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QUASICLASSICAL ANALYSIS OF HYPOELLIPTIC

OPERATORS

Abstract. In this paper we take into account the hypoelliptic operators
introduced by Hörmander in [3] and we develop their quasiclassical anal-
ysis, obtaining an asymptotic formula for their counting function, as the
Planck constant ε goes to 0, under somewhat more general hypotheses
than Hörmander’s ones.

1. Introduction

At the beginning of our work we give a brief sketch of the physical motivations under-
lying the mathematical branch known as quasiclassical analysis, without having the
pretension of being totally exhaustive. For further details we refer to [7], [8] and [9]
among others.

In Classical Mechanics it is well known that a particle of mass m can be described
by a curve t → (x(t), ξ(t)) (called the classical trajectory) such that, in the case the
particle is subject to a force field F = − grad V , the so called Hamiltonian equations
are fulfilled: {

ξ̇ (t) = − grad V (x(t))

ẋ(t) = 1
m ξ(t),

where x(t) is the position of the particle at any time t and ξ(t) = mẋ(t) is the momen-
tum of the particle.

A classical observable is any real smooth function h(x, ξ) defined on the phase
space Rn × Rn: its value at the point (x(t), ξ(t)) gives an information on the position
of the particle at time t . An example of classical observable is the total energy 1

2m ξ
2 +

V (x).

In Quantum Mechanics a particle is instead described by a functionψ(t, x) (called
the wave function) such that for all t ∈ R

∫

Rn
|ψ(t, x)|2 dx = 1,

that is ψt : x 7→ ψ(t, x) belongs to L2(Rn) and ‖ψt‖L2(Rn) = 1. The function ψt is
called the state of the particle at time t .

The classical quantities of position x and momentum ξ can be investigated in Quan-
tum Mechanics by considering the following two operators:
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1. the multiplication operator
x : ψ → xψ

for the position;

2. the derivation operator

εDx : ψ → −iε gradψ

for the momentum,

where ε is the Planck constant. ∗

Note that these operators are selfadjoint with respect to the L2 scalar product. More
generally, any selfadjoint operator on L2 is called a quantum observable.

The question about the correspondence between classical observable h(x, ξ) and
quantum observable h(x, εDx ) is called the problem of quantization and one of the
purposes of pseudodifferential calculus is just to provide a correspondence between
the space of all classical observables endowed with the usual multiplication and the
space of quantum observables endowed with the composition of operators.

For example, to the classical total energy 1
2m ξ

2 + V (x) we associate the operator

− ε2

2m
1+ V (x)

(where 1 is the standard Laplacian) which is the Schrödinger operator.

Actually, it is convenient to consider the so called Weyl quantization:

(1) hw (x, ε2ξ)u(x) =
∫

ei(x−y)·ξh
(

x + y

2
, ε2ξ

)
u(y) dy d−ξ

or the unitarily equivalent form

(2) hw (εx, εξ)u(x) =
∫

ei(x−y)·ξh

(
ε

x + y

2
, εξ

)
u(y) dy d−ξ.

(for suitable functions u and h) since these operators are symplectically invariant, as
remarked at the end of the paper, and are selfadjoint if and only if the symbol h is real
valued.

Since Classical Mechanics (which is much simpler than Quantum Mechanics) de-
scribes quite well most of common elementary physical phenomena, we expect that
Quantum Mechanics is a kind of generalization of Classical Mechanics, in the sense
that one could recapture the classical properties of a system by making some approxi-
mation of its quantum properties. This is the so called Bohr correspondence principle:
Classical Mechanics is nothing but the limits of Quantum Mechanics as the Planck
constant ε tends to 0. This motivates an interest in the asymptotic properties of Weyl

∗In order to be consistent with the notations used in [13] here we denote the Planck constant by ε and
not by h, since we use h to denote our operators.
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operators (1) or (2) when ε → 0. The corresponding asymptotic analysis is called the
quasiclassical analysis.

In our work we consider the Weyl operators already considered by Hörmander in
[3] for which he obtained an asymptotic formula for their counting function N (τ ) as
τ → +∞ (see Section 2). Then we consider the corresponding quantum observ-
ables hw (εx, εξ) and we obtain a quasiclassical asymptotic formula for the associated
counting function Nε(τ ) as ε → 0, under somewhat more general hypotheses than
Hörmander’s ones.

