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OPTIMAL RESULTS FOR THE TWO DIMENSIONAL

NAVIER-STOKES EQUATIONS WITH LOWER

REGULARITY ON THE DATA

by

Magnus Fontes & Eero Saksman

Abstract. — We establish existence and uniqueness of solutions in the anisotropic
Sobolev space H

1,1/2 to the two dimensional Navier-Stokes equations with data in
H

−1,−1/2. Our results give a new elementary proof for and extend some of recent

results of G. Grubb.

Résumé(Résultats optimaux pour les équations de Navier-Stokes endimension 2 avec des
données initiales peu régulières)

On établit l’existence et l’unicité des solutions dans l’espace de Sobolev anisotrope
H

1,1/2 pour les équations de Navier-Stokes en dimension 2 avec des données dans
H

−1,−1/2. Nos résultats donnent une preuve élémentaire nouvelle de résultats récents
de G. Grubb, tout en les complétant.

1. Introduction

Working with divergence free vectorfields, the Navier-Stokes equations take the

form

(1) ut − ∆xu + (u · ∇)u = f.

In two space dimensions it is known, since the pioneering works by J.Leray [LE],

O.A.Ladyzhenskaya [L1], [L2],[L3] and J.L.Lions and G.Prodi [LP], that under

suitable boundary conditions, (1) has a unique solution u ∈ L2(R, H1) for f ∈
L2(R, H−1).

Later on these results have been complemented in various ways. In a recent inter-

esting paper [G] G.Grubb gives general existence and uniqueness theorems for the

Navier-Stokes equations in scales of Lp-Sobolev, Bessel potential and Besov spaces,
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144 M. FONTES & E. SAKSMAN

using fairly complicated pseudo differential operator techniques. In two space dimen-

sions with zero initial data her results include that under suitable conditions, given

a source term f ∈ H−1,−1/2 there exists a unique solution u ∈ H1,1/2. However, in

order to obtain existence it is assumed in [G] that the data is small enough in norm.

In the present note we give an elementary proof of the existence and uniqueness in

the case of f ∈ H−1,−1/2 and u ∈ H1,1/2, without assuming smallness on the data.

Our approach is in the spirit of the seminal work by J.Leray which appeared in Acta

Mathematica in 1934, and it is based on the method of [F1], which turns out to be

adaptable also to this situation. We refer to Theorem 1 below for the precise statement

of our result. The main improvement in our result, compared to previously known

results, is the regularity gain of the extra half derivative in time for the solution, and

at the same time the corresponding wider range of possible irregularities for the source

term.

Additional motivation for reconsidering the case f ∈ H−1,−1/2 is provided by

the fact that the corresponding result is optimal in a certain sense. Namely, the

solution and the source spaces are in complete duality and, moreover, the difference

in the smoothness corresponds exactly to the order of the non-linear operator in the

respective variables.

An advantage of our approach is that it is completely elementary and self contained.

Moreover, it appears to be possible to generalize it to certain situations, where other

methods probably fail. For example our argument goes through unchanged if we

replace the Laplacian in (1) with a uniformly elliptic linear operator having measurable

coefficients (see the remark at the end of the paper).

We briefly mention some recent related results on the two-dimensional case. The

papers of H. Amann [A] and [A1] apply interpolation arguments and semigroup meth-

ods to consider data with strong irregularity in space, but nonnegative smoothness in

time. The paper [MS1] of J.Mattingly and Y.Sinai uses direct estimates on Fourier

series to reprove and extend previous results in the case of very high regularity in

space. As we are concerned with low regularity for the data in time, it is of interest

here to observe that Brickmont, Kupiainen and Lefevre [BKL1] use the method of

[MS1] to treat a very specific situation, where the smoothness of the source term cor-

responds to that of the white noise process, which barely fails to be locally H−1/2 in

time (see also [BKL2], [MS2] and [KS] in this connection). We refer to [G], [MS1],

[FT], [A], [A1], [L3] and [T] and their references for further results.

The structure of the proof (and the note) is as follows: In the first section we

consider the linearized operator and prove that it yields an isomorphism between the

right spaces. To this end we apply simple Fourier analysis in connection with the

Hilbert transform and the half-derivative operator; the conclusion is obtained by an

application of the Lax-Milgram lemma. In the second section we first verify a suitable

a priori estimate for the solution, which is based on a simple non-homogeneous Sobolev
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TWO DIMENSIONAL NAVIER-STOKES EQUATIONS WITH LOWER REGULARITY 145

imbedding theorem (see Lemma 3). The existence of a solution in the non-linear case

is now deduced from a simple finite dimensional approximation combined with an

application of the theory of the Brouwer mapping degree. In turn, the proof of the

uniqueness follows the classical lines.

