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Abstract. This is a survey article on selected topics in approximation theory. The topics
either use techniques from the theory of several complex variables or arise in the study of the
subject. The survey is aimed at readers having an acquaintance with standard results in classical
approximation theory and complex analysis but no apriori knowledge of several complex variables
is assumed.
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1 Introduction and motivation

Let C
N = {(z1, . . . , zN ) : zj ∈ C} where zj = xj + iyj and identify R

N = {(x1, . . . , xN ) : xj ∈ R}.
A complex-valued function f defined on an open subset of C

N is holomorphic if it is separately
holomorphic in the appropriate planar region as a function of one complex variable when each of
the remaining N − 1 variables are fixed. This deceptively simple-minded criterion is equivalent to
any other standard definition; e.g., f is locally representable by a convergent power series in the
complex coordinates; or f is of class C1 and satisfies the Cauchy-Riemann system

∂f

∂z̄j
:=

1

2

( ∂f
∂xj

+ i
∂f

∂yj

)
= 0, j = 1, . . . , N.
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In particular, holomorphic functions are smooth, indeed, real-analytic; whereas the separately
holomorphic criterion makes no apriori assumption on continuity (Hartogs separate analyticity
theorem, circa 1906; cf., [Sh] section 6). We make no assumptions nor demands on the reader’s
knowledge of several complex variables (SCV) but we do require basic knowledge of classical one
complex variable (CCV) theory. An acquaintance with potential theory in CCV, i.e., the study
of subharmonic functions, would be helpful in motivating analogies with pluripotential theory, the
study of plurisubharmonic functions in SCV, but it is not essential. Sections 2 and 3 provide some
background on the important notions of polynomial hulls and plurisubharmonic functions in SCV.
Section 4 recalls some classical approximation theory results from CCV. In addition, two short
appendices are included (sections 13 and 14) for those interested in a brief discussion of a few
specialized topics in SCV: pluripolar sets, extremal plurisubharmonic functions, and the complex
Monge-Ampère operator. We highly recommend the texts by

(1) Ransford [Ra] on potential theory in the complex plane;

(2) Klimek [K] on pluripotential theory; and

(3) Shabat [Sha] on several complex variables.

Hörmander’s SCV text [Hö] is a classic. Range’s book [Ran] is an excellent source for integral
formulas in SCV; these will occur at several places in our discussion (cf., sections 3, 7 and 10).
Many of the approximation topics we mention are described in the monograph of Alexander and
Wermer [AW].

Zeros of holomorphic functions locally look like zero sets of holomorphic polynomials (Weier-
strass Preparation Theorem; e.g., [Sha] section 23). In particular, in C

N for N > 1 these sets are
never isolated. Consider, for example, f(z1, . . . , zN ) = z1: the zero set is a copy of C

N−1 ⊂ C
N .

This means that, apriori, Runge-type pole-pushing arguments do not exist in SCV. Henceforth
the term “polynomial” will refer to a holomorphic polynomial, i.e., a polynomial in z1, . . . , zN ,
unless otherwise noted. We use the notation Pd = Pd(C

N ) for the polynomials of degree at most
d.

Continuing on this theme, rational functions, i.e., ratios of polynomials, behave quite differently
in SCV than in CCV. Consider, in C

2, the function r(z1, z2) := z1/z2. The “zero-set” of f contains
the punctured plane {z1 = 0} \ (0, 0) and the “pole-set” contains the punctured plane {z2 =
0} \ (0, 0), but the point (0, 0) itself forms the “indeterminacy locus”: f is not only undefined at
this point, but, as is easily seen by simply considering complex lines z2 = tz1 through (0, 0), f
attains all complex values in any arbitrarily small neighborhood of this point.

It is still the case that polynomials are the nicest examples of holomorphic functions and
rational functions are the nicest examples of meromorphic functions (which we won’t define) in
SCV. Thus one wants to utilize these classes in approximation problems. Many standard tools
from CCV either don’t exist in SCV or are often more complicated.

In this introductory section, we first recall some classical approximation-theoretic results in
the plane with an eye towards generalization, if possible, to C

N , N > 1. Let K be a compact
subset of C

N , and let C(K) denote the uniform algebra of continuous, complex-valued functions
endowed with the supremum (uniform) norm on K. Let P (K) be the uniform algebra (subalgebra
of C(K)) consisting of uniform limits of polynomials restricted to K. Finally, let R(K) be the
uniform closure in C(K) of rational functions r = p/q where q(z) 6= 0 for z ∈ K.

As a sample, a question which has a complete and common answer in CCV and SCV, to be
given in sections 3 and 4, is: For which compact setsK ⊂ C

N is it true that for any function f that is
holomorphic in a neighborhood of K there exists a sequence {pn} of polynomials which converges
uniformly to f on K; i.e., f |K ∈ P (K)? Moreover, for such compacta, estimate dn(f,K) :=
inf{‖f − p‖K : deg p ≤ n} in terms of the “size” of the neighborhood in which f is holomorphic.
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For example, if N = 1 and K = ∆̄ := {z : |z| ≤ 1} is the closed unit disk, writing f(z) =∑∞
k=0 akz

k as a Taylor series about the origin, the Taylor polynomials pn(z) =
∑n

k=0 akz
k converge

uniformly to f on K. More precisely, if f is holomorphic in the disk ∆(0, R) := {z : |z| < R} of
radius R > 1, the Cauchy estimates give

|ak| =

∣∣∣∣∣
1

2πi

∫

|z|=ρ

f(z)

zk+1
dz

∣∣∣∣∣ ≤
sup|z|≤ρ |f(z)|

ρk
(1)

for any 1 < ρ < R yielding

dn(f, ∆̄) ≤ ‖f − pn‖∆̄ ≤ 1

(1 − 1/ρ)

sup|z|≤ρ |f(z)|
ρn+1

(2)

so that lim supn→∞ dn(f, ∆̄)1/n ≤ 1/R. On the other hand, taking K = T := ∂∆ := {z : |z| = 1}
the unit circle, the function f(z) = 1/z is holomorphic in C

∗ = C \ {0} but if p(z) is a polynomial
with |f(z) − p(z)| < ε < 1 on T , then, multiplying by z, we have |1 − zp(z)| < ε < 1 on T and
hence, by the maximum modulus principle, on ∆̄. This gives a contradiction at z = 0.

The difference in these sets is explained, and a continuation of our review of classical complex
approximation theory proceeds, if we recall a version of the Runge theorem for N = 1:

Theorem (Ru). Let K ⊂ C be compact with C \ K connected. Then for any function f
holomorphic on a neighborhood of K, there exists a sequence {pn} of holomorphic polynomials
which converges uniformly to f on K.

The condition “C \K connected” is equivalent, when N = 1, to K = K̂ where

K̂ := {z ∈ C
N : |p(z)| ≤ ‖p‖K for all holomorphic polynomials p}

is the polynomial hull of K. Clearly a uniform limit on K of a sequence of polynomials yields a
holomorphic function on the interior Ko of K; this observation motivates one of the conditions in
Lavrentiev’s result:

Theorem (La). Let K ⊂ C be compact with C \K connected. Then P (K) = C(K) if and only
if Ko = ∅.

In any number of (complex) dimensions, the maximal ideal space of the uniform algebra C(K)
is K and that of P (K) is K̂. Thus a necessary condition that P (K) = C(K) is that K = K̂.
Lavrentiev’s theorem shows that in the complex plane, removing the only other obvious obstruc-
tion yields a necessary and sufficient condition for the density of the polynomials in the space of
continuous functions. A nice exposition of these results (and more) in a succinct, clear manner
is given in Alexander-Wermer [AW], section 2. The techniques utilized are elementary functional
analysis (Hahn-Banach), classical potential theory (logarithmic potentials) and classical complex
analysis (Cauchy transforms).

If we allow K to have interior, then we may ask if functions in C(K) which are holomorphic on
Ko are uniformly approximable on K by polynomials. This is the content of Mergelyan’s theorem:

Theorem (Me). Let K ⊂ C be compact with C\K connected. Then for any function f ∈ C(K)
which is holomorphic on Ko, there exists a sequence {pn} of polynomials which converges uniformly
to f on K.

What happens in C
N for N > 1? The complex structure plays a major role. As an elementary,

but illustrative, example, consider two disks K1 and K2 in C
2 = {(z1, z2) : z1, z2 ∈ C} defined as

follows:
K1 := {(x1, x2) ∈ R

2 : x2
1 + x2

2 ≤ 1} and
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K2 := {(z1, 0) : |z1| ≤ 1}.

Both of these sets are “polynomially convex” in C
2; i.e., K̂1 = K1 and K̂2 = K2; thus each set

satisfies the obvious necessary condition for holomorphic polynomials to be dense in the space
of continuous functions on the set. However, K2 lies in the complex z1-plane and P (K2) can be
identified with P (K) where K is the closed unit disk in one complex variable; the observation made
regarding Lavrentiev’s theorem shows that P (K2) 6= C(K2).

To understand K1 and to motivate an attempt to generalize Lavrentiev’s theorem in SCV, we
first recall the classical theorem of Stone-Weierstrass:

Theorem (SW). Let U be a subalgebra of C(K) containing the constant functions and separating
points of K. If f ∈ U implies that f̄ ∈ U , then U = C(K).

As an immediate corollary, we have the real Stone-Weierstrass theorem (which includes the
classical Weierstrass theorem for a real interval):

Theorem (RSW). Let K be a compact subset of R
N ⊂ C

N . Then P (K) = C(K).

Thus by (RSW), P (K1) = C(K1). The difference here is that the real submanifold R
2 = R

2+i0
of C

2 is totally real; i.e., R
2 contains no complex tangents. We will generalize this example in

Theorem (HW) of section 8. The extremely difficult question of determining when P (K) = C(K)
will be partially analyzed in the next section.

Recall that R(K) is the uniform subalgebra of C(K) generated by rational functions which are
holomorphic on K. The Hartogs-Rosenthal theorem gives a sufficient condition for R(K) = C(K)
if K ⊂ C.

Theorem (HR1). Let K be a compact subset of C with two-dimensional Lebesgue measure zero.
Then R(K) = C(K).

A similar result holds in C
N , N > 1. For α > 0, we let hα denote α-Hausdorff measure.

Theorem (HRN). Let K be a compact subset of C
N with h2(K) = 0. Then R(K) = C(K).

This follows since the conjugates z̄j of the coordinate functions belong to R(K), by Theorem (HR1);
from this it follows trivially that R(K) is closed under complex conjugation. Then Theorem (SW)
implies the conclusion.

We turn to a C
N -version of Theorem (Ru). Note that if we take the “boundary circles” of our

sets K1 and K2, i.e., take

X1 := {(x1, x2) ∈ R
2 : x2

1 + x2
2 = 1} and

X2 := {(z1, 0) : |z1| = 1},

then a higher-dimensional version of Theorem (Ru) is valid for X1 but not for X2, i.e., if f is
holomorphic on a neighborhood of X1 (in C

2!), then there exists a sequence {pn} of holomorphic
polynomials which converges uniformly to f on X1 (e.g., f |X1

∈ C(X1) and P (X1) = C(X1) follows
from Theorem (RSW)); the analogous statement is not true for X2 (why?). Here the difference can
simply be explained by the fact that X1 is polynomially convex while X2 is not (indeed, X̂2 = K2).
This is the content of the Oka-Weil theorem:
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Theorem (OW). Let K ⊂ C
N be compact with K̂ = K. Then for any function f holomorphic

on a neighborhood of K, there exists a sequence {pn} of polynomials which converges uniformly to
f on K.

This result was first proved by André Weil in 1935 by using a multivariate generalization of
the Cauchy integral formula for certain polynomial polyhedra. We sketch his argument in section
3. In 1936 Kyoshi Oka gave a different proof that made use of his celebrated “lifting principle” (cf.
[AW] Chapter 7).

As a motivational example for what to expect, let K = {(z1, . . . , zN ) : |zj | ≤ 1, j = 1, . . . , N}
be the closed unit polydisk. If f is holomorphic in a larger polydisk DR := {(z1, . . . , zN ) : |zj | <
R, j = 1, . . . , N}, R > 1, then iterating the one-variable Cauchy integral formula, for ρ < R we
obtain the formula

f(z) = (
1

2πi
)N

∫

|ζ1|=ρ

· · ·
∫

|ζN |=ρ

f(ζ1, . . . , ζN )

(ζ1 − z1) · · · (ζN − zN )
dζ1 · · · dζN (3)

valid for z ∈ Dρ. We can write a Taylor series expansion f(z) =
∑∞

|α|=0 aαz
α where α =

(α1, . . . , αN ) is a multiindex with |α| :=
∑N

j=1 αj and zα := zα1

1 · · · zαN

N and

aα = (
1

2πi
)N

∫

|z1|=ρ

· · ·
∫

|zN |=ρ

f(z1, . . . , zN )

zα1+1
1 · · · zαN +1

N

dz1 · · · dzN .

The same estimates as in (1) and (2) show that not only is f |K ∈ P (K) but we obtain, using the Tay-
lor polynomials pn(z) =

∑n
|α|=0 aαz

α, the quantitative estimate lim supn→∞ dn(f,K)1/n ≤ 1/R.

Note that in the Cauchy integral formula (3), the integration takes place over the N -dimensional
torus {(z1, . . . , zN ) : |zj | = ρ, j = 1, . . . , N}, which is a proper subset of the (2N − 1)-dimensional
topological boundary ∂Dρ if N > 1.

2 Polynomial hulls and polynomial convexity

The condition that K = K̂ occurs in Theorems (Ru), (La), (Me) and (OW); indeed, this con-
dition is implicit in Theorem (RSW): any compact subset of R

N is polynomially convex (exercise!).
If K ⊂ C, K̂ is the union of K with the bounded components of C \K. For K ⊂ C

N if N > 1,
K̂ contains the union of K with the bounded components of C

N \ K but it can be much, much
more. An elementary example is the connected and simply connected set K := K1 ∪K2 which is
the union of two bidisks

K1 := {(z1, z2) : |z1| ≤ 1, |z2| ≤ r < 1}

and
K2 := {(z1, z2) : |z2| ≤ 1, |z1| ≤ r < 1}.

We’ll see in the next section that

K̂ = {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1, |z1z2| ≤ r}

(draw a picture in |z1|, |z2|-space). Note it is clear that K̂ is contained in the right-hand-side by
considering the polynomial p(z1, z2) = z1z2. In general, the polynomial hull of a compact set is
difficult to describe.
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It follows readily from the maximum modulus principle that if we have a bounded holomorphic
mapping f = (f1, . . . , fN ) : ∆ → C

N ; i.e., each fj : ∆ → C is a bounded holomorphic function,
with (componentwise) radial limit values f ∗(eiθ) :=

(
f∗
1 (eiθ), . . . , f∗

N (eiθ)
)
∈ K for almost all θ,

then f(∆) ⊂ K̂. In general, we will say that a set S ⊂ C
N has analytic structure if it contains

a nonconstant analytic disk f(∆). Thus one way to obtain (lots of) points in K̂ is the existence
of analytic structure in K̂. Moreover, existence of analytic structure in a compact set S precludes
the possibility of C(S) = P (S) for the set.

In 1963, Stolzenberg [Sto] gave an example of a compact set K in the topological boundary

∂(∆ × ∆) = {(z1, z2) : |z1| = 1, |z2| ≤ 1, or |z2| = 1, |z1| ≤ 1}

of the bidisk ∆×∆ ⊂ C
2 such that the origin (0, 0) ∈ K̂ but the projections πz1

(K̂), πz2
(K̂) of K̂ in

each coordinate plane contain no nonempty open set; thus K̂ contains no analytic structure. From
the lack of analytic structure in K̂ one may be tempted to conjecture that P (K̂) = C(K̂). However,
there clearly exist f ∈ C(K̂) with |f(0, 0)| > ‖f‖K for this set K; e.g., f(z1, z2) = 1−max[|z1|, |z2|].
For any p ∈ P (K̂), we obviously have ‖p‖K̂ = ‖p‖K . Thus f 6∈ P (K̂).

How can one tell if K̂ \K contains analytic structure? Note that an analytic disk has locally
finite Hausdorff two-measure.

Theorem (Alexander-Sibony). Let K be a compact subset of C
N and let q ∈ K̂ \K. If there

exists a neighborhood U of q with h2(K̂ ∩ U) < +∞, then K̂ ∩ U is a one-dimensional analytic
subvariety of U .

This means that K̂ ∩ U is essentially a one-dimensional complex manifold (modulo some singular
points) and hence looks locally like a nonconstant analytic disk f(∆). In particular, if K̂\K 6= ∅ and
K̂ \K contains no analytic structure, then h2(K̂ \K) = +∞. A nice discussion of the Alexander-
Sibony result can be found in section 21 of [AW]. In [DL] the authors constructed examples of
compact sets K ⊂ C

N whose polynomial hull K̂ contains no analytic structure but such that K̂ \K
has positive 2N -Hausdorff measure.

Recall that a compact subset K of R
N is automatically polynomially convex and, moreover,

P (K) = C(K) for such sets. From Theorem (HRN) and Theorem (OW), we also get the following
result.

Corollary. Let K = K̂ ⊂ C
N with h2(K) = 0. Then P (K) = C(K).