We employ the following notation: given two functions f, g : X → R, and a subset
A ⊂ X , we write

f (x) ≺ g(x), ∀x ∈ A,

if there exists a constant C such that

f (x) ≤ Cg(x), ∀x ∈ A.

I would like to acknowledge professor Buzano for his precious suggestions while
writing this paper.

2. Basic definitions and results

First we recall some definitions and results from [2], [4] and [13].

Let us begin with a brief review of Weyl-Hörmander calculus.

Let

φ(x, ξ ; y, η) =
n∑

j=1

ξ j y j − x jη j

be the standard symplectic form on Rn × Rn.

DEFINITION 1. A Riemannian metric gx,ξ(y, η) on Rn × Rn is slowly varying if
there exist a positive real number r such that

gx,ξ(y, η) ≺ gt,τ (y, η) ≺ gx,ξ(y, η),

for all (x, ξ), (t, τ ), (y, η) ∈ Rn × Rn such that

gx,ξ(x − t, ξ − τ) ≤ r.

DEFINITION 2. A positive function m(x, ξ) is said to be g continuous if there is a
positive real number r such that

m(y, η) ≺ m(x, ξ) ≺ m(y, η),

for all (x, ξ), (y, η) ∈ Rn × Rn such that

gx,ξ(x − y, ξ − η) ≤ r.
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DEFINITION 3. A Riemannian metric gx,ξ(y, η) on Rn ×Rn is locally φ temperate
if it is slowly varying and there exist two positive real numbers r and N and a slowly
varying metric Gx(y) on Rn such that

Gx(y) ≤ gx,ξ(y, η),

for all (x, ξ), (y, η) ∈ Rn × Rn , and

(3) gx,ξ(z, ζ ) ≺ gy,η(z, ζ )(1 + gφx,ξ(x − y, ξ − η))N ,

for all (x, ξ), (y, η), (z, ζ ) ∈ Rn × Rn such that

Gx (x − y) ≤ r.

The quadratic form gφx,ξ(y, η) appearing in (3) is the dual metric

gφx,ξ(y, η) = sup{(φ(y, η; z, ζ ))2 : gx,ξ (z, ζ ) = 1}.

DEFINITION 4. A positive function m(x, ξ) is locally φ, g temperate if it is g con-
tinuous and there exist two positive real numbers r and N such that

m(x, ξ) ≺ m(y, η)(1 + gφx,ξ(x − y, ξ − η))N ,

for all (x, ξ), (y, η) ∈ Rn × Rn such that

Gx (x − y) ≤ r.

Now we recall the definition of the class of symbols of Weyl-Hörmander S(m, g).

DEFINITION 5. Let g be a slowly varying Riemannian metric. Let m be a g con-
tinuous function. Then we say that a function h ∈ S(m, g) if it is smooth and

sup
x,ξ

|h|gk (x, ξ)
m(x, ξ)

< +∞, ∀k ∈ N,

where

|h|gk (x, ξ) = sup
y j ,η j

|h(k)((x, ξ); (y1, η1), . . . , (yk, ηk))|∏k
j=1 gx,ξ(y j , η j )1/2

and h(k)((x, ξ); (y1, η1), . . . , (yk, ηk)) is the k-th differential of h at (x, ξ).

We can introduce here the operators we deal with in the next section.

DEFINITION 6. A differential operator hw is formally hypoelliptic† if its Weyl sym-
bol h(x, ξ) satisfies the following conditions:

†This definition is not to be confused with Definition 2.3 of Chapter III of [10]
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1. h is a smooth function such that

h(x, ξ) 6= 0, ∀(x, ξ) ∈ Rn × Rn;

2. there exists a locally φ temperate metric gx,ξ(y, η) on Rn × Rn such that |h| is
locally φ, g temperate and

h ∈ S(|h|, g).

In the proof of our main theorem (see Theorem 5) we will make use of the following
two results.

THEOREM 1. Consider a positive and formally hypoelliptic symbol h ∈ S(h, g)
and assume that there exists a positive real number γ such that

gx,ξ(y, η) ≺ h(x, ξ)−γ gφx,ξ(y, η),

for all (x, ξ), (y, η) ∈ Rn × Rn, then hw is semi-bounded from below and essentially
self-adjoint in L2(Rn).

Moreover, if

(4) h(x, ξ) → +∞, as |x | + |ξ | → +∞,

then the closure H of hw in L2(Rn) has discrete spectrum diverging to +∞.