2. The linear case

In the linear case there is no restriction on the space dimension. Let Ω be an open,

bounded and connected set in R
n, let Q = Ω × R and let

(2) H1,1/2(Q, Rn) :=
{

u ∈ L2(Q, Rn);
∂

1/2
+ u

∂t1/2
,

∂u

∂xi
∈ L2(Q, Rn) for 1 6 i 6 n

}

.

Here the half-derivative ∂
1/2
+ u/∂t1/2 corresponds to the Fourier-multiplier (iτ)1/2,

where τ is the Fourier frequency of t and we use the principal branch of the square root.

In a similar manner, the half-derivative ∂
1/2
− u/∂t1/2 corresponds to the multiplier

(−iτ)1/2. We obtain a Hilbert space with the norm

(

∫∫

Q

|u|2 +
∣

∣

∣

∂
1/2
+ u

∂t1/2

∣

∣

∣

2

+

n
∑

i=1

∣

∣

∣

∂u

∂xi

∣

∣

∣

2

dxdt
)1/2

.

By the Poincaré inequality, for elements in the closure of compactly supported func-

tions, this is equivalent to the norm

(3) ‖u‖H1,1/2 =
(

∫∫

Q

∣

∣

∣

∂
1/2
+ u

∂t1/2

∣

∣

∣

2

+
n

∑

i=1

∣

∣

∣

∂u

∂xi

∣

∣

∣

2

dxdt
)1/2

,

which we will use henceforth. Let V(Q, Rn) denote the space of divergence free (in

the space variables) D(Q, Rn)-testfunctions. Here D stands for infinitely differentiable

and compactly supported test functions.

We denote the closure in the H1,1/2(Q, Rn) norm of V(Q, Rn) by

(4) V
1,1/2
0 (Q, Rn) := V(Q, Rn).

The restriction of an element ξ in the dual space V
1,1/2
0 (Q, Rn)∗ to the space of

divergence free testfunctions V(Q, Rn) can be extended to a (non-unique) distribution

in H
1,1/2
0 (Q, Rn)∗.

Lemma 1. — Given ξ∈V
1,1/2
0 (Q, Rn)∗, there exist functions f0, f1, . . . , fn∈L2(Q, Rn)

such that

(5) 〈ξ, Φ〉 =
〈∂

1/2
+ f0

∂t1/2
+

n
∑

i=1

∂fi

∂xi
, Φ

〉

; Φ ∈ V(Q, Rn).

Furthermore, given ε > 0 we may always arrange so that ‖f0‖L2(Q,Rn) 6 ε (the

extension might then of course have a bigger norm).
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146 M. FONTES & E. SAKSMAN

Proof. — The statement of the Lemma is a direct consequence of the Hahn-Banach

theorem, which yields the stated expression apart from the control on the L2-norm

of f0. For that end take a smooth test function g so that ‖f0−g‖L2(Q,Rn) 6 ε. Replace

f0 by f0−g and f1 by f1+

∫ x1

−∞

∂
1/2
+ g(s, x2, . . . , xn, t)

∂t1/2
ds in the stated expression (where

g is continued as zero outside of Q). This proves the Lemma since one easily verifies

that the last term belongs to L2(Q, Rn).

Let T0 : V
1,1/2
0 (Q, Rn) → V

1,1/2
0 (Q, Rn)∗ be the operator

(6) T0(u) =
∂u

∂t
− ∆u,

defined by

(7) 〈T0u, Φ〉 =

∫∫

Q

[(∂
1/2
+ u

∂t1/2
,
∂

1/2
− Φ

∂t1/2

)

+

n
∑

i=1

( ∂u

∂xi
,
∂Φ

∂xi

)]

dxdt ; Φ ∈ V
1,1/2
0 (Q, Rn).

One should here observe that (∂
1/2
− )∗ = ∂

1/2
+ and (∂

1/2
+ )2 = ∂, and thus (7) is obtained

from (6) by a formal integration by parts. The operator T0 is a well-defined continu-

ous linear operator since the above expression defines a continuous bilinear form on

V
1,1/2
0 (Q, Rn), as is seen by using the observation that ∂

1/2
− = h∂

1/2
+ , where h is the

Hilbert transform. Recall that the Hilbert transform corresponds to the unimodular

Fourier multiplier −i sgn(τ), and hence h is an isometry on L2.