Question: For an arbitrary compact set K ⊂ C
N , find a “nice” condition (C) on K so that if

K = K̂, then K satisfies (C) if and only if P (K) = C(K); i.e., find a C
N -version of Theorem (La).

We return to this matter in section 8. As a final note to reinforce the delicate nature of
polynomial hulls in C

N for N > 1, we mention the curious results of E. Kallin [Ka]. The union of
any two disjoint convex compact sets in C

N is polynomially convex. The union of any three disjoint
closed Euclidean balls is polynomially convex. On the other hand, there exist three disjoint convex
sets whose union is not polynomially convex. Moreover, it is unknown whether the union of four
or more disjoint closed balls is polynomially convex, unless, e.g., the centers of the balls lie on the
real subpace R

N of C
N [Kh].

3 Plurisubharmonic functions and the Oka-Weil theorem

We outline the basic notions and sketch a proof of the Oka-Weil theorem, Theorem (OW). First
of all, in the complex plane, any domain D ⊂ C is a domain of holomorphy; i.e., there exists f
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holomorphic in D – we write f ∈ O(D) – which does not extend holomorphically across any bound-
ary point of D. This follows from the classical Weierstrass theorem which allows the construction of
a nontrivial holomorphic function with prescribed discrete zero set in D. However, in C

N , N > 1,
there exist domains D with the property that every f ∈ O(D) extends holomorphically to a larger
domain D̃ (independent of f). Products of planar domains, e.g., polydisks, are obviously domains
of holomorphy. A simple example of a domain D ⊂ C

2 which is not a domain of holomorphy is

D = {(z1, z2) : |z1| < 2, |z2| < 2} \ {(z1, z2) : 1 ≤ |z1| < 2, |z2| ≤ 1}.

It is straightforward to see (use Laurent series!) that any f ∈ O(D) extends holomorphically to
the bidisk {(z1, z2) : |z1| < 2, |z2| < 2}. Another example is the interior of the set K = K1 ∪K2

from the previous section: any f holomorphic on

D := {(z1, z2) : |z1| < 1, |z2| < r} ∪ {(z1, z2) : |z1| < r, |z2| < 1}

extends holomorphically to the domain

D̃ := {(z1, z2) : |z1| < 1, |z2| < 1, |z1z2| < r}.

Exercise: For each f ∈ O(D), if f̃ denotes the holomorphic extension of f to D̃, then f(D) = f̃(D̃).
As a sample of holomorphic extendability situations in SCV, consider the following three results

on bounded domains D ⊂ C
N . The first two can be reduced to classical one-variable arguments if

one utilizes the Cauchy integral formula for polydisks (3).

1. (Morera type): Let N ≥ 1 and let S be a smooth, real hypersurface in D; i.e., (locally)
S = {ρ = 0} where ρ is a smooth, real-valued function on a neighborhood of S and dρ 6= 0 on
S. If f ∈ O(D \ S) ∩ C(D), then f ∈ O(D).

2. (Riemann removable singularity type): Let N ≥ 1 and let A be a complex analytic
hypersurface in D; i.e., (locally) A = {g = 0} where g is holomorphic on a neighborhood of A.
If f ∈ O(D \ A) is locally bounded on A (i.e., for each z ∈ A there is a neighborhood U of z
with f bounded on (D \ A) ∩ U), then f has a holomorphic extension F ∈ O(D).

3. (Hartogs type) Let N > 1 and let A be a complex analytic subvariety of (complex) codi-
mension two in D; i.e., A is (locally) the common zero set of two holomorphic functions. If
f ∈ O(D \ A), then f has a holomorphic extension F ∈ O(D).

We refer the reader to section 32 of [Sha]. As an example of 3., any function holomorphic in
a punctured ball

D = {(z1, z2) ∈ C
2 : 0 < |z1 − a1|2 + |z2 − a2|2 < R2}

in C
2 extends holomorphically across the puncture a = (a1, a2). Note that no boundedness as-

sumptions on f are required. Indeed, a theorem of Hartogs states that if K is a compact subset
of a domain D ⊂ C

N (N > 1) such that D \ K is connected, then every f ∈ O(D \ K) extends
holomorphically to D. Thus D \K is not a domain of holomorphy.

A real-valued function u : D → [−∞,+∞) defined on a domain D ⊂ C
N is called plurisub-

harmonic (psh) if u is uppersemicontinuous (usc) on D and u|D∩L is subharmonic on (components
of) D ∩L for any complex affine line L = Lz0,a := {z0 + ta : t ∈ C} (z0, a ∈ C

N fixed). The canon-
ical examples of such functions are those of the form u = log |f | where f ∈ O(D). The class of
psh functions on a domain D, denoted PSH(D), forms a convex cone; i.e., if u, v ∈ PSH(D) and
α, β ≥ 0, then αu + βv ∈ PSH(D). The limit function u(z) := limn→∞ un(z) of a decreasing se-
quence {un} ⊂ PSH(D) is psh in D (we may have u ≡ −∞); while for any family {vα} ⊂ PSH(D)
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(resp., sequence {vn} ⊂ PSH(D)) which is uniformly bounded above on any compact subset of D,
the functions

v(z) := sup
α
vα(z) and w(z) := lim sup

n→∞
vn(z)

are “nearly” psh: the usc regularizations

v∗(z) := lim sup
ζ→z

v(ζ) and w∗(z) := lim sup
ζ→z

w(ζ)

are psh in D. Finally, if φ is a real-valued, convex increasing function of a real variable, and u is
psh in D, then so is φ ◦ u.

If u ∈ C2(D), then u is psh if and only if for each z ∈ D and vector a ∈ C
N , the Laplacian

of t 7→ u(z + ta) is nonnegative at t = 0; i.e., the complex Hessian [ ∂2u
∂zj∂z̄k

(z)] of u is positive

semidefinite on D:
N∑

j,k=1

∂2u

∂zj∂z̄k
(z)aj āk ≥ 0.

In particular, the trace of the complex Hessian is nonnegative so that u is R
2N−subharmonic.

Indeed, u : D → [−∞,+∞) is psh if and only if u ◦ A is R
2N−subharmonic in A−1(D) for every

complex linear isomorphism A; moreover, the notion of a psh function makes sense on any complex
manifold. If u ∈ C2(D), we call u strictly psh if the complex Hessian of u is positive definite; i.e.,
we have strict inequality in the above displayed equation provided a 6= (0, . . . , 0). The function
u(z) = |z|2 := |z1|2 + · · · + |zN |2 is strictly psh on C

N .
A domain D ⊂ C

N is said to be (globally) pseudoconvex if D admits a psh exhaustion
function: there exists u psh in D with the property that the sublevel sets Dc := {z ∈ D : u(z) < c}
are compactly contained in D for all real c. Any planar domain D ⊂ C is pseudoconvex: if D = C,
take u(z) = |z|; if D = C \ {z0}, take u(z) = 1/|z − z0|; otherwise, take

u(z) = |z| + sup
z0∈∂D

1

|z − z0|
= |z| + dist(z, ∂D)−1.

It turns out that a domain D ⊂ C
N is pseudoconvex if and only if the function

u(z) = − log dist(z, ∂D)

is psh in D. Note that, in this case,

exp(u(z)) = dist(z, ∂D)−1

is psh since x → ex is convex and increasing; if, e.g., D is bounded, both u(z) and exp(u(z)) are
continuous psh exhaustion functions for D. A slightly more restrictive notion is that of hyper-
convexity: D is hyperconvex if it admits a negative psh exhaustion function u; i.e., u < 0 in D
and the sets Dc are compactly contained in D for all c < 0. Such a domain is pseudoconvex, for
the function −1/u := φ ◦ u, where φ(x) = −1/x is convex and increasing for x < 0, is then a psh
exhaustion function for D. In particular, a fact we will need below is that if D is pseudoconvex and
u ∈ PSH(D), the components of the sublevel sets {z ∈ D : u(z) < c} are pseudoconvex domains.

The condition that a domain D ⊂ R
N with smooth (say C2) boundary be convex can be

described analytically by the existence of a smooth defining function r:

D = {x ∈ R
N : r(x) < 0}; ∂D = {x ∈ R

N : r(x) = 0}; dr 6= 0 on ∂D,
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such that the real Hessian of r is positive semidefinite on the real tangent space Tp(∂D) to ∂D;
i.e., for p ∈ ∂D,

N∑

j,k=1

∂2r

∂xj∂xk
(p)ajak ≥ 0 if

N∑

j=1

∂r

∂xj
(p)aj = 0.

Strict convexity means that the real Hessian is positive definite on the real tangent space to ∂D. The
complex analogue of convexity is Levi-pseudoconvexity: a smoothly bounded domain D ⊂ C

N is
Levi-pseudoconvex if it admits a defining function r whose complex Hessian is positive semidefinite
on the complex tangent space T C

p (∂D) to ∂D; i.e., for p ∈ ∂D,

N∑

j,k=1

∂2r

∂zj∂z̄k
(p)aj āk ≥ 0 if

N∑

j=1

∂r

∂zj
(p)aj = 0.

We say that ∂D is Levi-pseudoconvex at p ∈ ∂D if this holds. Note that T C
p (∂D) is an (N − 1)-

complex-dimensional linear subspace of the (2N − 1)-real-dimensional space Tp(∂D). Strict Levi-
pseudoconvexity means that the complex Hessian is positive definite on the complex tangent
space to ∂D. It turns out that if D is strictly Levi-pseudoconvex, one can make a holomorphic
change of coordinates so that D is (locally) strictly convex. Precisely, if p ∈ ∂D is a strictly Levi-
pseudoconvex boundary point, then there is a neighborhood U ⊂ C

N of p and a biholomorphic
map φ : U → φ(U) ⊂ C

N such that φ(U ∩ ∂D) is strictly convex (in the R
2N -sense) at φ(p). It is

not the case that if D is merely Levi-pseudoconvex at p, then one can make a holomorphic change
of coordinates so that in the new coordinates D is convex.

There is a relationship between pseudoconvexity and Levi-pseudoconvex: if D is pseudoconvex,
then there exists an increasing sequence of bounded, strictly Levi-pseudoconvex domains Dn ⊂ D
with smooth boundary which are relatively compact in D such that

D =
∞⋃

n=1

Dn.

This follows since once we have a psh exhaustion function u for D, we can modify it to get a
smooth, strictly psh exhaustion function ũ; then we can take

Dn := {z ∈ D : ũ(z) < mn}

for an appropriate sequence {mn} with mn ↑ ∞.

We already observed that in C, every domain is both a domain of holomorphy and a pseudo-
convex domain. In C

N for N > 1 this no longer holds, but these two notions are equivalent: a
domain D ⊂ C

N is a domain of holomorphy if and only if it is pseudoconvex. The “if” direction is
deep and is one version of the so-called Levi problem. Thus from now on we will simply use the
terminology “pseudoconvex domain.” Products of pseudoconvex domains are pseudoconvex do-
mains. Euclidean balls and, more generally, convex domains (in the R

2N -sense) are pseudoconvex;
but there are many non-convex pseudoconvex domains.

The statement that canonical examples of psh functions are those of the form u = log |f | where
f ∈ O(D) can now be made precise:
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Theorem (B). A psh function u on a pseudoconvex domain can be written in the form

u(z) =
[
lim sup

j→∞
aj log |fj(z)|

]∗

where aj ≥ 0 and fj ∈ O(D).

Here u∗(z) is the usc regularization of the function u. The result is false if D is not pseudoconvex
[Le].
Sketch of proof. The domain

D̃ := {(z, w) ∈ D × C ⊂ C
N+1 : z ∈ D, |w| < e−u(z)}

is pseudoconvex, for the function ũ(z, w) := u(z) + log |w| is psh in D × C and

D̃ = {(z, w) ∈ D × C : ũ(z, w) < 0}.
Since D̃ is a pseudoconvex domain and hence a domain of holomorphy, there exists F ∈ O(D̃) which
is not holomorphically extendible across any boundary point of D̃; expanding F in a Hartogs
series, i.e., a series of the form

F (z, w) =
∞∑

j=0

fj(z)w
j

where fj ∈ O(D), the radius of convergence in w (as a function of z) is given by the usual formula

R(z) =
[
lim sup

j→∞
|fj(z)|1/j

]−1
.

Since F is not holomorphically extendible across any boundary point of D̃, R(z) = e−u(z) almost
everywhere; i.e., u(z) = − logR(z) a.e.; taking usc regularizations (making the right-hand-side psh)
the result follows.

This result is due to Bremermann but the proof given is due to Sibony. An important remark, which
we will use later, is that a slight refinement of this argument yields a local uniform approximability
result (cf. [JP], Proposition 4.4.13): if u is psh and continuous in a bounded domain D, then for
any compact set K ⊂ D and ε > 0 there exist finitely many fj ∈ O(D), j = 1, . . . ,m and positive
constants a1, . . . , am such that

∣∣u(z) − max
j=1,...,m

aj log |fj(z)|
∣∣ < ε for z ∈ K. (4)

Given a polynomially convex compact set K ⊂ C
N ; i.e., K = K̂, and given a bounded open

neighborhood U of K, by compactness of K and the definition of K̂ we can find finitely many
polynomials q1, . . . , qm such that

K ⊂ Π := {z ∈ U : |qj(z)| < 1, j = 1, . . . ,m} ⊂ U. (5)

Note that necessarily m ≥ N . We call Π a polynomial polyhedron. By slightly modifying the
polynomials qj , we may assume that Π is a Weil polyhedron which simply means that the “faces”

σj := {z ∈ U : |qj(z)| = 1, |qk(z)| ≤ 1, k 6= j}
are real (2N − 1)-dimensional manifolds and the intersection of any s distinct faces for 2 ≤ s ≤ N
has dimension at most 2N−s. The set of N dimensional “edges” σi1,...,iN

:= σi1 ∩· · ·∩σiN
form the

“skeleton” of Π. For the unit polydisk P := {(z1, . . . , zN ) : |zj | < 1, j = 1, . . . , N}, the skeleton,
or distinguished boundary, is the N -torus TN := {(z1, . . . , zN ) : |zj | = 1, j = 1, . . . , N}. We have
the following generalization of the Cauchy integral formula for polydisks (cf. [Sha] section 30).
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Theorem (Weil integral formula). Let Π be a Weil polyhedron. Then for any f ∈ O(Π)∩C(Π̄),

f(z) = (
1

2πi
)N

∑′

i1,...,iN

∫

σi1,...,iN

f(ζ) det{[P in
m (ζ, z)]m,n=1,...,N}

∏N
ν=1(qiν

(ζ) − qiν
(z))

dζ1 · · · dζN

for z ∈ Π.

Here,
∑′

i1,...,iN
refers to a summation over increasing multiindices: i1 < · · · < iN . The functions

P t
s are polynomials satisfying

qi(ζ) − qi(z) =

N∑

j=1

(ζj − zj)P
i
j (ζ, z).

This formula is a special case of a more general result known as Hefer’s formula; here, we are merely
rearranging the Taylor expansion of qi at the point z. As an example, for the polydisk P , one can
take m = N and qj(z) = zj in which case P t

s = δst.
Returning to the setting of the Oka-Weil theorem, Theorem (OW), given a function f holo-

morphic on a neighborhood U of K = K̂, we construct a Weil polyhedron satisfying (5). We obtain
a Taylor-like expansion

f(z) =
∞∑

|κ|=0

∑

I

′
AI

κ(z)qI(z)
κ

where κ = (k1, . . . , kN ), I = (i1, . . . , iN ), qI(z)
κ = qi1(z)

k1 · · · qiN
(z)kN , and

AI
κ(z) = (

1

2πi
)N

∫

σi1,...,iN

f(ζ)

qi1(ζ)
k1+1 · · · qiN

(ζ)kN+1
×

det{P in
m (ζ, z)m,n=1,...,N}dζ1 · · · dζN

are polynomials. Using truncations of this expansion, as with the polydisk at the end of section
1, one concludes that f |K ∈ P (K), completing the outline of the proof of Theorem (OW). An
alternate proof of Theorem (OW), using Lagrange interpolation at generalized Fekete points (see
section 9) has been given by Siciak [Si].

From (4), (5) and Theorem (OW), it follows that if K is a compact set in C
N and D is an

open neighborhood of the polynomial hull K̂, then K̂ can just as well be constructed as a “hull”
with respect to holomorphic or continuous psh functions; i.e., K̂ coincides with both

K̂O(D) := {z : |f(z)| ≤ ‖f‖K for all f ∈ O(D)}

and
K̂PSH(D) := {z : u(z) ≤ sup

ζ∈K
u(ζ) for all u ∈ PSH(D) ∩ C(D)}.

The reader may now verify the claim in the previous section about the polynomial hull of K1 ∪K2

utilizing the above observation with D being a dilation of the domain

D̃ := {(z1, z2) : |z1| < 1, |z2| < 1, |z1z2| < r}

and the exercise at the beginning of this section.
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4 Quantitative approximation theorems in C

Before jumping to a quantitative Runge-type theorem in C
N , we recall the example of the closed

unit disk ∆̄ to review the one-variable story. In the introduction we proved one direction of the
following.