Proof. This is Theorem 1 of [13]. Actually we must observe that in the proof of Theo-
rem 1 of [13] we did not assume that the metric g should satisfy the so called principle
of indetermination, that is

sup
x,ξ

gx,ξ

gφx,ξ
≤ 1.

In our case, from the fact that there exists γ > 0 such that

gx,ξ (y, η) ≺ h(x, ξ)−γ gφx,ξ(y, η)

and that h(x, ξ) → +∞ as |x | + |ξ | → +∞, it follows that

sup
x,ξ

gx,ξ

gφx,ξ
≤ C

for a suitable constant C > 0. If 0 < C ≤ 1 then the principle of indetermination is
trivially satisfied. If C > 1 it is sufficient to replace g with the following new metric

g̃ = g√
C
.

It is easy to show that g̃φ =
√

Cgφ . Therefore

sup
x,ξ

g̃x,ξ

g̃φx,ξ
= sup

x,ξ

gx ,ξ√
C√

Cgφx,ξ
= 1

C
sup
x,ξ

gx,ξ

gφx,ξ
≤ 1.
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Thanks to Theorem 1, we can define the counting function of the operator H :

(5) N (τ ) = number of eigenfunctions of H , corresponding to eigen-
values less than or equal to τ .

THEOREM 2. Under the hypotheses of Theorem 1 assume there exists κ > 0 such
that

(6) h−κ ∈ L1.

Then for all 0 < δ <
γ
3 we have

(7) N (τ ) = W(τ )
{
1 + O

(
R(τ )

)}
, as τ → +∞,

where

(8) W(τ ) = (2π)−n
∫

h≤τ

dx dξ,

and

(9) R(τ ) =
W
(
τ + τ 1−δ)− W

(
τ − τ 1−δ)

W(τ )
.

REMARK 1. Estimate (7) is known as Weyl formula.

Proof. This is Theorem 2 of [13].

3. Quasiclassical Analysis of Hypoelliptic Operators

Consider a formally hypoelliptic operator hw .

Let us introduce the operator hw

ε whose Weyl symbol is

hε(x, ξ) = h(εx, εξ),

where ε is a real parameter, such that 0 < ε ≤ 1.

Then we define a new Riemannian metric εgx,ξ(y, η) in this way:

εgx,ξ(y, η) = gεx,εξ(εy, εη) = ε2gεx,εξ(y, η),

where gx,ξ(y, η) is the one appearing in Definition 6. We start by giving some results
concerning this new metric εg.

PROPOSITION 1. The metric εgx,ξ(y, η) is slowly varying and locally φ temperate,
for all 0 < ε ≤ 1.
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Proof. We know that g is slowly varying. Then there exists a positive real number r
such that

gx,ξ (t, τ ) ≺ gy,η(t, τ ) ≺ gx,ξ (t, τ )

for all (x, ξ), (y, η), (t, τ ) ∈ Rn × Rn such that gx,ξ (x − y, ξ − η) ≤ r . Therefore

gεx,εξ(εt, ετ ) ≺ gεy,εη(εt, ετ ) ≺ gεx,εξ (εt, ετ )

when gεx,εξ(ε(x − y), ε(ξ − η)) ≤ r , that is

εgx,ξ(t, τ ) ≺ εgy,η(t, τ ) ≺ εgx,ξ (t, τ )

when εgx,ξ(x − y, ξ − η) ≤ r and so we have proved that εg is slowly varying, for all
0 < ε ≤ 1.

Let us define a new metric

εGx(y) = Gεx(εy).

Therefore it is obvious that
εGx ≤ εgx,ξ .

By hypothesis we know that the metric g is locally φ temperate. Therefore there exist
two positive real numbers r > 0 and N such that

gx,ξ (t, τ ) ≺ gy,η(t, τ )(1 + gφx,ξ(x − y, ξ − η))N ,

when Gx(x − y) ≤ r . Therefore

gεx,εξ(t, τ ) ≺ gεy,εη(t, τ )(1 + gφεx,εξ(ε(x − y), ε(ξ − η)))N ,

when Gεx(ε(x − y)) ≤ r , for all 0 < ε ≤ 1, that is when εGx (x − y) ≤ r . Now, we
have that

gφεx,εξ(εt, ετ ) = sup
(y,η)6=0

φ(εt, ετ ; y, η)2

gεx,εξ (y, η)
=

= sup
(y,η)6=0

ε2φ(t, τ ; y, η)2

gεx,εξ(y, η)
=

= ε4 sup
(y,η)6=0

φ(t, τ ; y, η)2

ε2gεx,εξ (y, η)
=

= ε4 sup
(y,η)6=0

φ(t, τ ; y, η)2

gεx,εξ(εy, εη)
=

= ε4(εg)φx,ξ (t, τ ).