Definition 1. — We say that a subspace of L2(Q, Rn) is invariant if it is invariant

under the Hilbert transform h in the time direction.

An invariant subspace will then be invariant also under the action of the opera-

tor H , defined by H(u) = 1/
√

2(u − h(u)). Observe that the paper [F1] introduced

the operator Hα, which for the choice α = 1/4 corresponds to our H .

The following simple result in the linear case forms the cornerstone of our later

treatment of the fully nonlinear equation. It corresponds to the simplest linear case

considered in [F1, Section 4.1], whence we leave for the reader some easy computa-

tional elements of the argument. Recall that an operator T : V → V ∗ is coercive if

there exists a constant C > 0 such that 〈Tu, u〉 > C‖u‖2
V for all u ∈ V .

Proposition 1. — Let V be a closed invariant subspace of V
1,1/2
0 (Q, Rn) and let f ∈

V
1,1/2
0 (Q, Rn)∗. Then there exists a unique uV (f) ∈ V such that

〈T0(uV ), Φ〉 = 〈f, Φ〉 for all Φ ∈ V.

Proof. — The operator H : V → V is obviously an isometry as it corresponds to a

unimodular Fourier multiplier in the time direction. In particular, it maps divergence

free distributions to divergence free distributions.

Recall next certain additional basic properties of the Hilbert transform h and the

half derivatives. First of all, h is an isometry on L2 with the property h ◦ h = −Id.
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TWO DIMENSIONAL NAVIER-STOKES EQUATIONS WITH LOWER REGULARITY 147

Moreover, one has that
∫ ∞

−∞
(u, h(u))dt = 0 assuming that u ∈ L2. One also has that

∫ ∞

−∞(∂
1/2
+ u, ∂

1/2
− u)dt = 0 and

∫ ∞

−∞(∂
1/2
+ u, ∂

1/2
− h(u))dt = −

∫ ∞

−∞ |∂1/2
+ u|2dt assuming

that the integrals are well-defined. The latter equality is a consequence of the identity

∂
1/2
− h = −∂

1/2
+ . Using the above facts, a straightforward computation shows that the

operator H∗ ◦ T0 (defined by the natural bilinear form on V × V ) is a coercive linear

operator from V to V ∗. By the Lax-Milgram lemma it is an isomorphism, whence

the same is true for T0.

Finally, for the readers comfort we clarify the role of the restrictions of operators

in the above argument. Let us denote by PV the orthogonal projection on V in

V
1,1/2
0 (Q, Rn), so that PV ∗ = P ∗

V is the orthogonal projection on V ∗ (which is thus

identified with a closed subspace of (V
1,1/2
0 (Q, Rn))∗. In precise terms the above proof

yields that the operator (PV ∗H∗T0)|V : V → V ∗ is an isomorphism. However, since

H in an isometry on the whole space and H : V → V is bijective, the same is true for

H∗ : V ∗ → V ∗. As we have PV H = HPV , it also holds that PV ∗H∗ = H∗PV ∗ . We

may now deduce that (PV ∗T0)|V : V → V ∗ is an isomorphism, and this is equivalent

to the statement of the Theorem.

We explicitly state the special case

Corollary 1. — The operator T0 : V
1,1/2
0 (Q, Rn) → V

1,1/2
0 (Q, Rn)∗ is an isomorphism.

Concerning best approximations we have

Proposition 2. — Let V ⊂ W be two closed invariant subspaces in V
1,1/2
0 (Q, Rn), let

f ∈ V
1,1/2
0 (Q, Rn)∗ and let uV (f) ∈ V , uW (f) ∈ W be the corresponding solutions

from Proposition 1. Then

(8) ‖uV − uW ‖H1,1/2 6 2‖Φ− uW ‖H1,1/2 for all Φ ∈ V.

Proof. — From

(9) 〈T0(uV − uW ), H(uV − uW + uW − Φ)〉 = 0 ; Φ ∈ V,

one computes as in the proof of Proposition 1 to obtain the inequality

a2 + b2
6 2(ac + bd)

with

a2 =

∫∫

Q

∣

∣

∣

∣

∂
1/2
+ (uV − uW )

∂t1/2

∣

∣

∣

∣

2

dxdt, b2 =

∫∫

Q

∣

∣

∣

∣

∂(uV − uW )

∂xi

∣

∣

∣

∣

2

dxdt,

c2 =

∫∫

Q

∣

∣

∣

∣

∂
1/2
+ (uW − Φ)

∂t1/2

∣

∣

∣

∣

2

dxdt, and d2 =

∫∫

Q

∣

∣

∣

∣

∂(uW − Φ)

∂xi

∣

∣

∣

∣

2

dxdt,

The result is now a consequence of the Cauchy-Schwarz inequality.