Theorem. Let f be continuous on ∆̄ = {z ∈ C : |z| ≤ 1}, and R > 1. Then

lim sup
n→∞

dn(f, ∆̄)1/n ≤ 1/R (6)

if and only if f is the restriction to ∆̄ of a function holomorphic in ∆(0, R) = {z ∈ C : |z| < R}.

Proof. For the only if direction we note that for any nonconstant polynomial p, the function

u(z) :=
1

deg p
log

|p(z)|
‖p‖∆̄

− log |z|

is subharmonic on C \ ∆̄, bounded at ∞, and nonpositive on T = ∂∆. By the maximum principle
u ≤ 0 on C ∪ {∞} \ ∆̄ which gives

|p(z)| ≤ ‖p‖∆̄|z|deg p, |z| ≥ 1,

hence

|p(z)| ≤ ‖p‖∆̄ max(|z|, 1)deg p = ‖p‖∆̄(elog
+ |z|)deg p, z ∈ C.

This is the Bernstein-Walsh inequality. In particular,

|p(z)| ≤ ‖p‖∆̄ ρdeg p, |z| ≤ ρ. (7)

Let f be a continuous function on ∆̄ such that (6) holds and choose a polynomial pn of degree
at most n satisfying dn = ‖f − pn‖∆̄. We claim that the series p0 +

∑∞
1 (pn − pn−1) converges

uniformly on compact subsets of {z : |z| < R} to a holomorphic function F which agrees with f on
∆̄. For if 1 < R′ < R, by hypothesis the polynomials pn satisfy

‖f − pn‖∆̄ ≤ M

R′n
, n = 0, 1, 2, . . . , (8)

for some M > 0. Then for 1 < ρ < R′, simply apply (7) to pn − pn−1:

sup
|z|≤ρ

|pn(z) − pn−1(z)| ≤ ρn‖pn − pn−1‖∆̄

≤ ρn(‖pn − f‖∆̄ + ‖f − pn−1‖∆̄) ≤ ρnM(1 +R′)

R′n
.

From (8), F = f on ∆̄.
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We generalize this. Let K be a compact subset of C with C \ K connected. Recall this is
equivalent to the condition that K = K̂; i.e., K is polynomially convex. We say that K is regular
if there is a continuous function gK : C → [0,+∞) which is identically equal to zero on K, harmonic
on C \K, and has a logarithmic singularity at infinity in the sense that gK(z)− log |z| is harmonic
at infinity (this is equivalent to C \K being a regular domain for the Dirichlet problem). We call
gK the classical Green function for K. For K = ∆̄, we have g∆̄(z) = log+ |z|. In the general
case, if p is any nonconstant polynomial, then the function

V :=
1

deg p
log

|p|
‖p‖K

− gK

is subharmonic on C \K, bounded at ∞, and continuously assumes nonpositive values on ∂K. By
the maximum principle we have V ≤ 0 on C ∪ {∞} \K, yielding the Bernstein-Walsh property

|p(z)| ≤ ‖p‖K(egK(z))deg p.

In particular, if R > 1 and

DR := {z : gK(z) < logR}, (9)

then

|p(z)| ≤ ‖p‖KR
deg p, z ∈ DR. (10)

Then a similar argument proves one-half of the following univariate Bernstein-Walsh theorem.

Theorem (BW1). Let K be a regular compact subset of the plane with Green function gK . Let
R > 1, and define DR by (9). Let f be continuous on K. Then lim supn→∞ dn(f,K)1/n ≤ 1/R if
and only if f is the restriction to K of a function holomorphic in DR.

Proof. We prove the other half using duality. We suppose f is holomorphic on DR; and we will
rewrite the numbers dn in such a way that we can estimate them. Let 1 < r < ρ < R. To get
a global C∞ extension F of f that agrees with f on a neighborhood of K, we let φ be a smooth
cut-off function which is identically equal to 1 on D̄ρ and has compact support in DR. We then set
F = φf in DR and let F be identically 0 outside of DR.

For n fixed, by the Hahn-Banach theorem there exists a complex measure µ = µn supported
in K with total variation |µ|(K) = 1, such that µ annihilates the vector space Pn of holomorphic
polynomials of degree at most n (that is,

∫
K
pn dµ = 0 for all pn ∈ Pn) and

dn =

∫

K

f dµ.

Since F = f on K, we can write

dn =

∫

K

F dµ = (µ ∗ F̌ )(0). (11)

where F̌ (z) := F (−z). Now form the convolution

µ ∗ F̌ = (µ ∗ F̌ ) ∗ δ = (µ ∗ F̌ ) ∗ ∂

∂z̄
E =

∂

∂z̄
F̌ ∗ (µ ∗E), (12)
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where δ is the point mass at 0 and E(z) := 1/(πz) is the Cauchy kernel. Associativity of the triple
convolution holds since each term has compact support. We write

µ̂(z) := (µ ∗ E)(z) =
1

π

∫

K

dµ(ζ)

z − ζ
,

the Cauchy transform of µ. Note that µ∗E is holomorphic outside K. From (11) and (12) we then
obtain (note that ∂F/∂z̄ = 0 on Dρ)

dn =

∫

DR\Dρ

(µ ∗ E)(z)
∂

∂z̄
F̌ (z) dA(z), (13)

where A is Lebesgue measure in C.
In order to utilize formula (13) for dn, we need estimates for µ̂. We first note that since

|µ|(K) = 1, we have
|(µ ∗ E)(z)| ≤M, z ∈ ∂Dr, (14)

for some constant M > 0 depending only on the distance from K to ∂Dr. In addition we have the
growth estimate

|(µ ∗ E)(z)| = O(1/|z|n+1) as |z| → ∞; (15)

this follows from noting that for z sufficiently large we have 1/(z − ζ) =
∑

k ζ
k/zk+1 uniformly for

ζ ∈ K, and then using the fact that µ satisfies
∫

K
ζk dµ(ζ) = 0 for 0 ≤ k ≤ n. We now consider

the function

u(z) := gK(z) +
1

n
log

( |µ ∗ E(z)|
M

)
.

Using (14) and (15), we see that u(z) is subharmonic in C \ D̄r, bounded at ∞, and continuously
assumes values which are at most log r on ∂Dr. By the maximum principle we have u(z) ≤ log r
on C \Dr; that is,

|(µ ∗ E)(z)| ≤M [elog r−gK(z)]n, z ∈ C \Dr. (16)

From (13) and (16) we conclude that lim sup
n→∞

dn(f,K)1/n ≤ r/ρ. Now let r ↓ 1 and ρ ↑ R.

Note that for each non-constant polynomial p with ‖p‖K ≤ 1, we have 1
deg p

log |p(z)| ≤ gK(z)
so that

max

{
0, sup

p

{
1

deg p
log |p(z)|

}}
≤ gK(z). (17)

It turns out that equality holds in (17). We use this as a starting point in jumping to several
complex variables in the next section.

5 The Bernstein-Walsh theorem in C
N , N > 1

For a compact set K ⊂ C
N , we may define

VK(z) := max

{
0, sup

p

{
1

deg p
log |p(z)|

}}

where the supremum is taken over all non-constant polynomials p with ‖p‖K ≤ 1. This is a gen-
eralization of the one-variable Green function gK . Note that from the definition of the polynomial
hull K̂, we have

VK = VK̂ .
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The function VK is lower semicontinuous, but it need not be upper semicontinuous. The upper
semicontinuous regularization

V ∗
K(z) = lim sup

ζ→z
VK(ζ)

of VK is either identically +∞ or else V ∗
K is plurisubharmonic. The first case occurs if the set K is

too “small”; precisely if K is pluripolar: this means that there exists a psh function u defined in
a neighborhood of K with K ⊂ {z : u(z) = −∞} (see section 13 for more on pluripolar sets). We
say that K is L-regular if VK = V ∗

K , that is, if VK is continuous. For example, if C
N \K is regular

with respect to R
2N -potential theory, then K is L-regular. A simple example is a closed Euclidean

ball K = {z ∈ C
N : |z − a| ≤ R}; in this case, VK(z) = V ∗

K(z) = max[0, log |z − a|/R]. For a
product K = K1×· · ·×KN of planar compact sets Kj ⊂ C, VK(z1, . . . , zN ) = maxj=1,...,N gKj

(zj).
In particular, for a polydisk

P := {(z1, . . . , zN ) : |zj − aj | ≤ rj , j = 1, . . . , N},

VK(z1, . . . , zN ) = maxj=1,...,N [0, log |zj − aj |/rj ]. Any compact set K can be approximated from
above by the decreasing sequence of L-regular sets Kn := {z : dist(z,K) ≤ 1/n}. The reason for
the “L” is that the class of plurisubharmonic functions u in C

N of logarithmic growth, i.e., such
that u(z) ≤ log |z| +C, |z| → ∞, is called the class L = L(CN ). The functions 1

deg p log |p(z)| for a
polynomial p clearly belong to L; historically, for any Borel set E, the function

VE(z) := sup{u(z) : u ∈ L, u ≤ 0 on E}

was called the L-extremal function of E and it was proved that for compact sets K, this
upper envelope coincides with that in the beginning of this section. We sketch a proof of this.
An important feature of the proof is the correspondence between psh functions in L(CN ) and
“homogeneous” psh functions in C

N+1. We remind the reader of the standard correspondence
between polynomials pd of degree d in N variables and homogeneous polynomials Hd of degree d
in N + 1 variables via

pd(z1, . . . , zN ) 7→ Hd(w0, . . . , wN ) := wd
0pd(w1/w0, . . . , wN/w0).

Clearly VK(z) ≤ V (z) := sup{u(z) : u ∈ L, u ≤ 0 on K} and to prove the reverse inequality,
by approximating K from above, if necessary, we may assume K is L-regular. We consider h(z, w)
defined for (z, w) ∈ C

N+1 = C
N × C as follows:

h(z, w) :=

{ |w| exp V (z/w), w 6= 0;
lim sup(z′,w′)→(z,0) h(z

′, w′), w = 0.

This is a nonnegative homogeneous psh function in C
N+1; i.e., h(tz, tw) = |t|h(z, w) for t ∈

C. We say that the function log h is logarithmically homogeneous: log h(tz, tw) = log |t| +
log h(z, w). Fix a point (z0, w0) 6= (0, 0) with z0/w0 6∈ K and fix 0 < ε < 1. Using the fact that
the polynomial hull coincides with the hull with respect to continuous psh functions (see the end
of section 3), it follows that the compact set

E := {(z, w) ∈ C
N+1 : h(z, w) ≤ (1 − ε)h(z0, w0)}

is polynomially convex. Moreover, E is circled: (z, w) ∈ E implies (eitz, eitw) ∈ E for all real t.
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Exercise. Given a compact, circled set E ⊂ C
N and a polynomial pd = hd+hd−1+· · ·+h0 of degree

d written as a sum of homogeneous polynomials, we have ‖hj‖E ≤ ‖pd‖E , j = 0, . . . , d. Hint: Fix a

point b ∈ E at which |hj(b)| = ‖hj‖E and use Cauchy’s estimates on λ 7→ pd(λb) =
∑d

j=0 λ
jhj(b).

From the exercise, the polynomial hull of our circled set E is the same as the hull obtained
using only homogeneous polynomials. Since E = Ê and (z0, w0) 6∈ E, we can find a homogeneous
polynomial hs of degree s with |hs(z0, w0)| > ‖hs‖E . Define

ps(z, w) :=
hs(z, w)

‖hs‖E
· [(1 − ε)h(z0, w0)]

s.

Then |ps(z, w)|1/s ≤ |h(z, w)| for (z, w) ∈ ∂E and by homogeneity of |ps|1/s and h we have |ps|1/s ≤
h in all of C

N+1. At (z0, w0), we have

|ps(z0, w0)|1/s > (1 − ε)h(z0, w0);

since ε > 0 was arbitrary, as was the point (z0, w0) (provided z0/w0 6∈ K), we get that

h(z, w) = sup
s
{|ps(z, w)|1/s : ps homogeneous of degree s, |ps|1/s ≤ |h|}.

At w = 1, we obtain

exp V (z) = h(z, 1) = sup
s
{|Qs(z)|1/s : Qs of degree s, |Qs|1/s ≤ expV }

which proves the result (note V ≤ 0 on K).
If the compact set K ⊂ C

N is L-regular, then for each R > 1 we define the set

DR := {z : VK(z) < logR}; (18)

this is an open neighborhood of K̂ and we clearly have the Bernstein-Walsh inequality

|p(z)| ≤ ‖p‖KR
deg p = ‖p‖K̂R

deg p, z ∈ DR (19)

for every polynomial p in C
N . Theorem (BW1) goes over exactly to several complex variables:

Theorem (BWN). Let K be an L-regular compact set in C
N . Let R > 1, and let DR be defined

by (18). Let f be continuous on K. Then

lim sup
n→∞

dn(f,K)1/n ≤ 1/R

if and only if f is the restriction to K of a function holomorphic in DR.

Sketch of proof. The “only if” direction follows since K satisfies the Bernstein-Walsh inequality
(19). For the converse, we may assume that K = K̂. Fix f ∈ O(DR) and ε > 0. Since ∂DR

is compact and VK(z) = max
{
0, supp

{
1

deg p
log |p(z)|

}}
, we can find finitely many polynomials

p1, . . . , pm of degree d, say, with ‖pj‖K ≤ 1 such that

max
j

{1

d
log |pj(z)|} > logR− ε on ∂DR.

By slightly modifying the pj ’s, if necessary, we may assume that

Π := {z : |qj(z)| < 1, j = 1, . . . ,m}
is a Weil polyhedron where qj(z) := pj(z)/(e

−εdRd); and clearly K ⊂ Π and Π approximates DR;
i.e., DR−δ ⊂ Π ⊂ DR for small δ. Now use the Weil integral formula from section 3 to expand f(z)
and truncate the series to get good polynomial approximators.
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This sketch follows the outline of the proof given by Siciak [Si]. Zaharjuta [Z2] gave the first proof
of Theorem (BWN).

There is an interesting related result, due to Tom Bloom, which applies pluripotential theory
to multivariate approximation theory. To motivate this, we return to the one-variable situation and
let K ⊂ C be compact with C \K connected and gK continuous. Let W (K) denote the closure (in
the uniform norm on K) of the functions holomorphic on a neighborhood of K. Given f ∈W (K),
let Bd(z) = bdz

d + · · · be the best approximant to f (in sup-norm on K) from Pd(C). Wojcik [W]
showed that f has a holomorphic extension to DR for some R > 1 if and only if

lim sup
d→∞

|bd|1/d ≤ 1

Rcap(K)
.

Here, cap(K) := lim|z|→∞ |z| exp(−gK(z)) is the logarithmic capacity of K. Equivalently,

cap(K) = lim
d→∞

inf{‖pd‖1/d
K : pd(z) = zd + · · ·},

the Chebyshev constant of K.
Now in several complex variables, what should replace the “leading coefficient” bd of a uni-

variate polynomial? Moreover, what replaces the asymptotics of the Green function gK? To
address the first question, recall that any polynomial Pd of degree d may be written as the sum
Pd = Hd+Hd−1+· · ·+H0 whereHj is a homogeneous polynomial of degree j; i.e., Hj(tz) = tjHj(z)

for t ∈ C, z ∈ C
N . Going backwards, given a homogeneous polynomial Hd of degree d and a com-

pact set K ⊂ C
N , we define the Chebyshev polynomial of Hd relative to K, denoted TchKHd,

to be a polynomial of the formHd+Rd−1 with ‖Hd+Rd−1‖K minimal among all Rd−1 ∈ Pd−1(C
N ).

Such a polynomial need not be unique if N ≥ 2 but the number ‖TchKHd‖K is well-defined. Note
if N = 1 and Hd(z) = zd, TchKHd is just the classical Chebyshev polynomial for K of degree d.

For the second question, we make some preliminary definitions. Given a psh function u ∈
L(CN ) we define the Robin function of u to be

ρu(z) := lim sup
|λ|→∞

[u(λz) − log |λ|] .

Note that for λ ∈ C, ρu(λz) = log |λ| + ρu(z); i.e., ρu is logarithmically homogeneous. It is known
([Bl6], Proposition 2.1) that for u ∈ L(CN ), the Robin function ρu(z) is plurisubharmonic in C

N ;
indeed, either ρu ∈ L(CN ) or ρu ≡ −∞. As an example, if p is a polynomial of degree d so that
u(z) := 1

d
log |p(z)| ∈ L(CN ), then ρu(z) = 1

d
log |p̂(z)| where p̂ is the top degree (d) homogeneous

part of p. For a compact set K, we denote by ρK the Robin function of V ∗
K ; i.e., ρK := ρV ∗

K
.

We can now state the beautiful result of Bloom:

Theorem ([Bl6]). Let K be an L-regular, polynomially convex compact set in C
N . Let f ∈

W (K) and let Bd := Hd + lower degree terms, d = 1, 2, . . ., be a sequence of best approximating
polynomials to f on K. For R > 1, the following are equivalent:

1. f extends holomorphically to DR;

2. lim supd→∞ ‖f −Bd‖1/d
K ≤ 1/R;

3. lim supd→∞ ‖TchKHd‖1/d
K ≤ 1/R;

4. lim supd→∞
1
d

log |Hd(z)| ≤ ρK(z) − logR for z ∈ C
N \ {0}.