Thus we can conclude that

ε2gεx,εξ(t, τ ) ≺ ε2gεy,εη(t, τ )(1 + gφεx,εξ(εx − εy, εξ − εη))N ≺

≺ ε2gεy,εη(t, τ )(1 + 1

ε4
· gφεx,εξ (εx − εy, εξ − εη))N =

= ε2gεy,εη(t, τ )(1 + 1

ε4 · ε4(εg)φx,ξ (x − y, ξ − η))N ,
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when εGx (x − y) ≤ r , that is

εgx,ξ (t, τ ) ≺ εgy,η(t, τ )(1 + (εg)φx,ξ (x − y, ξ − η))N ,

when εGx (x − y) ≤ r , for all 0 < ε ≤ 1.

PROPOSITION 2. We have that

hε ∈ S(|hε |, εg),

uniformly with respect to 0 < ε ≤ 1.

Proof. Using Definition 5 we have that, for all k ∈ N,

sup
x,ξ

|hε|
εg
k (x, ξ)

|hε(x, ξ)|
= sup

x,ξ

sup
y j ,η j

|h(k)ε ((x,ξ);(y1,η1),...,(yk,ηk))|∏k
j=1

εgx ,ξ (y j ,η j )
1/2

|hε(x, ξ)|
=

= sup
x,ξ

sup
y j ,η j

|h(k)((εx,εξ);(y1,η1),...,(yk,ηk))|∏k
j=1 gεx ,εξ (εy j ,εη j )

1/2

|hε(x, ξ)|
=

= sup
x,ξ

sup
y j ,η j

εk |h(k)((εx,εξ);(y1,η1),...,(yk,ηk))|
εk
∏k

j=1 gεx ,εξ (y j ,η j )
1/2

|hε(x, ξ)|
=

= sup
x,ξ

|h|gk (εx, εξ)

|hε(x, ξ)|
=

= sup
x,ξ

|h|gk (εx, εξ)

|h(εx, εξ)| = sup
x,ξ

|h|gk (x, ξ)
|h(x, ξ)| < +∞,

uniformly with respect to 0 < ε ≤ 1, since h ∈ S(|h|, g) by hypothesis.

We can now state the following proposition:

PROPOSITION 3. Let us suppose that there exists a real number γ > 0 such that

(10) gx,ξ(y, η) ≺ h(x, ξ)−γ gφx,ξ(y, η),

for all (x, ξ), (y, η) ∈ Rn × Rn . Then we have that

εgx,ξ(y, η) ≺ (hε(x, ξ)ε
− 4
γ )−γ (εg)φx,ξ(y, η),

for all (x, ξ), (y, η) ∈ Rn × Rn , for all 0 < ε ≤ 1.
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Proof. Recalling that

(εg)φx,ξ (y, η) = ε−2gφεx,εξ (y, η),

and using (10) we have:

εgx,ξ (y, η)

(εg)φx,ξ(y, η)
= ε2gεx,εξ(y, η)

ε−2gφεx,εξ (y, η)
≺

≺ h(εx, εξ)−γ ε4 =

= (hε(x, ξ) · ε− 4
γ )−γ .

Due to this proposition, from now on we will work with the following symbol:

Hε(x, ξ) = ε
− 4
γ hε(x, ξ).

Now we formulate Theorem 1 in this new context:

THEOREM 3. Consider a positive and formally hypoelliptic symbol h ∈ S(h, g)
and assume that there exists a positive real number γ such that (10) is satisfied and
h(x, ξ) → +∞ as |x | + |ξ | → +∞.

Then the operator H w

ε (x, ξ), corresponding to the new symbol Hε(x, ξ), is semi-
bounded from below and essentially self-adjoint in L2(Rn) and its closure has discrete
spectrum diverging to +∞.

Proof. This is an immediate consequence of Theorem 1 .

REMARK 2. Thanks to Theorem 3 we can define the counting function of the clo-
sure of the operator H w

ε :

NHε (τ ) = number of eigenfunctions of the closure of H w

ε , corre-
sponding to eigenvalues less than or equal to τ .

