Hk/‖u‖Hk ≤ R}, given by the following expression

(64) F̃ε(v) = g − ϕ f (x, Q1(D)(ϕεLϕv), ..., QM (D)(ϕεLϕv))

with L := T ∗, T the fundamental solution of the operator P(D).
We will prove that, fixed R ≥ 2‖g‖Hk , there exists ε0 > 0 such that the corresponding
operator F̃ε0 is defined from Hk;R to itself and is a contraction, then we will apply
the Contraction Priciple to the operator F̃ε0 . Ļet v ∈ Hk;R, set u := ϕεLϕv and
w = (w1, ..., wM) = Q(D)u with Q(D)u = (Q1(D)u, ..., QM (D)u); we already
noted in the proof of Theorem 11 that from Cavalieri Lagrange Theorem we get

‖F̃ε(v
1)− F̃ε(v

2)‖Hk ≤ C
M∑

j=1

‖(Q j u
1 − Q j u

2)‖Hk ‖(ϕG j (x, Qu1, Qu2)‖Hk(65)

where G j (x, v1, v2) is defined in (53) and belongs to C∞(Rn
x ,H(C

2M)) for j =
1, ...M . W̧ith respect to the proof of Theorem 11 in which we estimated the second
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term of the right-hand part of (65) obtaining ‖(ϕεϕG j (x, Qu1, Qu2)‖Hk ≤ εD3, in
the present case we will fix attention on the first term of the right-hand part of (65) and
we expect to get from it the small constant ε.
Namely we will estimate the term

‖Q j (D)u
1 − Q j (D)u

2‖Hk = ‖Q j (D)(u
1 − u2)‖Hk

for j = 1, ...,M and for every u1, u2 ∈ Hk P̃ such that supp u1, supp u2 are contained
in Bε(x0).
From the Fourier trasform properties we get

‖Q j (D)u‖Hk = ‖k(ξ)Q̂ j (D)u(ξ)‖L2 = ‖Q j (ξ)k̂(D)u(ξ)‖L2

= ‖Q j (D)k(D)u‖L2

(66)

where k(D) has to be interpreted as pseudodifferential operator corresponding to the
symbol k(ξ).
Now let χ ∈ C∞

0 (R
n), χ ≡ 1 on supp u and suppχ ⊂ B2ε(x0), then

‖Q j (D)u‖Hk = ‖Q j (D)k(D)χu‖L2

≤ ‖Q j (D)χk(D)u‖L2 + ‖Q j (D)Au‖Hk

(67)

where we have denoted with A the operator [k(D), χ] = k(D)χ − χk(D).
Remind the assumption Q j ≺≺ P for j = 1, ..,M , i.e. there exists C(ε) → 0 for
ε → 0 such that

‖Q j (D)v‖L2 ≤ C(ε)‖P(D)v‖L2 ∀v ∈ C∞
0 (Bε(x

0))

and note that the support of χk(D)u is contained in B2ε(x0), then it follows

‖Q j (D)u‖Hk ≤ C(2ε)‖P(D)χk(D)u‖L2 + ‖Q j (D)Au‖L2

= C(2ε)(‖P(D)k(D)χu‖L2 + ‖P(D)Au‖L2 )+ ‖Q j (D)Au‖L2 .

(68)

With the same considerations used to obtain (66), this can be further estimated by

(69) C(2ε)‖P(D)u‖Hk + C(2ε)‖P(D)Au‖L2 + ‖Q j (D)Au‖L2 .

Now we have to estimate the terms ‖P(D)Au‖L2 , ‖Q j (D)Au‖L2 .

From the assumption k = ψr , it follows k ∈ Sr
ψ and χ ∈ S0

ψ , see (22), then, denoting
with a(x, ξ) the symbol of the pseudodifferential operator A = a(x, D), from Theorem
10 about the symbolic calculus we get

a(x, ξ) = k(ξ)χ(x)+ b(x, ξ)− χ(x)k(ξ)+ c(x, ξ)

where b, c ∈ Sr−1
ψ , and so a(x, ξ) ∈ Sr−1

ψ . We can write

‖P(D)Au‖L2 ≤ ‖AP(D)u‖L2 + ‖[P, A]u‖L2,
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but, from (26) we get

‖AP(D)u‖L2 ≤ C‖P(D)u‖H
ψr−1 ≤ C1‖u‖H

ψr−1 P̃

where we have also applied the properties of the Bp,k spaces.
Reminding the condition (1) in (21), we have

ψ−1(ξ) ≤ c(1 + |ξ |)−ρ with ρ > 0

and from the assumption k = ψr we obtain

ψr−1(ξ) ≤ ck(ξ)(1 + |ξ |)−ρ

and so
P̃(ξ)ψr−1(ξ)

P̃(ξ)k(ξ)
→ 0 when |ξ | → ∞;

from Theorem 13 it follows that

(70) ‖u‖H
ψr−1 P̃

≤ D(ε)‖u‖Hk P̃
∀u ∈ Hk P̃ ∩ E ′(Bε(x0))

with D(ε) → 0 for ε → 0, then

‖AP(D)u‖L2 ≤ C1 D(ε)‖u‖Hk P̃
.