Of course, the equivalence of 1. and 2. is the Bernstein-Walsh theorem. The deep part of this
result is the implication 4. implies 3.; this follows from
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Theorem ([Bl6]). LetK be an L-regular, polynomially convex compact set in C
N . Let {Hd} be a

sequence of homogeneous polynomials with degHd = d and assume that lim supd→∞
1
d log |Hd(z)| ≤

ρK(z) for z ∈ C
N \ {0}. Then

lim sup
d→∞

‖TchKHd‖1/d
K ≤ 1.

To prove this theorem, Bloom constructs polynomials Wj , j = 1, . . . , s with ‖Wj‖K ≤ 1 such

that a Weil polyhedron {z ∈ C
N : |Ŵj(z)| < Rj , j = 1, . . . , s} utilizing the top degree homogeneous

polynomials Ŵj of Wj contains K. Each Hd may be expanded in a series involving the Ŵj ’s:

Hd(z) =

∞∑

|M |=0

∑

I

′
AI

M (z)[ŴI (z)]
M .

Replacing each ŴI by WI creates polynomials

Pd(z) :=

∞∑

|M |=0

∑

I

′
AI

M (z)[WI (z)]
M

of degree d which are competitors for TchKHd and whose sup norms on K can be estimated.

6 Quantitative Runge-type results in multivariate approximation

The duality proof presented of the one-variable Walsh theorem, Theorem (BW1) of section 4, may
be extended to yield a quantitative Runge theorem for harmonic functions in R

N , where N ≥ 2.
To state this we let HN

n be the vector space of all harmonic, real-valued polynomials of N variables
of degree at most n. If f is a continuous real-valued function on a compact set K ⊂ R

N , we now
define

dn(f,K) := inf{‖f − hn‖K : hn ∈ HN
n }.

Theorem ([A],[BL2]). Let K be a compact subset of R
N such that R

N \K is connected.
(a) Let Ω be an open neighborhood of K. Then there is a constant ρ ∈ (0, 1), depending only

on K and Ω, with the following property: if f is harmonic on Ω, then lim supn→∞ dn(f,K)1/n ≤ ρ.
(b) Suppose that when we regard K ⊂ R

N = R
N + i0 ⊂ C

N , the set K is L-regular. If f is
a real-valued continuous function on K such that lim supn→∞ dn(f,K)1/n < 1, then f extends to
a harmonic function on an open neighborhood of K.

Sketch of proof of (a). We follow the outline of the duality proof of the Walsh theorem, replacing
the Cauchy kernel by the fundamental solution E(x− y) = cN |x− y|2−N for the Laplace operator
∆ (here cN is a constant depending only on the dimension). Analogous to (13), we can write
dn =

∫
L
(µ∗E)(z)∆F (z)dA(z) where µ = µn is a complex measure supported on K with |µ|(K) = 1

which annihilates HN
n , L is a compact subset of Ω \ K, and F is a C∞ function. The details of

this proof may be found in [BL2], but the main difference here is the problem of estimating the
Newtonian potential

(µ ∗ E)(x) =

∫

K

cN |x− y|2−N dµ(y)

on compact subsets of Ω \K under the assumption that we have the decay estimate

|(µ ∗ E)(x)| = O(|x|−n) as |x| → ∞ (20)
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analogous to (15). We utilize the Kelvin transform T (x) := x/|x|2, under which a harmonic function
h(x) on a domain G ⊂ R

N \ {0} is transformed into a harmonic function h̃(x) := |x|2−Nh(x/|x|2)
on T (G). The condition (20) of rapid decay at infinity is transformed into a condition of flatness
near the origin, and the problem of estimating µ∗E under the hypothesis (20) is reduced to proving
the following Schwarz lemma for harmonic functions [BL2].

Lemma (HSL). Let Ω be a bounded domain in R
N and let a ∈ Ω. If K is a compact subset of

Ω, then there exist constants C > 1 and ρ ∈ (0, 1), depending only on K and Ω, with the following
property: if f is a harmonic function on Ω satisfying |f | ≤ 1 in Ω, and if Dαf(a) = 0 whenever
|α| < n, then ‖f‖K ≤ Cρn.

Here Dαf = ∂|α|f

∂x
α1
1

···∂x
αN
N

. The proof of Lemma (HSL) is based on techniques from the theory

of functions of several complex variables. In the preceding section we introduced the function VK

in C
N as a substitute for the ordinary Green function with pole at infinity in C

1. To prove Lemma
(HSL) we introduce in C

N a substitute for the Green function with a finite pole in C
1. Following

Klimek [K], section 6.1, we define for each domain Ω̃ ⊂ C
N and each point a ∈ Ω̃ the pluricomplex

Green function

G
Ω̃
(z; a) := sup

u
u(z),

where the supremum is taken over all nonpositive plurisubharmonic functions u on Ω̃ such that
u(z) − log |z − a| has an upper bound in some neighborhood of a. It is known that if, e.g., Ω̃ is
bounded, or, more generally, hyperconvex (see section 3), then G

Ω̃
(·; a) is a nonconstant, negative

plurisubharmonic function in Ω̃ (see [K], [BL2]). This fact leads to the following Schwarz lemma
for holomorphic functions of several variables (see [Bi], [BL2]).

Lemma (SL). Let Ω̃ be a bounded domain in C
N and let a ∈ Ω̃. Let K̃ be a compact subset of

Ω̃. If f is a holomorphic function on Ω̃ satisfying |f | ≤ 1 in Ω̃, and if ∂αf(a) = 0 whenever |α| < n,
then ‖f‖K̃ ≤ ρn, where

ρ := sup
K̃

exp(G
Ω̃
(·; a)) < 1.

Here ∂αf = ∂|α|f

∂z
α1
1

···∂z
αN
N

. The inequality ρ < 1 is clear from the fact that G
Ω̃
(·; a) is a negative

function on Ω̃ which is subharmonic as a function of 2N real variables. The rest of the lemma follows
from the fact that the function u(z) := 1

n log |f(z)| is one of the competitors in the definition of
G

Ω̃
(·; a).

A harmonic function is real analytic and thus about each point x0 in our domain Ω ⊂ R
N we

can get a power series expansion
∑
aα(x − x0)

α of f which converges as a holomorphic function∑
aα(z − x0)

α in a neighborhood of this point in C
N . We prove Lemma (HSL) by covering

the compact set K by finitely many real balls B and the union of the complex balls B̃ gives a
neighborhood Ω̃ of K in C

N to which we can apply Lemma (SL).

In [BL3], the authors prove Bernstein theorems for solutions of more general elliptic partial
differential equations. Let p(x) :=

∑
|α|=m aαx

α be a non-constant homogeneous polynomial in

R
N , with complex coefficients, which is never equal to zero on R

N \ {0}; here N ≥ 2. Then the
partial differential operator p(D) := p(∂/∂x1, . . . , ∂/∂xn) is elliptic. We let Ln be the vector space
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of polynomials q of degree at most n in N variables which are solutions of the equation p(D)q = 0.
If f is a continuous function on a compact set K ⊂ R

N , define

dn(f,K) = inf{‖f − pn‖K : pn ∈ Ln}.

Theorem ([BL3]). Let K be a compact subset of R
N such that R

N \K is connected.
(a) Let Ω be an open neighborhood of K. Then there is a constant ρ ∈ (0, 1), depending

only on p(D), K, and Ω, with the following property: if f is a solution of p(D)f = 0 on Ω, then
lim supn→∞ dn(f,K)1/n ≤ ρ.

(b) Suppose that when we regard K ⊂ R
N = R

N + i0 ⊂ C
N , the set K is L-regular. If f is

a real-valued continuous function on K such that lim supn→∞ dn(f,K)1/n < 1, then f extends to
a solution F of p(D)F = 0 on an open neighborhood of K.

A duality proof, utilizing a fundamental solution E(x − y) for the operator p(D), and yet
another tool from pluripotential theory, the relative extremal function

ω∗(z, F,Ω) := [sup{u(z) : u psh in Ω, u ≤ 0, u|F ≤ −1}]∗

of a set F ⊂ Ω relative to Ω, may be found in [BL3]. See section 13 for more on ω∗(z, F,Ω). The
need for this function arises as we don’t have a Kelvin transform in this general setting; but we do
get a “transfer of smallness” result analogous to Lemma (SL):

Lemma. Let Ω be a bounded domain in C
N . Let F ⊂ Ω be nonpluripolar and let K ⊂ Ω be

compact. Then there is a constant a ∈ (0, 1] such that for any holomorphic function g on Ω with
|g| ≤M on Ω and |g| ≤ m < M on F , we have

|g| ≤ maM1−a on K.

The proof is trivial: simply observe that log |g| is psh and by the definition of ω(z, F,Ω), it
follows that

u(z) :=
log (|g(z)|/M)

log (M/m)
≤ ω(z, F,Ω).

Then the constant a can be chosen to be a(Ω, F,K) := − supK ω(z, F,Ω). The nonpluripolarity of
F insures that a > 0 (see Proposition (ω) in section 13).

Finally, we mention that Jackson-type approximation theorems for solutions to p(D)f = 0 on
Ω which are continuous on Ω̄ can be found in [BBL1] and [BBL2].

7 Mergelyan property and solving ∂̄

Recall the Cauchy-Green formula: Let Ω be a bounded domain in C with C 1-boundary and let
f ∈ C1(Ω̄). Then

f(z) =
1

2πi

∫

∂Ω

f(ζ)

ζ − z
dζ − 1

π

∫

Ω

∂f

∂z̄
(ζ) · ( 1

ζ − z
)dA(ζ) (21)

where dA denotes Lebesgue measure. In particular,
1. if f ∈ O(Ω) ∩ C(Ω̄),

f(z) =
1

2πi

∫

∂Ω

f(ζ)

ζ − z
dζ (Cauchy integral formula); (22)
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2. if f ∈ C1
0 (Ω),

f(z) = − 1

π

∫

Ω

∂f

∂z̄
(ζ) · ( 1

ζ − z
)dA(ζ).

As an immediate corollary, if g ∈ C0(Ω), then

G(z) := − 1

π

∫

Ω

g(ζ) · ( 1

ζ − z
)dA(ζ)

solves the inhomogeneous Cauchy-Riemann equation ∂G/∂z̄ = g in Ω. Moreover, we see that

sup
Ω

|G| ≤ [sup
Ω

|g|] sup
z∈Ω

[ 1

π

∫

suppg

| 1

ζ − z
|dA(ζ)

]
(23)

so that supΩ |G| ≤ C supΩ |g|. More generally, if µ is a measure with compact support in Ω, the
Cauchy transform of µ,

µ̂(z) := − 1

π

∫

Ω

1

ζ − z
dµ(ζ),

satisfies ∂µ̂/∂z̄ = µ in the sense of distributions on Ω.
Now suppose K = Ω̄ where Ω is a simply connected domain with boundary of class C 1. An

elementary proof of Mergelyan’s theorem (Theorem (Me) from section 1) for such K goes as follows:

1. Smooth approximation. Cover ∂K by finitely many open sets U1, . . . , Un such that for each
j = 1, . . . , n there is a vector tj transverse to ∂Ω at each point of ∂Ω ∩ Uj pointing outward
(into C \ Ω̄). Take a partition of unity φ, φ1, . . . , φn for a neighborhood of Ω̄ subordinate to
the cover consisting of Ω, U1, . . . , Un. Given f ∈ O(Ω) ∩ C(Ω̄), for sufficiently large j,

gj(z) := φ(z)f(z) +
n∑

k=1

φk(z)f(z − tk/j)

is defined and C∞ on a neighborhood Ωj of Ω̄. Since f ∈ C(Ω̄), gj → f uniformly on Ω̄.
2. Holomorphic correction. We have that

∂gj

∂z̄
(z) = f(z) · ∂φ

∂z̄
(z) +

n∑

k=1

f(z − tk/j) ·
∂φk

∂z̄
(z)

is uniformly small on Ωj since φ+
∑

k φk = 1 there; say supΩj
|∂gj

∂z̄ | ≤ δj where δj → 0. From
the previous discussion, utilizing (23), for each j we can find Gj ∈ C∞(Ωj) with

∂Gj

∂z̄
=
∂gj

∂z̄

in Ωj and supΩj
|Gj | ≤ Cjδj → 0. Then fj := gj −Gj ∈ O(Ωj) and fj → f uniformly on Ω̄.

In higher dimensions, the smooth approximation step works fine. However, things get tricky
in step 2 for two reasons:

(i) we need to solve a ∂̄-equation; more precisely,
(ii) we need to solve a ∂̄-equation with uniform (sup-norm) estimates.
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Let’s make this precise. Given a C1 function u, the 1-form du can be written as du = ∂u + ∂̄u
where

∂u :=
N∑

j=1

∂u

∂zj
dzj

is a form of bidegree (1, 0) and

∂̄u :=

N∑

j=1

∂u

∂z̄j
dz̄j

is a form of bidegree (0, 1). In general, a differential form φ of bidegree (p, q) is a sum

φ =
∑′

|I|=p, |J|=q

cI,Jdz
I ∧ dz̄J

where cI,J are functions (0-forms) and

dzI = dzi1 ∧ · · · ∧ dzip
; dz̄J = dz̄j1 ∧ · · · ∧ dz̄jq

;

the prime means the indices are increasing. We define

∂̄φ =
∑′

|I|=p, |J|=q

∂̄cI,J ∧ dzI ∧ dz̄J ;

this is a form of bidegree (p, q + 1).
We can extend the operator ∂ to (p, q)-forms as well (the result is a (p + 1, q)-form). Since

any form ω of degree r ∈ {0, 1, . . . , 2N} can be written as a sum of forms ωp,q of bidegree (p, q)
where 0 ≤ p, q ≤ r and p + q = r, we extend ∂̄ and ∂ to general forms by linearity. Note then as
differential operators on the space of smooth forms, we have

d2 = d ◦ d = 0 = (∂ + ∂̄) ◦ (∂ + ∂̄) = ∂2 + ∂ ◦ ∂̄ + ∂̄ ◦ ∂ + ∂̄2;

by bidegree considerations
∂2 = ∂̄2 = 0; ∂ ◦ ∂̄ = −∂̄ ◦ ∂

(e.g., if φ is a (p, q) form, d2φ = 0 is a form of total degree p+ q + 2; ∂̄2φ is of bidegree (p, q + 2)

and there are no other terms with this bidegree). In particular, let φ =
∑N

j=1 φjdz̄j be a smooth

(0, 1) form on a domain Ω in C
N . If we want to be able to find a function u ∈ C∞(Ω) with ∂̄u = φ

in Ω, a necessary condition is that ∂̄φ = 0. This condition is vacuous if N = 1 (there are no (0, 2)
forms in C). Note that the inhomogeneous Cauchy-Riemann equation ∂̄u = φ is a system of 2N
(real) partial differential equations in R

2N for the (two) unknown functions <u and =u. This is an
overdetermined system if N > 1.

Are there integral formulas providing solutions to ∂̄? For N = 1, define, for z ∈ C, the
(1, 0)-form in ζ

ωBM (ζ − z) :=
1

2πi

dζ

ζ − z
=

1

2πi

ζ̄ − z̄

|ζ − z|2 dζ.

Then if Ω ⊂ C is a bounded domain with C1-boundary and f ∈ O(Ω) ∩ C(Ω̄), we have

f(z) =

∫

∂Ω

f(ζ)ωBM (ζ − z)

for z ∈ Ω. This is the Cauchy integral formula (22). In SCV, we have the following.
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Proposition (Bochner-Martinelli formula). Define the (N,N − 1)-form

ωBM (ζ − z) :=
(N − 1)!

(2πi)N

N∑

j=1

(−1)j−1(ζ̄j − z̄j)

|ζ − z|2N
dζ̄[j] ∧ dζ.

If Ω ⊂ C
N is a bounded domain with C1-boundary and f ∈ O(Ω) ∩ C(Ω̄), then

f(z) =

∫

∂Ω

f(ζ)ωBM (ζ − z) (24)

for z ∈ Ω.

Here dζ̄[j] = dζ̄1 ∧ · · · ∧ ˆdζ̄j ∧ · · · ∧ dζ̄N (omit dζ̄j) and dζ = dζ1 ∧ · · · ∧ dζN . The reader will

note that the ζj partial derivative of 1
|ζ−z|2N−2 , a fundamental solution for the Laplacian in R

2N , is

∂

∂ζj

1

|ζ − z|2N−2
=

(1 −N)(ζ̄j − z̄j)

|ζ − z|2N
,

which is, up to a constant, the coefficient of dζ̄[j] ∧ dζ in ωBM (ζ − z). As a generalization of the
Cauchy-Green formula (21), for any f ∈ C1(Ω̄) we have

f(z) =

∫

∂Ω

f(ζ)ωBM (ζ − z) − (N − 1)!

πN

∫

Ω

N∑

j=1

∂f

∂z̄j

ζ̄j − z̄j

|ζ − z|2N
dA(ζ) (25)

for z ∈ Ω. Here dA(ζ) is Lebesgue measure in C
N , i.e.,

dA(ζ) = (i/2)Ndζ1 ∧ dζ̄1 ∧ · · · ∧ dζN ∧ dζ̄N .