Before claiming our results, we have to state the following theorem, which is a
direct consequence of Theorem 2.

THEOREM 4. Under the hypotheses of Theorem 1, assume that there exists k > 0
such that

h−k ∈ L1(R2n).

Then for all 0 < δ <
γ
3 we have

NHε (τ ) = Wε(τ ){1 + O(Rε(τ ))},
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as τ → +∞, uniformly with respect to 0 < ε ≤ 1, where

Wε(τ ) = (2π)−n
∫∫

Hε(x,ξ)≤τ

dx dξ

and

Rε(τ ) = Wε(τ + τ 1−δ)− Wε(τ − τ 1−δ)

Wε(τ )
.

Proof. By means of a change of coordinates we immediately obtain that

‖H −k
ε ‖L1 = ε

4k
γ

∫
|hε(x, ξ)|−k dx dξ =

= ε
4k
γ

∫
h(εx, εξ)−k dx dξ =

= ε
4k
γ

−2n
∫

h(x, ξ)−k dx dξ ≤

≤
∫

h(x, ξ)−k dx dξ = ‖h−k‖L1 ,

if we take 4k
γ

− 2n ≥ 0, that is

γ ≤ 2k

n
.

Therefore we obtain that the integrability of the symbol h(x, ξ) implies the integrability
of the new symbol Hε(x, ξ) and that the L1 norm of H −k

ε is uniformly bounded with
respect to 0 < ε ≤ 1. The rest of the proof is an immediate consequence of Theorem
2, Proposition 1 and Proposition 2.

Now we can state and prove our main result.

THEOREM 5. Let Nε(τ ) be the counting function associated to the operator hw

ε .
Let

W(τ ) = (2π)−n
∫∫

h(x,ξ)≤τ

dx dξ.

Let τ be not a critical value of h(x, ξ), that is grad h(x, ξ) 6= 0 on the surface {(x, ξ) :
h(x, ξ) = τ }. Under the hypotheses of Theorem 4, we have the following asymptotic
formula for Nε(τ ):

(11) Nε(τ ) = ε−2n(W(τ )+ O(εθ )),

as ε → 0, for all 0 < θ < 4
3 .

COROLLARY 1. The asymptotic formula (11) is valid when τ belongs to the com-
plementary of a set of zero measure.
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Proof of Corollary 1. We know from Theorem 5 that in the asymptotic formula (11) we
must exclude the critical values of h(x, ξ). Corollary 1 is an immediate consequence
of Sard Theorem, according to which the set of the critical values of h(x, ξ) has zero
measure.

Proof of Theorem 5. Since Nε(τ ) is the counting function associated to the operator

hw

ε , then it is clear that H w

ε has exactly Nε(ε
4
γ τ) eigenvalues less than or equal to τ

and that

(2π)−n
∫∫

h(εx,εξ)ε
− 4
γ ≤τ

dx dξ = ε−2n
W(ε

4
γ τ).

Thanks to Theorem 4, we obtain that for all 0 < δ <
γ
3 there exists a real number

Cδ > 0 such that

|Nε(ε
4
γ τ)− ε−2nW(ε

4
γ τ)| ≤

≤ Cδε
−2n(W(ε

4
γ (τ + τ 1−δ)− W(ε

4
γ (τ − τ 1−δ)),

as τ → +∞, for all 0 < ε ≤ 1.

Letting ε
4
γ τ = λ we obtain:

(12)
|Nε(λ)− ε−2n

W(λ)| ≤

≤ Cδε
−2n(W(λ(1 + ε

4δ
γ λ−δ))− W(λ(1 − ε

4δ
γ λ−δ))

for 0 < δ <
γ
3 and ε → 0.

From [9], 28.7, we know that when τ is not a critical value of h(x, ξ) then W(τ ) is
differentiable with

W ′(τ ) = (2π)−n
∫

V (τ )

dS

| grad h|

where
V (τ ) = {(x, ξ) : h(x, ξ) = τ }

and dS is the area element of the surface V (τ ). Therefore when λ is not a critical value
of h, using Taylor’s formula, we can state that

W(λ+ λ1−δε
4δ
γ ) = W(λ)+ λ1−δε

4δ
γ (W ′(λ)+ o(1))

and
W(λ− λ1−δε

4δ
γ ) = W(λ)− λ1−δε

4δ
γ (W ′(λ)+ o(1)),

as ε → 0.

