Séminaires et Congrès - 2 - pages 43-53

Séminaires et Congrès2

Algèbre non commutative, groupes quantiques et invariants Septième contact Franco-Belge, Reims, Juin 1995
J. Alev, G. Cauchon (Éd.)
Séminaires et Congrès 2 (1997), 304 pages

Division Algebras on ${\Bbb P}^2$ of Odd Index, Ramified Along a Smooth Elliptic Curve Are Cyclic
Michel Van den BERGH
Séminaires et Congrès 2 (1997), 43-53
Download : PS file / PDF file

Résumé :
The simplest non-trivial division algebras that can be constructed over a rational function field in two variables are those that ramify along a divisor of degree three. In this note we give a precise structure theorem for such division algebras. It follows in particular that they are cyclic if the ramification locus is singular or if the index is odd.

Class. math. : 16K20, 13A20


ISBN : 2-85629-052-3
Publié avec le concours de : Centre National de la Recherche Scientifique