However, only if N = 1 are the coefficients of this Bochner-Martinelli kernel ωBM (ζ − z)
holomorphic in z; thus only for N = 1 can this formula be used to construct solutions to ∂̄u = φ.
That is, given a smooth (0, 1) form φ =

∑N
j=1 φjdz̄j on Ω ⊂ C

N with ∂̄φ = 0, from (25) we’d like
to define

u(z) = − (N − 1)!

(2πi)N

∫

Ω

N∑

j=1

φj
ζ̄j − z̄j

|ζ − z|2N
dζ̄ ∧ dζ

to solve ∂̄u = φ in Ω, but since (ζ̄j − z̄j)/|ζ − z|2N is not holomorphic in z if N > 1, this doesn’t
work. A major area of research in SCV was the attempted construction of integral formulas with
holomorphic kernels. For strictly pseudoconvex domains (recall section 3), this was done by Henkin
and Ramirez. The article [He] of Henkin is a nice historical survey on the subject.

We say that a domain Ω has the Mergelyan property if every f ∈ O(Ω) ∩ C(Ω̄) can be
approximated uniformly on Ω̄ by functions in O(Ω̄). This definition is natural, given the one-
variable Mergelyan theorem, Theorem (Me), from section 1.

Theorem. A smoothly bounded, strictly pseudoconvex domain satisfies the Mergelyan property.

The reason is that Henkin, Kerzman and Lieb showed that one can solve ∂̄ with uniform estimates
by constructing holomorphic kernels in this case.
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What if D is pseudoconvex, but not strictly pseudoconvex? Let

D = {(z, w) ∈ C
2 : 0 < |z| < |w| < 1},

the so-called Hartogs triangle (draw a picture in |z|, |w|−space to explain the terminology). Then
D is pseudoconvex. However, any function holomorphic on a neighborhood of D̄ must necessarily
extend holomorphically to the unit bidisk P = ∆ × ∆ (exercise; or see [Sha] sections 7 and 40).
Now consider the function f(z, w) := z2/w. Note that

lim sup
(z,w)→(0,0), (z,w)∈D

|f(z, w)| ≤ lim sup
(z,w)→(0,0), (z,w)∈D

|w|2/|w| = 0

so that f extends continuously to (0, 0). Hence f ∈ O(D)∩C(D̄). We show that f is not uniformly
approximable on D̄ by holomorphic functions on D̄. For suppose {fj} ⊂ O(D̄) converge uniformly
to f on D̄. In particular, uniform convergence of {fj} on

T 2 = ∂∆ × ∂∆ = {(z, w) : |z| = |w| = 1}
implies uniform convergence of {fj} on P̄ (recall the multivariate Cauchy integral formula (3)
from section 1). This limit function, call it g, is necessarily holomorphic on P ; in particular,
it is holomorphic at (0, 0). Moreover, g must coincide with f on D. But f does not extend
holomorphically to (0, 0).

There are examples of smoothly bounded pseudoconvex domains which do not satisfy the
Mergelyan property. It is conjectured that if D is a smoothly bounded pseudoconvex domain, then
D has the Mergelyan property if and only if there are pseudoconvex domains Dj with D̄ ⊂ Dj such
that D̄ = ∩jDj . This latter property fails for the Hartogs triangle. It also fails in all of the known
examples of smoothly bounded pseudoconvex domains which fail to satisfy the Mergelyan property.
We refer the reader to the article of Bedford and Fornaess [BF] for a more detailed discussion.

8 Approximation on totally real sets

Recall from section 1 the example of the two polynomially convex disks K1 and K2 in C
2 defined

as
K1 := {(x1, x2) ∈ R

2 : x2
1 + x2

2 ≤ 1} and

K2 := {(z1, 0) : |z1| ≤ 1}.
Here P (K1) = C(K1) but P (K2) 6= C(K2). The difference is that K1 lies in the totally real
submanifold R

2 of C
2.

Definition. Let Σ be a submanifold of class C1 of an open set D ⊂ C
N . We say Σ is totally

real if for each p ∈ Σ, the tangent space TpΣ contains no complex lines; i.e., no complex linear
subspaces of positive dimension.

In particular, the dimension of such a (real) submanifold is at most N . A top-dimensional
example is the torus TN = {(z1, . . . , zN ) : |zj | = 1, j = 1, . . . , N}. Returning to the simpler

example of R
N = R

N + i0, note that

u(z) := dist(z,RN )2 = y2
1 + · · · + y2

N

is of class C2 and strictly psh (compute the complex Hessian!). Of course, directly from the
definition, R

N = {z ∈ C
N : u(z) = 0}. Indeed, if Σ is a totally real submanifold of class C 2 of

an open set D ⊂ C
N , then there exists a neighborhood ω of Σ such that u(z) = dist(z,Σ)2 is of

class C2 and strictly psh on ω (cf. [AW], Lemma 17.2). The main result on approximation on
totally real submanifolds is the following generalization of the real Stone-Weierstrass theorem due
to Harvey and Wells [HW]. It was first proved under stronger regularity hypotheses by Hörmander
and Wermer [HöW]. A very enlightening proof has recently been given by Berndtsson [Ber].
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Theorem (HW). Let Σ be a totally real submanifold of class C 1 in an open set in C
N and let

K ⊂ Σ be compact and polynomially convex. Then P (K) = C(K).

This is related to the question stated towards the end of section 2: Give a “nice” condition (C)
on a compact set K ⊂ C

N so that if K = K̂ then K satisfies (C) if and only if P (K) = C(K). In
Lavrentiev’s theorem, Theorem (La), in the complex plane, K o = ∅ was a necessary and sufficient
condition for a polynomially convex compact set K to have this property. Since uniform limits of
holomorphic objects like (holomorphic) polynomials should be, in some sense, holomorphic, we seek
a condition (C) which prohibits K from having any type of “analytic structure”. Note that P (K) is
a uniform algebra, i.e., a closed subalgebra of C(K). There was a famous conjecture known as the
peak point conjecture: Suppose A is a uniform algebra on its maximal ideal space X such that
every point x ∈ X is a peak point for A, i.e., there exists f ∈ A such that f(x) = 1 and |f(y)| < 1
for all y 6= x. Does it follow that A coincides with the algebra C(X)? In case X is a polynomially
convex compact set in C

N and A = P (X), we are asking if this “peak point property” suffices as
a condition (C). A counterexample given by Cole in 1968 shows that the answer to the general
peak point conjecture is no. Anderson, Izzo and Wermer [AIW1], [AIW2] have shown that if Σ is
a compact polynomially convex real analytic variety in C

N such that every point in Σ is a peak
point for P (Σ), then P (Σ) = C(Σ). Recall that a relatively closed subset V of an open set U in
C

N is a real analytic subvariety of U if for each z0 ∈ V there exists a neighborhood U ′ ⊂ U of z
and real valued, real analytic functions f1, ..., fm in U ′ with

V ∩ U ′ = {z ∈ U ′ : f1(z) = · · · = fm(z) = 0}.

The unit sphere in C
N for N > 1 is a smooth submanifold in C

N which definitely has complex
tangents (i.e., is not totally real) as the dimension of the sphere is 2N − 1 > N ; however, it is
straightforward to see that for any compact subset K of the sphere, P (K) has the peak point
property (e.g., at (1, 0, . . . , 0), take f(z) = z1). Despite this, Izzo [I] has constructed examples of
the following:

1. There exists a compact polynomially convex subset K of the unit sphere in C
3 such that

P (K) 6= C(K).
2. There exists a C∞-embedding F : C

2 → C
5 such that the set K = F ({(z, w) : |z| ≤ 1, |w| = 1})

is a compact polynomially convex subset of the unit sphere in C
5 which satisfies P (K) 6= C(K).

Note this last example is a compact, polynomially convex C∞ submanifold K for which every
point is a peak point for P (K) but P (K) 6= C(K); the Anderson, Izzo and Wermer theorem shows
that such an example cannot occur in the real analytic category. Stout has recently strengthened
the Anderson, Izzo and Wermer theorem to eliminate the hypothesis on peak points:

Theorem ([St2]). Let K be a compact, polynomially convex real analytic subvariety of C
N .

Then P (K) = C(K).

The aforementioned results of Harvey-Wells and/or Hörmander-Wermer essentially reduce
questions of approximation on subsets of real submanifolds on C

N to approximation on the points
where the tangent space to the manifold contains a complex line. The Hörmander-Wermer approach
to Theorem (HW), which requires some additional regularity hypotheses on Σ, can be summarized
as follows: given f ∈ C(K), we can clearly approximate f uniformly on K by a global smooth
function; i.e., we may assume f ∈ C∞(CN ). From Theorem (OW), since K = K̂, it suffices
now to approximate f uniformly on K by functions holomorphic on a neighborhood of K. It is
straightforward to construct a function F of class C 1 on C

N which agrees with f on K and such
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that

| ∂F
∂z̄j

(z)| = O(dist(z,Σ)m), j = 1, . . . , N

if, say, Σ is of class C2m+1. Next, using the function u(z) = dist(z,Σ)2, we can construct a bounded,
pseudoconvex neighborhood ω ofK in C

N to which we can apply standard several complex variables
machinery – solvability of ∂̄ in ω – to construct a function G in ω with

∂G

∂z̄j
=
∂F

∂z̄j
, j = 1, . . . , N

and with |G| very small in ω. Then G−F is holomorphic in ω and approximates f very well on K.
The ∂̄ machinery utilized in the previous paragraph is the Hörmander L2-theory. If D is a

smoothly bounded, pseudoconvex domain in C
N , then there is a constant C depending only on

D such that for any (0, 1)-form φ =
∑N

j=1 φjdz̄j with L2(D)-coefficients satisfying ∂̄φ = 0, there

exists u ∈ L2(D) with ∂̄u = φ in D and

∫

D

|u|2dA ≤ C

∫

D

N∑

j=1

|φj |2dA

(cf., [Hö], Chapter 4 or [AW] section 16). Note that this is a global L2-norm estimate. From this,
one gets local interior regularity of solutions sufficient to derive the required estimate on G in the
previous paragraph. Berndtsson uses a “weighted” version of the global L2-norm estimate in his
work.

The Harvey-Wells approach uses integral kernels to solve ∂̄ and is at least similar in spirit
to our outline of the proof of Theorem (OW) using the Weil integral formula. Extensions of the
Harvey-Wells result have been made by Range and Siu [RS] as well as by Bruna and Burgés [BB].
These papers deal with approximation in Hölder norms on a totally real compact subset X ⊂ C

N :
we assume there exists a strictly plurisubharmonic C 2 function in a neighborhood of X whose zero
set is X.

Using a generalization of the Bochner-Martinelli kernel, a suitably constructed Cauchy-Fan-
tappiè-Leray kernel (see section 10), Weinstock [Wei] has proved an interesting perturbation of the
Stone-Weierstrass theorem. We discuss this briefly. Given any compact set K ⊂ C

N and functions
f1, .., fm ∈ C(K), let [f1, . . . , fm] denote the algebra generated by these functions. Note then we
always have [z1, . . . , zN , z̄1, . . . , z̄N ] is dense in C(K). Suppose N functions R1, . . . , RN are given.
Let A = [z1, . . . , zN , z̄1 + R1, . . . , z̄N + RN ]. Under what conditions on R := (R1, . . . , RN ) is A
dense in C(K)? Assume each Rj is defined and continuous in a neighborhood U of K.

Theorem (PSW). If there exists 0 ≤ k < 1 with

|R(z) −R(z′)| ≤ k|z − z′| for z, z′ ∈ U,

then A is dense in C(K).

For N = 1 this result is due to Wermer [We]. Even in this case, it is the Lipschitz norm of
the perturbation R that matters, not the supremum norm. For example, if K = ∆̄, the closed unit
disk in C, and

R(z) := −z̄ if |z| ≤ ε; R(z) :=
−εz̄
|z| if ε ≤ |z| ≤ 1,

then |R(z)| ≤ ε on ∆̄ but z̄ + R(z) ≡ 0 on the disk {z : |z| ≤ ε}. Thus each function in A must
be holomorphic on {z : |z| < ε}. A nice exposition of the one and several variable results can be
found in chapter 14 of [AW].
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9 Lagrange interpolation and orthogonal polynomials

A natural way to construct polynomials which approximate a given function is to use interpolating
polynomials. Let K be a polynomially convex L-regular compact subset of C

N . Let mn =
(
N+n

n

)

denote the dimension of the complex vector space Pn of polynomials in N complex variables of
degree at most n.

For each integer n ≥ 1, let an1, . . . , anmn
∈ K. Thus we have a doubly indexed array

(anj)n=1,...; j=1,···,mn
of points in K. Given a function f holomorphic in a neighborhood of K,

under what conditions on the array do the Lagrange polynomials Lnf interpolating f at the points
(anj)j=1,···,mn

converge uniformly to f on K?
In one variable, Walsh gave a necessary and sufficient condition on the array in order to

guarantee uniform convergence of {Lnf} to f on K for all such f . In several variables (N ≥ 2),
much less is known because there is no analogue of the Hermite remainder formula used in the
proof of Walsh. We remind the reader of the Hermite remainder formula for interpolation of a
holomorphic function of one variable. This is a simple consequence of the Cauchy integral formula.
Let z1, . . . , zn be n distinct points in the plane and let f be a function which is defined at these
points. The functions

lj(z) :=
∏

k 6=j

(z − zk)/(zj − zk), j = 1, . . . , n,

are polynomials of degree n − 1 with lj(zk) = δjk, called the fundamental Lagrange interpo-
lating polynomials associated to z1, . . . , zn. Then (Lnf)(z) :=

∑n
j=1 f(zj)lj(z) is the unique

polynomial of degree at most n satisfying (Lnf)(zj) = f(zj), j = 1, . . . , n; we call it the Lagrange
interpolating polynomial associated to f, z1, . . . , zn. If Γ is a rectifiable Jordan curve such that
the points z1, . . . , zn are inside Γ, and f is holomorphic inside and on Γ, we can estimate the error
in our approximation of f by Lnf at points inside Γ using the following formula.

Lemma (Hermite Remainder Formula). For any z inside Γ,

f(z) − (Lnf)(z) =
1

2πi

∫

Γ

ω(z)

ω(t)

f(t)

(t− z)
dt, (26)

where ω(z) :=
∏n

k=1(z − zk).

Note that if f(z) = 1/(t − z), then

f(z) − (Lnf)(z) =
ω(z)

ω(t)

1

t− z
. (27)

The necessary and sufficient condition of Walsh on the univariate array (anj) ⊂ K ⊂ C so that

Lnf → f uniformly on K for any f holomorphic on K is that the polynomials ωn+1(z) :=
∏n+1

j=1 (z−
anj) satisfy

lim
n→∞

‖ωn+1‖
1

n+1

K = cap(K);

equivalently, the subharmonic functions

un(z) :=
1

n+ 1
log

|ωn+1(z)|
‖ωn+1‖K

converge locally uniformly to gK on C \K.
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For a survey of some results in the several variable case, we refer the reader to [BBCL], [Bl3]
and [BlL1]. We outline the elementary positive results. Let e1, . . . , emn

form a basis for Pn. Given
An = {an1, . . . , anmn

} ⊂ K we form the generalized Vandermonde determinant

Vn(An) := det[ei(anj)]i,j=1,...,mn
.

If Vn(An) 6= 0, we can form the polynomials

lnj(z) :=
Vn(an1, . . . , z, . . . , anmn

)

Vn(An)
, j = 1, . . . ,mn

satisfying lnj(ani) = δji. We call

Λn := sup
z∈K

mn∑

j=1

|lnj(z)|

the n-th Lebesgue constant for K,An. For f defined on K,

(Lnf)(z) :=

mn∑

j=1

f(anj)lnj(z)

is the Lagrange interpolating polynomial for f at the points An. We say that K is determining
for

⋃Pn if whenever h ∈ ⋃Pn satisfies h = 0 on K, it follows that h ≡ 0. For these sets we can
find point sets An for each n with Vn(An) 6= 0. We have the following elementary result.

Proposition. Let K be determining for
⋃Pn and let An ⊂ K be sets of points satisfying

Vn(An) 6= 0 for each n. Given f bounded on K, if lim supΛ
1/n
n = 1, then lim sup ‖f − Lnf‖1/n

K =

lim supd
1/n
n where

dn = dn(f,K) = inf{‖f − pn‖K : pn ∈ Pn}.

Proof. Fix ε > 0 and choose, for each n, a polynomial pn ∈ Pn with

‖f − pn‖1/n
K ≤ d1/n

n + ε.

Since pn ∈ Pn, we have Lnpn = pn and

‖f − Lnf‖K = ‖f − pn + Lnpn − Lnf‖K

≤ ‖f − pn‖K + Λn‖f − pn‖K = (1 + Λn)‖f − pn‖K .

Using the hypothesis lim supΛ
1/n
n = 1, we obtain the conclusion.