From Theorem 10 it also follows

‖[P, A]u‖L2 ≤ C2

∑

α

‖(Dα
x a)(x, D)(Dα

ξ P)(D)‖L2

where the sum is finite because P is a polynomial in the variable ξ . Now we note that

(Dα
x a)(x, ξ) ∈ Sr−1

ψ ∀α ∈ Nn

therefore

‖(Dα
x a)(x, D)(Dα

ξ P)(D)u‖L2 ≤ C3‖(Dα
ξ P)(D)u‖H

ψr−1

≤ C4‖u‖H
ψr−1 D̃α

ξ
P

∀α ∈ Nn .
(71)

But D̃α
ξ P(ξ) ≤ P̃(ξ) for every ξ ∈ Rn, then

‖u‖H
ψr−1 D̃α

ξ
P

≤ C5‖u‖H
ψr−1 P̃

.

From the same considerations used to obtain (70) it follows

‖[P, A]u‖L2 ≤ C5 D(ε)‖u‖Hk P̃

and so
‖P(D)Au‖L2 ≤ C1(ε)‖u‖Hk P̃
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with C1(ε) → 0 when ε → 0. I̧n analogous way we estimate

‖Q j (D)Au‖L2 ≤ ‖AQ j (D)u‖L2 + ‖[Q j , A]u‖L2 ≤ C2(ε)‖u‖Hk Q̃ j
;

but, from the assumption Q ≺≺ P it follows
Q̃ j

P̃
< const ., therefore, applying the

properties of the Bp,k spaces, we get

(72) ‖Q j (D)Au‖L2 ≤ C3(ε)‖u‖Hk P̃
.

In conclusion we have obtained that there exists g1(ε) such that g1(ε) → 0 when
ε → 0 and

(73) ‖Q j (D)u‖Hk ≤ g1(ε)‖u‖Hk P̃

for j = 1, ...,M and every u ∈ Hk P̃ ∩ E ′(Bε(x0)). Ŗeplacing (73) in (65) we have

‖F̃ε(v
1)− F̃ε(v

2)‖Hk ≤ g(ε)
M∑

j=1

‖u1 − u2‖Hk P̃
‖G j (x, Qu1, Qu2)‖Hk

≤g1(ε)

M∑

j=1

‖ϕεLϕv1 − ϕεLϕv2‖Hk P̃
‖G j (x, Qu1, ..., Qu2)‖Hk .

(74)

In the proof of Theorem 11 we have already proved, see (58) and (60), that

(75) ‖ϕεLϕv‖Hk P̃
≤ A‖v‖Hk

with A independent of ε, then

‖F̃ε(v
1)− F̃ε(v

2)‖Hk ≤ g2(ε)‖v1 − v2‖Hk

∑

j=1

‖G j (x, Qu1, Qu2)‖Hk

with g2(ε) → 0 for ε → 0. But v1, v2 ∈ Hk,R , then we have that if ‖v‖Hk ≤ R then
‖Qi u‖Hk ≤ R1 for i = 1, ...,M and

‖G j (x, Qu1, Qu2)‖Hk ≤ D for j = 1, ...,M;

therefore
‖F̃ε(v

1)− F̃ε(v
2)‖Hk ≤ g3(ε)‖v1 − v2‖Hk

with g3(ε) → 0 for ε → 0. W̧e can choose ε1 such that for ε ≤ ε1 we have g3(ε) < 1
and F̃ε is then a contraction. Ņow we will prove that there exists ε2 > 0 such that for
ε ≤ ε2 the corresponding operator F̃ε is defined from Hk,R to itself, i.e. let v such that
‖v‖Hk ≤ R for ε ≤ ε2, then ‖F̃εv‖Hk ≤ R. We have to estimate

‖F̃ε‖Hk ≤ ‖ϕ f (x, Q1(ϕεLϕv), ..., QM (ϕεLϕv))‖Hk + ‖g‖Hk

≤
∥∥∥∥ϕ

∑

|α|>0

cα(x)(Q1(ϕεLϕv), ..., QM (ϕεLϕv))α
∥∥∥∥

Hk

+ ‖g‖Hk .
(76)
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Applying (61) and (62) and with the same considerations used to obtain (73) we get

‖ϕ f (x, Q1(ϕεLϕv), ..., QM (ϕεLϕv))‖Hk ≤ D̃ R1g1(ε)

where we have already chosen ε such that R1g1(ε) < 1. Çonsider the constant ε2 such
that R1g1(ε) ≤ R

2D̃
for ε ≤ ε2, then ‖F̃εv‖Hk ≤ R for every v ∈ Hk;R. Çhoosing

ε0 = min{ε1, ε2} we have that the corresponding operator F̃ε0 is defined from Hk;R to
itself and is a contraction. A̧ccording to the Contraction Principle we can assume that
there exists a fixed point v0 ∈ Hk;R of the operator F̃ε0 and we may conclude as in the
proof of Theorem 11.
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