Thus

W(λ(1 + ε
4δ
γ λ−δ))− W(λ(1 − ε

4δ
γ λ−δ)) = 2λ1−δε

4δ
γ (W ′(λ)+ o(1)),
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as ε → 0, and then

(13) W(λ(1 + ε
4δ
γ λ−δ))− W(λ(1 − ε

4δ
γ λ−δ)) = O(ε

4δ
γ ),

as ε → 0.

Since 0 < δ < γ
3 , using (12) and (13) we conclude that

Nε(λ) = ε−2n(W(λ)+ O(εθ )),

as ε → 0, for all 0 < θ < 4
3 .

REMARK 3. As pointed out in the introduction, quasiclassical operators could be
also in the form hw (x, ε2ξ). In this case they are also called semiclassical operators
and ε2 is the Planck constant. Everything we obtained about quasiclassical opera-
tors is true also for semiclassical operators. Indeed the property of being φ temper-
ate is invariant under symplectic changes of coordinates and the two transformations
(x, ξ) → (εx, εξ) and (x, ξ) → (x, ε2ξ) are symplectically equivalent. It is enough
to consider the map

T : R2n → R2n

(x, ξ) 7→ T (x, ξ) = (εx, ε−1ξ).

For further details see [6], Lemma 18.5.8. In the case of semiclassical operators we
can actually keep the old metric: εGx(y) = Gx (y).

4. An example

At the end of our paper we give an example of hypoelliptic operator satisfying our
hypotheses.

PROPOSITION 4. Let us consider

• a real polynomial p(ξ) vanishing at the origin and hypoelliptic, i. e. such that

lim
|ξ |→+∞

p(ξ) = +∞

and
∇ p(ξ) ≺ p(ξ)1−ρ , for p(ξ) ≥ 1,

with 0 < ρ ≤ 1,

• a positive smooth function q(x) such that

– h(x, ξ) = p(ξ)+ q(x) > 0, ∀ (x, ξ) ∈ Rn × Rn ,

– there exists 0 ≤ ν < ρ such that for all α ∈ Nn we have Dαq(x) ≺
q(x)1+ν|α|, ∀x ∈ Rn,
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– there exists k1 > 0 such that q(x)−k1 ∈ L1(Rn).

Then hw

ε (x, ξ) = pw

ε (ξ)+ q(εx) satisfies the hypotheses of Theorem 5.

Proof. We give a brief sketch of the proof. First we prove that there exists k > 0 such
that

(14) h−k ∈ L1(R2n).

From hypotheses of Proposition 4, it is clear that there exists R > 0 such that
√

p(ξ)q(x) ≤ p(ξ)+ q(x), ∀ξ /∈ B(R), ∀x ∈ Rn,

where B(R) is the open ball with center at the origin and radius R. Therefore, in
order to verify (14), it suffices to show that there exists k2 > 0 such that p−k2 ∈
L1(Rn \ B(R)). We have that p → +∞, as |ξ | → +∞. Then, because p is a
polynomial, it follows from Tarski-Seidenberg Theorem that there exists k0 > 0 such
that

(15) p(ξ) � |ξ |k0 , ∀ |ξ | ≥ R.

In fact,
E =

{
(s, t, ξ) ∈ R × R × Rn : s = |ξ |2 , p(ξ) = t

}

is algebraic in R2+n, and therefore

f (s) = inf
|ξ |2=s

p(ξ) = inf
{
t : ∃s ∃ξ

(
(s, t, ξ) ∈ E

)}
< +∞

is semi-algebraic. Moreover f (s) → +∞, as s → +∞; hence (15) follows from
Corollary A.2.6 of [5].

It is clear that estimate (15) implies the existence of κ2.

Then it suffices to verify the hypotheses of Theorem 3. Consider the metric

gx,ξ (y, η) = h(x, ξ)2ν |y|2 + h(x, ξ)−2ρ |η|2.

Then one verifies that g and h are locally φ temperate, for example see [12]. Moreover
one can show that h → +∞, as |x |+ |ξ | → +∞, h ∈ S(h, g) and (10) is verified. We
omit the details.

For example we can take (see [1], section 1.1)

p(ξ) =
(
ξ2k

1 − ξ2k−1
2

)2
+ ξ2k

1 ξ2k−2
2 ,

q(x) = exp
(

x2m1
1 + x2m2

2

)
,

where k is an integer greater than 1 and m1 and m2 are positive integers.
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