Let p(D) := p(∂/∂x1, . . . , ∂/∂xn) be an elliptic partial differential operator as at the end of
section 6, and let Ln be the vector space of polynomials q of degree at most n in N variables
which are solutions of the equation p(D)q = 0. The same proof shows: Let K ⊂ R

N be de-
termining for ∪nLn and let An ⊂ K satisfy Vn(An) 6= 0 for each n. Given f bounded on K, if

lim supΛ
1/n
n = 1, then lim sup ‖f −Lnf‖1/n

K = lim sup d
1/n
n . Here, we replace mn by m̃n := dimLn,

An = {an1, . . . , anm̃n
} ⊂ K and dn is defined just as before, but now with respect to Ln.
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Arrays of points {An}, n = 1, 2, . . . satisfying lim supΛ
1/n
n = 1 can be constructed by taking,

e.g., An to be a set of n-Fekete points for K: for each n, choose An ⊂ K so that

max
Xn⊂K

|Vn(Xn)| = |Vn(An)|.

Since |Vn(Xn)| is a continuous function on Kmn , such points exist. Moreover, from the definition

of Fekete points, ‖lnj‖K = 1 so that Λn ≤ mn. It is easy to see that limm
1/n
n = 1. The problem

is that in several variables these points are essentially impossible to construct. The first known

explicit example of an array {An}, n = 1, 2, . . . satisfying lim supΛ
1/n
n = 1 associated to a compact

set K ⊂ C
N , N > 1, has been recently discovered by Bos, et al [BCDVX]. The set K is the

unit square [−1, 1] × [−1, 1] in R
2. In this example, the Lebesgue constants have minimal possible

asymptotic growth: Λn = O([log n]2).
In CCV, for a non-polar compact set K ⊂ C, the normalized counting measures associated to

Fekete arrays satisfy

µn :=
1

n+ 1

n+1∑

j=1

δAnj
→ 1

2π
∆gK

in the weak∗-topology as measures. Here, ∆gK , the Laplacian of gK , is to be interpreted as a
positive distribution, i.e., a positive measure. Indeed, for any array {An}, n = 1, 2, . . . satisfying

lim supΛ
1/n
n = 1 the same conclusion holds (cf. [BBCL]). In SCV, for K ⊂ C

N nonpluripolar, there
is a conjecture that for Fekete arrays, the normalized discrete measures

µn :=
1

mn

mn∑

j=1

δAnj

converge weak-* to the Monge-Ampére measure µK := (ddcV ∗
K)N of the L-extremal function

V ∗
K . For a discussion of the complex Monge Ampére operator (ddc·)N , see the appendix. To this

date, nothing is known if N > 1. Some special situations, which really reduce to one-variable
problems, can be found in [GMS] and [BlL2].

A widely studied topic in classical approximation theory is the study of orthogonal polynomials.
Let µ be a positive Borel measure with compact support K = supp(µ) ⊂ C

N . Assume that
the set K is determining for ∪Pn. If N = 1, this just means that K contains infinitely many
points; for N > 1, K being nonpluripolar is sufficient (but not necessary). Then the standard
basis monomials {eα(z) := zα1

1 · · · zαN

N } are linearly independent in L2(µ) and one can form the

orthonormal polynomials {pα(z, µ)}. For an introduction to this topic in C
N , we recommend Tom

Bloom’s paper [Bl5] which concerns the relationship between the so-called n-th root asymptotic
behavior of the orthonormal polynomials {pα(z, µ)} and the “pluripotential theory” of the set K.
This is presented in a systematic manner analogous to the one-variable study developed in the book
of H. Stahl and V. Totik [ST]. See also [Bl8].

The pair (K,µ) is said to have the Bernstein-Markov property if for each ε > 0 there exists
a positive constant M = M(ε) such that

‖p‖K ≤M(1 + ε)deg p‖p‖L2(µ)

for all polynomials p = p(z). For an L-regular compact set K, such measures always exist; e.g.,
the Monge-Ampère measure µK = (ddcVK)N (this is the Laplacian ∆gK if N = 1). One can even
find such a measure µ which is rather “sparse” in the sense that there exists a countable subset
E ⊂ K with µ(E) = µ(K). Returning to the setting of the Bernstein-Walsh theorem, given such a
measure, best L2(µ)-approximants to f ∈ C(K) have optimal behavior.



Approximation in C
N 121

Proposition. Let K be a polynomially convex L-regular compact set in C
N and let µ be a

measure supported on K such that (K,µ) satisfies the Bernstein-Markov property. If f ∈ C(K)
satisfies lim supn→∞ dn(f,K)1/n = ρ < 1, and if {pn} is a sequence of best L2(µ)-approximants to

f , then lim supn→∞ ‖f − pn‖1/n
K = ρ.

The proof follows trivially from the fact that if ρ < r < 1 and {qn} are polynomials with
‖f − qn‖K ≤Mrn for some M (independent of n), then

‖f − pn‖L2(µ) ≤ ‖qn − f‖L2(µ) ≤ ‖qn − f‖Kµ(K)1/2 ≤Mrnµ(K)1/2.

For simplicity we take µ(K) = 1. Then we have ‖pn − pn−1‖L2(µ) ≤ Mrn(1 + 1/r) which shows
that po +

∑∞
n=1(pn − pn−1) converges to f in L2(µ) and pointwise µ-a.e. to f on K. By the

Bernstein-Markov property, for each ε < 1/r − 1 there exists M̃ > 0 with

‖pn − pn−1‖K ≤ M̃(1 + ε)n‖pn − pn−1‖L2(µ) ≤ M̃ [(1 + ε)r]nM(1 + 1/r)

showing that po +
∑∞

n=1(pn − pn−1) converges uniformly to a continuous function g on K (holo-
morphic on the interior of K). Since f and g are continuous and g = f µ-a.e. on K, g = f on K.
Then

‖f − pn‖K = ‖
∞∑

k=n+1

(pk − pk−1)‖K ≤ M̃ [(1 + ε)r]n+1M
(1 + 1/r)

[1 − (1 + ε)r]

showing that lim supn→∞ ‖f −pn‖1/n
K ≤ (1+ε)r. Again, a similar result holds in the elliptic partial

differential operator case if K ⊂ R
N .

10 Kergin interpolation

A more promising type of interpolation procedure has been successfully applied to many approxima-
tion problems by Tom Bloom and his collaborators. A natural extension of Lagrange interpolation
to R

s, s > 1 was discovered by P. Kergin (a student of Bloom) in his thesis. Indeed, Kergin inter-
polation acting on ridge functions (a univariate function composed with a linear form) is Lagrange
interpolation. The Kergin interpolation polynomials generalize to the case of Cm functions in R

N

both the Lagrange interpolation polynomials and those of Hermite.
As brief motivation, given f ∈ Cm([0, 1]), say, and given m+ 1 points t0 < · · · < tm ∈ [0, 1], if

one constructs the Lagrange interpolating polynomial Lmf for f at these points, then there exist
(at least) m−1 points between pairs of successive tj at which f ′ and (Lmf)′ agree; then there exist
(at least) m− 2 points between triples of successive tj at which f ′′ and (Lmf)′′ agree, etc. Given

a set A = [A0, A1, . . . , Am] ⊂ R
N of m+ 1 points and f a function of class Cm on a neighborhood

of the convex hull of these points, there exists a unique polynomial KA(f) = KA(f)(x1, . . . , xN ) of
total degree m such that KA(f)(Aj) = f(Aj), j = 0, 1, . . . ,m, and such that for every integer r,
0 ≤ r ≤ m−1, every subset J of {0, 1, . . . ,m} with cardinality equal to r+1, and every homogeneous
differential operator Q of order r with constant coefficients, there exists ξ belonging to the convex
hull of the (Aj), j ∈ J , such that Qf(ξ) = QKA(f)(ξ). In [Bl1], Bloom gives a proof of this result
by using a formula due to Micchelli and Milman [MM] which gives an explicit expression for KA(f).
If f = u+ iv is holomorphic in a convex region D in C

N , and if A = [A0, A1, . . . , Am] ⊂ D ⊂ C
N =

R
2N , then we can construct KA(u) and KA(v). It turns out (cf. [Bo2]) that KA(u) + iKA(v) is a

holomorphic polynomial.
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An alternate description, which we give in the holomorphic setting, is as follows (cf. [BC2]).
Let D be a C-convex domain in C

N , i.e., the intersection of D with any complex line is connected
and simply connected. Note that in R

N this is the same condition as convexity if we replace
“complex line” by “real line.” For any set A = [A0, . . . , Ad] of (not necessarily distinct) d + 1
points in D there exists a unique linear projector KA : O(D) → Pd (recall that O(D) is the space
of holomorphic functions on D and Pd is the space of polynomials of N complex variables of degree
less than or equal to d) such that

(i) KA(f)(Aj) = f(Aj) for j = 0, · · · , d,
(ii) KA(g ◦ λ) = Kλ(A)(g) ◦ λ for every affine map λ : C

N → C and g ∈ O(λ(D)), where λ(A) =
(λ(A0), . . . , λ(Ad)),

(iii) KA is independent of the ordering of the points in A, and
(iv) KB ◦ KA = KB for every subsequence B of A.

The operator KA is called the Kergin interpolating operator with respect to A.
Set Kd := KAd

with Ad = [Ad0, . . . , Add] and Adj in a compact subset K of D ⊂ C
N for

every j = 0, . . . , d and d = 1, 2, 3, . . .. Under what conditions on the array {Ad}d=1,2,... is it true
that Kd(f) converges to f uniformly on K as d → ∞ for every function f holomorphic in some
neighborhood of D̄? Bloom and Calvi [BC2] attacked this problem with the aid of an integral
representation formula for the remainder f −Kd(f) proved by M. Andersson and M. Passare [AP].

Their solution reads as follows. Assume that the measures µd = (d + 1)−1
∑d

j=0 δAdj
converge

weak-* as d → ∞ to a measure µ. In one variable, the answer comes from potential theory: one
considers the logarithmic potential

Vµ(u) :=

∫

K

log |u− t|dµ(t)

and the required condition is that

{u ∈ C : Vµ(u) ≤ sup
K
Vµ} ⊂ D.

For N > 1, given a linear form p : C
N → C, define µp = p∗µ as the push-forward of µ to C via p,

i.e., for f ∈ C0(C),

µp(f) :=

∫

C

fdµp = µ(f ◦ p) :=

∫

CN

(f ◦ p)dµ.

Set

Ψµ(p, u) := µp(log |u− ·|) =

∫

C

log |u− ζ|dµp(ζ),

and let Mµ(p) be the maximum of u 7→ Ψµ(p, u) on p(K). If D has C2 boundary and {u ∈ C :

Ψµ(p, u) ≤Mµ(p)} ⊂ p(D) for every linear form p on C
N , then Kd(f) converges to f uniformly on

K as d→ ∞ for every function f holomorphic in some neighborhood of D̄.
We call an array {Ad}d=1,2,... extremal for K if Kd(f) converges to f uniformly on K for

each f holomorphic in a neighborhood of K. In the setting of subsets K of R
N , Bloom and Calvi

proved the following striking result.

Theorem ([BC3]). Let K ⊂ R
N , N ≥ 2, be a compact, convex set with nonempty interior.

Then K admits extremal arrays if and only if N = 2 and K is the region bounded by an ellipse.

For the Andersson-Passare remainder formula one needs an integral formula with
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1. a holomorphic kernel; moreover, one with
2. a kernel that is the composition of a univariate function with an affine function.

Together with property (ii) of the Kergin interpolating operator, this allows a reduction of the
multivariate problem to a univariate setting.

For a, b ∈ C
N , we write 〈a, b〉 :=

∑N
j=1 ajbj . Let D ⊂ C

N be a bounded domain with smooth
boundary and fix N functions wj(ζ), j = 1, . . . , N which are defined and smooth on ∂D and satisfy

〈w(ζ), ζ − z〉 =

N∑

j=1

wj(ζ)(ζj − zj) 6= 0 (28)

for all z ∈ D and ζ ∈ ∂D. We give examples of such wj below. Define

Ω(s, t) :=
(N − 1)!

(2πi)N

N∑

j=1

(−1)j−1tj
〈s, t〉N dt[j] ∧ ds.

Here dt[j] = dt1 ∧ · · · ∧ d̂tj ∧ · · · ∧ dtN (omit dtj) and ds = ds1 ∧ · · · ∧ dsN . Note that for fixed z,
Ω(ζ − z, ζ̄ − z̄) is simply the Bochner-Martinelli kernel

ωBM (ζ − z) :=
(N − 1)!

(2πi)N

N∑

j=1

(−1)j−1(ζ̄j − z̄j)

|ζ − z|2N
dζ̄[j] ∧ dζ

which is used in the Bochner-Martinelli formula (24) from section 7. If f ∈ O(D)∩C(D̄), we have
the following generalization of (24):

f(z) =

∫

∂D

f(ζ)Ω(ζ − z, w(ζ))

=
(N − 1)!

(2πi)N

∫

∂D

f(ζ)

[
∑N

j=1 wj(ζ) · (ζj − zj)]N
·

N∑

j=1

(−1)j−1wj(ζ)dw[j] ∧ dζ (29)

for z ∈ D. Note here dw[j] = dw1 ∧ · · · ∧ ˆdwj ∧ · · · ∧dwN ; thus it is the (0, 1)−piece of each 1−form
dwj = dwj(ζ) that is important. This is known as a Cauchy-Fantappiè-Leray (CFL) formula.
Weinstock’s proof of Theorem (PSW) in section 8 hinged on a judicious choice of the wj ’s. The
Henkin, Kerzman and Lieb results mentioned in section 7 also utilize CFL-type kernels.

Let D = {ζ ∈ C
N : ρ(ζ) < 0} where ρ ∈ C1(D̄) with dρ 6= 0 on ∂D. Suppose that at each

point ζ ∈ ∂D the complex tangent plane T C
p (∂D) lies outside of D, i.e.,

N∑

j=1

∂ρ

∂ζj
(ζ) · (ζj − zj) 6= 0

for ζ ∈ ∂D and z ∈ D. Such a domain is called lineally convex; convex domains are special
examples. In the smoothly bounded category, lineally convex domains are the same as C−convex
domains (cf. [APS], Chapter 2). The functions

wj(ζ) =
∂ρ

∂ζj
(ζ)
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satisfy (28) and we obtain the following special case of the CFL formula (29):

f(z) =
(N − 1)!

(2πi)N

∫

∂D

f(ζ)

[
∑N

j=1
∂ρ
∂ζj

(ζ) · (ζj − zj)]N
·

N∑

j=1

∂ρ

∂ζj
(ζ)dζ̄[j] ∧ dζ. (30)

(see [Sha], chapter III for details). For example, if D is the unit ball and ρ(ζ) =
∑N

j=1 ζj ζ̄j − 1, we

have wj(ζ) = ζ̄ and we get

f(z) =
(N − 1)!

(2πi)N

∫

∂D

f(ζ)

[1 − ∑N
j=1 ζ̄jzj ]N

·
N∑

j=1

ζ̄jdζ̄[j] ∧ dζ.

Let’s write ρ′(ζ) := ( ∂ρ
∂ζ1

, . . . , ∂ρ
∂ζN

). The Andersson-Passare remainder formula reads as follows.

Theorem ([AP]). Let D = {z ∈ C
N : ρ(z) < 0} be a C−convex domain with C2-boundary and

let f ∈ O(D) ∩ C(D̄). Let p0, . . . , pd be d+ 1 points in D. Then

(f −Kdf)(z) =
1

(2πi)N

∫

∂D

∑

|α|+β=N−1

( d∏

j=0

〈ρ′(ζ), z − pj〉
〈ρ′(ζ), ζ − pj〉

)

× f(ζ)∂ρ(ζ) ∧ (∂̄∂ρ(ζ))N−1

[
∏d

j=0〈ρ′(ζ), ζ − pj〉αj ]〈ρ′(ζ), ζ − z〉β+1
(31)

for z ∈ D where α = (α0, . . . , αd) is a multiindex and β is a nonnegative integer.

Here, ∂̄∂ρ is a (1, 1)-form and

(∂̄∂ρ)N−1 = ∂̄∂ρ ∧ · · · ∧ ∂̄∂ρ (N − 1 times).

Thus ∂ρ(ζ) ∧ (∂̄∂ρ(ζ))N−1 is an (N,N − 1)-form. Equation (31) follows from (30) in a manner
analogous to that of obtaining the Hermite Remainder Formula (26) from the Cauchy Integral
Formula and an explicit formula for the remainder between the Cauchy kernel and its Lagrange
interpolant, formula (27). One explicitly computes the Kergin interpolant of




N∑

j=1

∂ρ

∂ζj
(ζ) · (ζj − zj)

N



−1

,

the portion of the CFL kernel depending on the z-variables, using the fact that this is the compo-
sition of a univariate function with an affine function on C

N .
Bloom and Calvi [BC1] also considered what happens to multivariate Lagrange (or Hermite)

interpolants Ldf to a given function f of some minimal smoothness fixing the degree d and letting
the interpolation points coalesce. They give both a geometric condition and an algebraic condition
sufficient for the interpolants to converge to the Taylor polynomial of the function at the point of
coalescence. The proof makes an interesting use of Kergin interpolation.

There has been lots of work done in the holomorphic category; for results on Kergin interpola-
tion of entire functions, see [Bl2] and [Bl4]. We finish this section with an interesting “real” result.
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The nature and definition of Kergin interpolants requires Cn smoothness of a real-valued function
f in order to construct an interpolant to f associated with n+ 1 points. Bos and Waldron [BW]
have observed that for n+ 1 points in R

N in general position, the Kergin polynomial interpolant
of Cn functions may be extended to an interpolant on all functions of class CN−1. In particular,
in R

2 one can construct Kergin interpolants of all degrees, provided points are in general position,
for any C1 function. Using (n+ 1)-st “roots of unity” An on the unit circle in R

2, Bos and Calvi
[BC] proved that for any f ∈ C2(U), where U is a neighborhood of the closed unit disk K in R

2,
limd→∞ ‖f−KAn

(f)‖K = 0. This is a natural generalization of the analogous fact for C 1-functions
on the interval using Lagrange interpolants at the Chebyshev nodes.

11 Rational approximation in C
N

Suppose f is holomorphic in a neighborhood of the origin in C
N . We say that a sequence r1, r2, . . .

of rational functions (with the degree of rk not greater than k) rapidly approximates f if the
kth root of |f − rk| converges to zero in measure. Let R0 be the class of all f that admit a rapid
approximation near the origin. If N = 1 Sadullaev [Sa2] characterized the class R0 in terms of
Taylor coefficients.

Theorem (R0). Let f(z) =
∑∞

k=0 akz
k be holomorphic in a neighborhood of the closed unit disk

in C. Define
Aj1,...,jk

:= |det[ajn+m]n=1,...,k; m=0,...,k−1|

and Vk := supj1,...,jk
Aj1,...,jk

. Then f ∈ R0 if and only if limk→∞ V
1/k2

k = 0.

Sadullaev used this condition to show that a holomorphic function f in a neighborhood of the
origin in C

N for N > 1 is rapidly approximable if and only if its restriction to every complex line
L through the origin is rapidly approximable. The idea of the only if direction is very simple and
utilizes Hartogs series, which we used back in section 3. Via a preliminary complex-linear trans-
formation, we may assume f ∈ R0(CN ) is holomorphic in a neighborhood of the unit polydisk and
that L = {(z′, zN ) := (z1, . . . , zN−1, zN ) : z′ = 0}. We want to show that g(zN ) := f(0, . . . , 0, zN )
is in R0(L). We expand f in a Hartogs series

f(z) =

∞∑

j=0

aj(z
′)zj

N .

We get a sequence of functions Vk(z′) defined in the closed polydisk

Ū ′ := {z′ := (z1, . . . , zN−1) : |zj | ≤ 1}

in C
N−1. Since each Vk is the supremum of the moduli of holomorphic functions in U ′, each function

uk(z′) :=
1

k2
log Vk(z′)

is psh in U ′. Since f is holomorphic in a neighborhood of the unit polydisk in C
N the coefficients

aj are uniformly bounded on Ū ′; i.e., |aj(z
′)| ≤ C for z ∈ Ū ′ for each j = 0, 1, . . .. Hence the

sequence {uk} of psh functions is uniformly bounded above on Ū ′.
The key step is to show that

lim
k→∞

∫

U ′

uk(z′)dA(z′) = −∞.
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To be brief, this is achieved using the fact that f ∈ R0(CN ) together with estimates on the size of
certain sets involving a notion of a Chebyshev constant T (K) associated to a compact set K. This
Chebyshev constant will be defined in section 13. Since uk is psh in U ′, it is R

2N−2-subharmonic;
by the subaveraging property and the fact that {uk} is uniformly bounded above on Ū ′,

uk(0) ≤ 1

A(U ′)

∫

U ′

uk(z′)dA(z′) → −∞ as k → ∞.

This shows that limk→∞ Vk(0)1/k2

= 0; thus by Theorem (R0), g(zN ) = f(0, . . . , 0, zN ) ∈ R0(L).

Gonchar [G1] showed that if f is rapidly approximable then the maximal region to which f
continues analytically is single-sheeted and the rapid approximation persists in this region. Tak-
ing this a step further, Sadullaev [Sa2] showed that every holomorphic function on a domain D is
rapidly approximable if and only if the complement of the envelope of holomorphy of D is a pluripo-
lar set. In this setting, the envelope of holomorphy D̃ of D is the smallest domain of holomorphy
containing D. In particular, all g ∈ O(D) extend holomorphically to D̃.

We remark that Bloom proved that rapid convergence in measure of a sequence {rn} of rational
functions to a holomorphic function f on an open set Ω ⊂ C

N implies rapid convergence in relative
capacity (this will also be defined in section 13) on the natural domain of definition of f . This has
the consequence that for a meromorphic function f on C

N which is holomorphic on a neighborhood
of the origin the Gonchar-Padé approximants {πn(z, f, λ)} converge rapidly in capacity to f . We
refer the reader to [Bl7] for definitions and details.

In [C1], Chirka proved a “meromorphic” version of the Bernstein-Walsh theorem. We first
describe the one-variable result. For an open set D ⊂ C and a nonnegative integer m, let Mm(D)
denote the class of meromorphic functions in D which have at most m poles (counted with mul-
tiplicities). Recall for a compact set K in C

N , N ≥ 1, and R > 1, we write DR := {z ∈ C
N :

VK(z) < logR}. For f ∈ C(K) and nonnegative integers m and n, let

rm,n = rm,n(f,K) := inf{‖f − p/q‖K : p ∈ Pn, q ∈ Pm}.

The following result is due to Gonchar [G2]; a special case was proved earlier by Saff [S].

Theorem (RBW1). Let K ⊂ C be a regular compact set and let R > 1. Given a continuous
function f : K → C and a fixed integer m ≥ 0, the following conditions are equivalent:

(i) lim supn→∞(rm,n)1/n ≤ 1/R;

(ii) there exists a function F ∈ Mm(DR) with F |K = f .

If N > 1, the definitions of Mm(D) and the approximation numbers rm,n(f,K) need to be
modified. We define Mm(D) to be the class of all functions in D of the form h/qm where h ∈ O(D)
and qm ∈ Pm.

Theorem (RBWN). Let K ⊂ C
N be compact and L−regular and let R > 1. Given a continuous

function f : K → C and a fixed integer m ≥ 0, for n ≥ 1 let

r∗m,n = r∗m,n(f,K) := inf{‖qf − p‖K : p ∈ Pn, q ∈ Pm, ‖q‖K = 1}.

The following conditions are equivalent:

(i) lim supn→∞(r∗m,n)1/n ≤ 1/R;
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(ii) there exists a function F ∈ Mm(DR) with F |K = f .

The proof of (ii) implies (i) is immediate from the standard Bernstein-Walsh theorem, Theorem
(BWN) in section 5. Let f = h/gm ∈ Mm(DR). Since h = fgm ∈ Om(DR), by Theorem (BWN)
there exists a sequence {pn} of polynomials, pn ∈ Pn, with

lim sup
n→∞

‖fgm − pn‖1/n
K ≤ 1/R

which gives (i). The other implication is much deeper. Much in the spirit of Sadullaev’s proof
of Theorem (R0), Chirka needs SCV-type capacity estimates as well as univariate arguments and
techniques to achieve his goal.

Chirka constructs some interesting examples in [C1] to explain the difference between Theorems
(RBW1) and (RBWN). The first example utilizes the Hartogs triangle from section 7. Precisely,
let

K := D̄ = {(z, w) ∈ C
2 : |z| ≤ |w| ≤ 1}

be the closure of the Hartogs triangle D = {(z, w) ∈ C
2 : 0 < |z| < |w| < 1}. The polynomial hull

K̂ is the closed unit bidisk:

K̂ = ∆̄ × ∆̄ = {(z, w) ∈ C
2 : |z| ≤ 1, |w| ≤ 1}

since K ⊂ ∆̄ × ∆̄; K contains the torus T 2 = ∂∆ × ∂∆; and the polynomial hull of the torus T 2

is clearly the closed bidisk ∆̄ × ∆̄. Thus the L−extremal function VK coincides with that of the
bidisk:

VK(z, w) = max[log+ |z|, log+ |w|]

so that the sublevel sets DR are larger bidisks. In particular, the set K is L−regular so that we
may apply Theorem (RBWN) to the function f(z, w) := z2/w (recall that f ∈ O(D) ∩C(K)). By
its very definition, f ∈ M1(DR) for all R > 1 so that

lim sup
n→∞

(r∗1,n)1/n ≤ 1/R

for all R > 1 and hence (r∗1,n)1/n → 0. However, we cannot even uniformly approximate f on K

by a rational function p/q with q 6= 0 on K, for p/q ∈ O(D̄) and, as we saw in section 7, f is not
uniformly approximable by functions in O(D̄). Thus for each m the sequence {rm,n} does not tend
to zero.

In this example, the set K is not polynomially convex. However, Chirka constructs another
example in which the set K is a small ball {z ∈ C

N : |z| ≤ δ} (and hence K̂ = K). He constructs
a function f = h/gm ∈ Mm(DR) for certain m > 1 and R > 1 with the property that there does
not exist a sequence {pn/qm} with pn ∈ Pn and qm ∈ Pm so that

lim sup
n→∞

‖f − pn/qm‖1/n
K ≤ 1/R.

The problem is that the “pole-set” of f in this example cannot be written in the form {z ∈ DR :
q(z) = 0} for a polynomial q (in this sense, the “pole-set” is “nonalgebraic”). On the other hand,
since h = fgm ∈ Om(DR), we do have lim supn→∞(r∗m,n)1/n ≤ 1/R.
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In [C2] Chirka utilized Jacobi series to prove holomorphic extension results. As a sample, let
g = p/q be a rational function in C. Let Gr be a connected component of the set {z : |g(z)| ≤ r}
(Gr is a rational lemniscate). If f is holomorphic in a neighborhood of Ḡr then

F (z, w) :=
1

2πi

∫

∂Gr

f(ζ)

g(ζ) − w
· g(ζ) − g(z)

ζ − z
dζ

is a holomorphic function on Gr × {|w| < r} which satisfies F (z, g(z)) = f(z) (from the Cauchy
integral formula). Thus we can expand F in a Taylor series in w and set w = g(z) to obtain a
Jacobi series for f :

f(z) :=

∞∑

k=0

Ck(z)[g(z)]k

where

Ck(z) =
1

2πi

∫

∂Gr

f(ζ) · g(ζ) − g(z)

[g(ζ)]k+1(ζ − z)
dζ

are rational functions with poles at the poles of g(z). The following result is proved in [C2].

Theorem. Let f be holomorphic in the polydisk U ′×{|zN | < r} where U ′ is a polydisk in C
N−1.

Suppose for each fixed point p ∈ E ⊂ U ′, where E is nonpluripolar in C
N−1, f(p, ·) extends to

a function holomorphic in C = CzN
except perhaps for a finite number of singularities. Then f

extends holomorphically to (U ′ × C) \ A where A is an analytic variety.

Far-reaching generalizations of these “extension” results exist throughout the literature. For
a start, consult [Iv].

12 Markov inequalities

The classical Bernstein-Markov inequalities say that for p : R → R a real polynomial such that
‖p‖[−1,1] = supx∈[−1,1] |p(x)| ≤ 1,

∣∣∣∣∣
p′(x)√

1 − p2(x)

∣∣∣∣∣ ≤ (deg p)
1√

1 − x2
, x ∈ (−1, 1);

and, for a uniform estimate,
‖p′‖[−1,1] ≤ (deg p)2‖p‖[−1,1].

Equivalently, for a trigonometric polynomial t = t(θ) on the unit circle T ,

sup
θ

|t′(θ)| ≤ (deg t) sup
θ

|t(θ)|. (32)

These estimates are useful in inverse theorems in univariate approximation theory. More generally,
let K be a compact set in C

N . We say that K satisfies a Markov inequality with exponent
r if there exist constants r ≥ 1 and M > 0 depending only on K such that

‖ ∂p
∂zj

‖K ≤M(deg p)r‖p‖K , j = 1, . . . , N

for all polynomials p. Convex sets in R
N ⊂ C

N satisfy a Markov inequality with r = 2 (cf.
[BP]) while a closed Euclidean ball in C

N satisfies a Markov inequality with exponent r = 1.
This last statement follows from the fact that (recall section 5) VK(z) = max[0, log |z − a|/R] if
K = {z : |z − a| ≤ R} so that VK = V ∗

K is Lipschitz, together with the following observation:
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Proposition. Let K ⊂ C
N satisfy a Hölder continuity property (HCP):

exp[VK(z)] ≤ 1 +Mδm if dist(z,K) ≤ δ ≤ 1

where m,M > 0 are independent of δ > 0. Then K satisfies a Markov inequality with exponent
r = 1/m.

Proof. Fix a polynomial p of degree n, say, and let ‖ ∂p
∂zj

‖K = | ∂p
∂zj

(a)|. Applying Cauchy’s

inequalities on a polydisk P centered at a ∈ K of (poly-)radius R > 0 (recall the Cauchy integral
formula (3)), we have

‖ ∂p
∂zj

‖K ≤ ‖p‖P /R.

From the Bernstein-Walsh inequality (19) we have

‖p‖P ≤ ‖p‖K exp[n sup
P
VK ] ≤ ‖p‖K(1 +MRm)n.

Thus

‖ ∂p
∂zj

‖K ≤ ‖p‖K
(1 +MRm)n

R
.

Choosing R = 1/n1/m gives the result.

To this date, there are no known examples of compact sets in C
N which satisfy a Markov

inequality but which do not satisfy (HCP).
One of the most beautiful applications of multivariate Markov inequalities is due to Plesniak

[Pl1]. Recall that a C∞ function on a compact set E ⊂ R
N is a function f : E → R such that there

exists f̃ ∈ C∞(RN ) with f̃ |E = f . We write f ∈ C∞(E). We say that E is C∞-determining if
g ∈ C∞(RN ) with g|E = 0 implies Dαg|E = 0 for all multiindices α. Plesniak [Pl1] has shown the
following.

Theorem ([Pl1]). Let E ⊂ R
N be C∞-determining. Then E satisfies a Markov inequality if and

only if there is a continuous linear extension operator

L : (C∞(E), τ1) → (C∞(RN ), τ0)

such that L(f)|E = f for each f ∈ C∞(E).

Here τ0 is the standard Fréchet space topology on C∞(RN ) generated by the seminorms
{‖f̃‖d

K := max|α|≤d ‖Dαf̃‖K} where K ranges over compact subsets of R
N and d = 0, 1, . . .; and

τ1 is the quotient topology on C∞(RN )/I(E) where I(E) := {f ∈ C∞(RN ) : f |E = 0}. This is
proved in [Pl1] using Lagrange interpolation operators corresponding to Fekete points (see section
9): the operator L is of the form

L(f) := u1L1(f) +

∞∑

d=1

ud(Ld+1(f) − Ld(f))

where ud are standard cut-off functions and Ld(f) is the Lagrange interpolating polynomial of f
at a set of d-Fekete points of E.
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There is an extensive literature on Markov inequalities. Baran and Plesniak and their students
have produced many of the results related to multivariate approximation; cf. [Ba1], [Ba2], [Ba3],
[Ba4]; and see [Pl2] for a nice survey article. Markov inequalities have been used to construct
natural pseudodistances on compact subsets of R

N (see [BLW]). As a final application, observe that
(32) can be interpreted in the following manner: setting x = cos θ and y = sin θ, for any bivariate
polynomial p(x, y) on R

2, the unit tangential derivative Dτp(x, y) on the unit circle T ⊂ R
2 satisfies

|Dτp(x, y)|T ≤ (deg p)‖p‖T , (x, y) ∈ T.

Of course no estimate on normal derivatives is possible as there exist nonzero polynomials (e.g.,
p(x, y) = x2 + y2 − 1) which vanish on T . Note that T is an algebraic submanifold of R

2. Using
a deep result of Sadullaev [Sa3] on the L-extremal function of compact subsets of algebraic sets in
C

N , the following characterization of algebraicity is known:

Theorem ([BLMT]). Let K be a smooth, m-dimensional submanifold of R
N without boundary

where 1 ≤ m ≤ N −1. Then K is algebraic if and only if K satisfies a tangential Markov inequality
with exponent one: there exists a positive constant M depending only on K such that for all
polynomials p and all unit tangential derivatives Dτ ,

|Dτp(x1, . . . , xN )| ≤M(deg p)‖p‖K , (x1, . . . , xN ) ∈ K.

Note that the finite-dimensionality of the vector space of polynomials of degree at most n
implies that there is a constant Cn depending on n and K with

|Dτp(x1, . . . , xN )| ≤ Cn‖p‖K , (x1, . . . , xN ) ∈ K

for all such polynomials p. The content of the above theorem is that one can take Cn = Mn where
M depends only on K. Indeed, a stronger version of the “if” implication is known: if K satisfies a
tangential Markov inequality

|Dτp(x1, . . . , xN )| ≤M(deg p)r‖p‖K , (x1, . . . , xN ) ∈ K

with exponent r < (m+ 1)/m, then K is algebraic. We refer the reader to [BLMT] for details.

13 Appendix on pluripolar sets and extremal psh functions

In CCV, polar sets play an essential role. A subset E ⊂ C is polar if there exists a subharmonic
function u defined in a neighborhood of E with E ⊂ {z : u(z) = −∞}; whereas a subset E ⊂ C

N

is pluripolar if there exists a plurisubharmonic function u defined in a neighborhood of E with
E ⊂ {z : u(z) = −∞}. The neighborhood may be taken to be all of C

N . Apriori, there is a
local notion in each case: E is locally (pluri-)polar if for each point z ∈ E there exists an open
neighborhood U of z and a (pluri-)subharmonic function u in U such that

E ∩ U ⊂ {z ∈ U : u(z) = −∞}.

It is easy if N = 1 and much harder if N > 1 to verify that the local notions are equivalent to the
global ones. For N > 1 this was first proved by Josefson [J]. We remark that since the notion of psh
function makes sense on a complex manifold M (see section 3), the notion of a locally pluripolar
set in M can be defined.
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1. Nonpluripolar sets can be small: Take a non-polar Cantor set E ⊂ R ⊂ C of Hausdorff
dimension 0 (for the idea behind the construction of such sets, see [Ra] section 5.3). Then
E×· · ·×E is nonpluripolar in C

N (in general, E1×· · ·×Ej ⊂ C
m1×· · ·×C

mj is nonpluripolar in
C

m1+···+mj if and only if Ek ⊂ C
mk is nonpluripolar in C

mk for k = 1, . . . , j) and has Hausdorff
dimension 0.

2. Pluripolar sets can be big: A complex hypersurface S = {z : f(z) = 0} associated to a
holomorphic function f is a pluripolar set (take u = log |f |) which has Hausdorff dimension
2N − 2. Recall that a psh function is, in particular, subharmonic in the R

2N sense; hence a
pluripolar set is Newtonian polar and thus the Hausdorff dimension of a pluripolar set cannot
exceed 2N − 2 (cf. [Ca], section IV).

3. Size doesn’t matter: In C
2, the totally real plane R

2 = {(z1, z2) : =z1 = =z2 = 0} is non-
pluripolar (why?) but the complex plane C = {(z1, 0) : z1 ∈ C} is pluripolar (take u = log |z1|).
Also, there exist C∞ arcs in C

N which are not pluripolar (cf. [DF]); while such a real-analytic
arc must be pluripolar (why?).

One can easily construct examples of nonpluripolar sets E ⊂ C
N which intersect every affine

complex line in finitely many points (hence these intersections are polar in these lines). Indeed,
take

E := {(z1, z2) ∈ C
2 : =(z1 + z2

2) = <(z1 + z2 + z2
2) = 0}.

Then for any complex line L := {(z1, z2) : a1z1 + a2z2 = b}, a1, a2, b ∈ C, E ∩ L is the intersection
of two real quadrics and hence consists of at most four points. However, E is a totally real, two-
(real)-dimensional submanifold of C

2 and hence – as is the case with R
2 = R

2 + i0 ⊂ C
2 in 3. –

is not pluripolar. Thus pluripolarity cannot be detected by “slicing” with complex lines. In this
example, E intersects the one-(complex)-dimensional analytic variety A := {(z1, z2) : z1 + z2

2 = 0}
in a nonpolar set. Nevertheless, one can construct a nonpluripolar set E in C

N , N > 1, which
intersects every one-dimensional complex analytic subvariety in a polar set [CLP].

In certain instances, however, slicing can detect pluripolarity. We define a set E ⊂ C
N to be

pseudoconcave if for each point p ∈ E there is a neighborhood U of p such that U \E is open and
pseudoconvex in C

N (see section 3). Canonical examples are zero sets of a holomorphic function, or,
more generally, zero sets of multiple-valued holomorphic functions; e.g., {(z1, z2) ∈ C

2 : z2
2 = z1} is

pseudoconcave. This notion is related to the work in section 11 with the class R0. Sadullaev [Sa1]
has shown the remarkable result that if E is a closed, pseudoconcave set in C

N \ {0}, then E is
pluripolar if and only if E ∩ L is polar in L for each complex line L passing through 0. Moreover,
for this class of pseudoconcave sets, pluripolarity is equivalent to R

2N -(Newtonian) polarity!
There are several distinct notions of capacities in SCV. Given a compact set K ⊂ C, we recall

the definition of the extremal psh function V ∗
K(z), the usc regularization of

VK(z) := max

{
0, sup

p

{
1

deg p
log |p(z)|

}}
.

The Siciak or Robin capacity of K is the number

c(K) := exp
(
− lim sup

|z|→∞

[V ∗
K(z) − log |z|]

)
.

Unlike in CCV, the limit (usually) does not exist. Indeed, the Robin function ρK := ρV ∗
K

(see
section 5) associated to V ∗

K provides information on the asymptotic behavior of this function on
complex lines through the origin.
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The quantity c(K) coincides with a Chebyshev constant T̃ (K) := limn→∞ M̃n(K)1/n where

M̃n(K) := inf{‖pn‖K : pn = p̂n + lower degree terms , ‖p̂n‖B̄ ≥ 1}

([Sa4], section 10). Here B̄ is the closed unit (Euclidean) ball. Other normalizations may be used
to define other Chebyshev constants. For example, defining

Mn(K) := inf{‖pn‖K : ‖pn‖B̄ ≥ 1},

the Chebyshev constant T (K) := limn→∞Mn(K)1/n coincides with exp
(
− supz∈B V

∗
K(z)

)
. Al-

though the numbers T (K) and T̃ (K) are, in general, different, they are comparable; i.e. for all
compact sets K, T (K) is bounded above and below by a constant multiple of T̃ (K). Note that the
subsets of Pn used to define Mn(K) and M̃n(K) are not multiplicative classes (as in the case of
univariate monic polynomials); thus an (elementary) argument is needed to verify the existence of
the limits T (K) and T̃ (K).

Next we give the definition of the transfinite diameter d(K). Details may be found in Zahar-
juta’s paper [Z1]. Let e1(z), . . . , ej(z), . . . be a listing of the monomials {ei(z) = zα(i) = zα1

1 · · · zαN

N }
in C

N indexed using a lexicographic ordering on the multiindices α(i) ∈ NN , but with deg ei = |α(i)|
nondecreasing. For ζ1, . . . , ζn ∈ C

N , let

V DM(ζ1, . . . , ζn) = |det[ei(ζj)]i,j=1,...,n|

and for a compact subset K ⊂ C
N let

Vn = Vn(K) := max
ζ1,...,ζn∈K

V DM(ζ1, . . . , ζn).

Define hd = #{i : deg ei ≤ d} and ld =
∑hd

i=1(deg ei). Then

d(K) := lim sup
d→∞

V
1/ld
hd

(33)

is the transfinite diameter of K.

If N = 1, it is well-known and trivial that the sequence {V 1/ld
hd

} is monotone decreasing and
hence has a limit; moreover, in this case, d(K) coincides with the logarithmic capacity of K and
the Chebyshev constant of K defined back in section 5. Zaharjuta [Z1] proved the highly nontrivial
result that the limit in (33) exists in the case when N > 1. In this setting the numbers c(K), T (K)
and d(K) are not generally equal; however it is the case that for K ⊂ C

N compact, K is pluripolar
if and only if c(K) = T (K) = d(K) = 0 (see [LT]).

There are several extremal psh functions in SCV. Recall the relative extremal function intro-
duced at the end of section 6: for E a subset of D, define

ω(z,E,D) := sup{u(z) : u psh in D, u ≤ 0 in D, u|E ≤ −1}.

The usc regularization ω∗(z,E,D) is called the relative extremal function of E relative to D.
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Proposition (ω). Either ω∗ ≡ 0 in D or else ω∗ is a nonconstant psh function in D. We have
ω∗ ≡ 0 if and only if E is pluripolar.

Proof. If ω∗(z0) = 0 at some point z0 ∈ D, then ω∗ ≡ 0 in D by the maximum principle. Hence
we can find a sequence zj → z0, zj ∈ D, with ω(zj , E,D) → 0. By subaveraging,

ω(zj , E,D) ≤ 1

vol(B(zj , r))

∫

B(zj ,r)

ω(z,E,D)dA(z)

for r sufficiently small so that B(zj , r) ⊂ D. We conclude that ω(z,E,D) = 0 a.e. in a neighborhood
of z0. Fix a point z′ with ω(z′, E,D) = 0 and take a sequence of psh functions uj in D with uj ≤ 0
in D, uj |E ≤ −1, and uj(z

′) ≥ −1/2j . Then u(z) :=
∑
uj(z) is psh in D (the partial sums form

a decreasing sequence of psh functions) with u(z ′) ≥ −1 (so u 6≡ −∞) and u|E = −∞; thus E is
pluripolar.

Conversely, if E is pluripolar, there exists u psh in D with u|E = −∞; since D is bounded we
may assume u ≤ 0 in D. Then εu ≤ ω(z,E,D) in D for all ε > 0 which implies that ω(z,E,D) = 0
at all points z ∈ D where u(z) 6= −∞. Since pluripolar sets have measure zero (why?), ω(z,E,D) =
0 a.e. in D and hence ω∗(z,E,D) ≡ 0 in D.

Using Proposition (ω), Bedford and Taylor [BT2] gave a simple proof of Josefson’s result that
locally pluripolar sets are globally pluripolar. Similar to this proposition, one can show that for
a bounded set E ⊂ C

N , V ∗
E ≡ +∞ if and only if E is pluripolar. As mentioned in section 1, a

nice introduction to pluripotential theory is the book of Klimek [K]. There is also a developing
theory of weighted pluripotential theory. We refer the reader to the book of Saff-Totik [SaT] for an
introduction to one-variable weighted potential theory in C. An introduction to the SCV setting
can be found in the appendix of [SaT] written by Tom Bloom (see also [BlL3]).

We remark that the quantity

C(E,D) := sup{
∫

E

(ddcu)N : u psh in D, 0 ≤ u ≤ 1 in D}

is called the relative capacity of E relative to D. The precise definition of this complex Monge-
Ampère operator (ddcu)N will be given in the next section. Alexander and Taylor [AT] proved the
following comparison between the relative capacity C(K,D) and the Chebyshev constant T (K) for
a compact set K:

Theorem ([AT]). Let K be a compact subset of the unit ball B ⊂ C
N . We have

exp
[
−A/C(K,B)

]
≤ T (K) ≤ exp

[
−(cN/C(K,B))1/N

]

where the right-hand inequality holds for all K ⊂ B and the left-hand inequality holds for all
K ⊂ B(0, r) := {z : |z| < r} where r < 1 and A = A(r) is a constant depending only on r.

Here, cN is a dimensional constant. As a corollary, Alexander and Taylor construct normalized
polynomials that are small where a given holomorphic function is small; or, more generally, where
a psh function is very negative:

Proposition ([AT]). Let u be a negative psh function in the unit ball B with u(0) ≥ −1. For
r < 1 and A > 1, let K be a compact subset of

{z ∈ C
N : |z| ≤ r, u(z) < −A}.
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Then there exists a sequence {pd} of polynomials with degpd ≤ d and ‖pd‖B = 1 such that

‖pd‖K ≤ exp
[
−C(A)1/Nd

]

where C depends only on r and N .

The proposition is proved in a much more complicated manner in [J]; there, Padé-type approximants
are constructed. This is the key ingredient in the original proof of Josefson’s theorem that locally
pluripolar sets are globally pluripolar.

14 Appendix on complex Monge-Ampère operator

For simplicity, we work in C
2 with variables (z, w). We use the notation d = ∂+ ∂̄ and dc = i(∂̄−∂)

where, for a C1 function u,

∂u :=
∂u

∂z
dz +

∂u

∂w
dw, ∂̄u :=

∂u

∂z̄
dz̄ +

∂u

∂w̄
dw̄

(recall section 7) so that ddc = 2i∂∂̄. For a C2 function u,

(ddcu)2 = 16
[ ∂2u

∂z∂z̄

∂2u

∂w∂w̄
− ∂2u

∂z∂w̄

∂2u

∂w∂z̄

] i
2
dz ∧ dz̄ ∧ i

2
dw ∧ dw̄

is, up to a positive constant, the determinant of the complex Hessian of u times the volume form
on C

2. Thus if u is also psh, (ddcu)2 is a positive measure which is absolutely continuous with
respect to Lebesgue measure. If u is psh in an open set D and locally bounded there, then (ddcu)2

is a positive measure in D (cf. [BT1]).
To see this, we first recall that a psh function u in D is an usc function u in D which is

subharmonic on components of D ∩ L for complex affine lines L. In particular, u is a locally
integrable function in D such that

ddcu = 2i
[ ∂2u

∂z∂z̄
dz ∧ dz̄ +

∂2u

∂w∂w̄
dw ∧ dw̄ +

∂2u

∂z∂w̄
dz ∧ dw̄ +

∂2u

∂z̄∂w
dz̄ ∧ dw

]

is a positive (1, 1) current (dual to (1, 1) forms); i.e., a (1, 1) form with distribution coefficients.
The derivatives are to be interpreted in the distribution sense and are actually measures; i.e., they
act on compactly supported continuous functions. Here, a (1, 1) current T on a domain D in C

2

is positive if T applied to iβ ∧ β̄ is a positive distribution for all (1, 0) forms β = adz + bdw with
a, b ∈ C∞

0 (D) (smooth functions having compact support in D). Writing the action of a current T
on a form ψ as 〈T, ψ〉, this means that

〈T, φ(iβ ∧ β̄)〉 ≥ 0 for all φ ∈ C∞
0 (D) with φ ≥ 0.

For a discussion of currents and the general definition of positivity, we refer the reader to Klimek
[K], section 3.3.

Following [BT1], we now define (ddcv)2 for a psh v in D if v ∈ L∞
loc(D) using the fact that ddcv

is a positive (1, 1) current with measure coefficients. First note that if v were of class C 2, given
φ ∈ C∞

0 (D), we have
∫

D

φ(ddcv)2 = −
∫

D

dφ ∧ dcv ∧ ddcv

= (exercise!) −
∫

D

dv ∧ dcφ ∧ ddcv =

∫

D

vddcφ ∧ ddcv
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since all boundary integrals vanish. The applications of Stokes’ theorem are justified if v is smooth;
for arbitrary psh v in D with v ∈ L∞

loc(D), these formal calculations serve as motivation to define
(ddcv)2 as a positive measure (precisely, a positive current of bidegree (2, 2) and hence a positive
measure) via

〈(ddcv)2, φ〉 :=

∫

D

vddcφ ∧ ddcv.

This defines (ddcv)2 as a (2, 2) current (acting on (0, 0) forms; i.e., test functions) since vddcv has
measure coefficients. We refer the reader to [BT1] or [K] (p. 113) for the verification of positivity
of (ddcv)2.

The next result shows that for a nonpluripolar compact set K ⊂ C
2, the Monge-Ampère mea-

sure (ddcV ∗
K)2 associated to the L-extremal function V ∗

K of K plays the role of the equilibrium
measure ∆gK associated to the Green function gK of a nonpolar compact set K ⊂ C. A plurisub-
harmonic function u in a domain D satisfying the property that for any D ′ relatively compact in
D, and any v psh in D̄′, if u ≥ v on ∂D′, then u ≥ v on D′, is called maximal in D. Bedford and
Taylor showed that for locally bounded psh u, u is maximal in D if and only if (ddcu)2 = 0 in D.
Thus, maximal psh functions are the “correct” analogue of harmonic functions in C. The following
result (cf. [BT2], Corollary 9.4) shows that V ∗

K is maximal outside of K̂.

Proposition. Let K be a nonpluripolar compact set in C
N . Then we have (ddcV ∗

K)N = 0 outside
of K.

Similarly, if D is a bounded open neighborhood of K, the relative extremal function satisfies
(ddcω∗(·,K,D))N = 0 in D \K.

15 A few open problems

Here are a few open problems.
1. (Section 6) Theorem ([A], [Bl2]) has a sharp version for balls; e.g., if K is the closed unit

ball of R
N , then f ∈ C(K) extends to be harmonic in the ball of radius R > 1 if and only

if lim supn→∞ dn(f,K)1/n ≤ 1/R (cf. [BL1]). For N > 2, are there compact sets other than
balls for which a sharp version of this theorem holds?

2. (Section 7) LetD be a smoothly bounded pseudoconvex domain. DoesD possess the Mergelyan
property if and only if there are pseudoconvex domains Dj with D̄ ⊂ Dj such that D̄ = ∩jDj?

3. (Section 8) Does there exist a compact, polynomially convex subset K of the unit sphere in
C

2 such that P (K) 6= C(K)?
4. (Section 9) For Fekete arrays on a nonpluripolar compact set K ⊂ C

N , N ≥ 2, do the normal-
ized discrete measures µn converge weak-* to the Monge-Ampére measure µK := (ddcV ∗

K)N of
the L-extremal function V ∗

K? Verify this for any single nonpluripolar compact set K! More
generally, is the conclusion true for arrays satisfying

lim sup
n→∞

Λ1/n
n ≤ 1?

5. (Section 10) Let K ⊂ R
N , N ≥ 3, be a compact, convex set with nonempty interior. Which

such sets K admit harmonic extremal arrays, i.e., arrays {Ad}d=1,2,... in K such that Kd(f)
converges to f uniformly on K for each f harmonic in a neighborhood of K?

6. (Section 12) If K ⊂ C
N satisfies a Markov inequality does K have property (HCP)? Is K

necessarily regular? If N > 1, is K necessarily nonpluripolar?
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