Lemma 2. — There exists a sequence V1⊂V2⊂V3⊂ . . . of finite dimensional (closed)

invariant subspaces of V
1,1/2
0 (Q, Rn) such that (∪∞

i=1Vi) ∩ D(Q, Rn) = V
1,1/2
0 (Q, Rn).
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148 M. FONTES & E. SAKSMAN

Proof. — The space V
1,1/2
0 (Q, Rn) is separable. Choose an orthonormal basis

e1, e2, . . . , with the additional property that ej ∈ D(Q, Rn) for all j, and define Vk as

the linear hull Vk = lh(e1, h(e1), . . . ek, h(ek)) , where h is the Hilbert transform in

the time direction.

3. The nonlinear case

From now on n = 2.

Given λ ∈ R, let Tλ be the (formally defined) operator

(10) Tλ(u) =
∂u

∂t
− ∆u + λ(u · ∇)u.

Our object in this section is to prove the following theorem, yielding existence and

uniqueness of generalized weak solutions to two dimensional Navier-Stokes, with data

consisting of sums of half time-derivatives and first order space derivatives of L2-

functions.

Theorem 1. — For any λ ∈ R the operator Tλ : V
1,1/2
0 (Q, R2) → V

1,1/2
0 (Q, R2)∗ is

well-defined by

(11) 〈Tλ(u), Φ〉 =

∫∫

Q

(∂
1/2
+ u

∂t1/2
,
∂

1/2
− Φ

∂t1/2

)

+ (∇u,∇Φ) − λ(u ⊗ u,∇Φ)dxdt,

where Φ ∈ V
1,1/2
0 (Q, R2) is arbitrary. Moreover, it is a demicontinuous bijection.

Recall here that demicontinuity means continuity from the norm topology to the

weak topology.

In order to prove that Tλ is well defined on V
1,1/2
0 (Q, R2) and maps elements in

this space into its dual space, we use the following Sobolev imbedding. This is a

special case of results in [L], but we give below a simple argument for the readers

convenience.

Lemma 3. — The space H
1,1/2
0 (Q, R2) is continuously imbedded in L4(Q, R2), in fact

there exists a constant C such that
∫∫

Q

|u|4dxdt 6 C

∫∫

Q

∣

∣

∣

∣

∂
1/2
+ u

∂t1/2

∣

∣

∣

∣

2

dxdt

∫∫

Q

|∇u|2dxdt for u ∈ D(Q, R2).

Furthermore, the imbedding H
1,1/2
0 (Q, R2)|Q′ ↪→ L2(Q′, R2) is compact for any com-

pact subset Q′ ⊂ Q.

Proof. — We have the following chain of imbeddings

H
1,1/2
0 (Q, R2) ↪→ H1/4(R, H1/2(Ω, R2)) ↪→ L4(R, H1/2(Ω, R2)) ↪→ L4(R, L4(Ω, R2)).

The first imbedding above follows by computing on the Fourier side using the in-

equality (1 + |ξ|2)1/4(1 + |τ |2)1/8 6 (1 + |ξ|2)1/2 + (1 + |τ |2)1/4. The second one is

a consequence of the Sobolev imbedding for Hilbert space valued functions on the
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TWO DIMENSIONAL NAVIER-STOKES EQUATIONS WITH LOWER REGULARITY 149

real line, whose proof runs exactly as in the scalar case. The last imbedding is a

standard Sobolev imbedding. The inequality (12) is now obtained from a scaling

argument. The statement on the compact imbedding is immediate from the imbed-

dings H
1,1/2
0 (Q, R2)|Q′ ↪→ H1/2(Q, R2)|Q′ ↪→ L2(Q′, R2), where the last imbedding is

compact.

From this lemma we immediately see that if V is a closed invariant subspace of

V
1,1/2
0 (Q, R2), then Tλ : V → V ∗, defined in a natural way by the pairing (11),

is a demicontinuos operator, and thus in particular if V is finite dimensional then

Tλ : V → V ∗ is continuous.

From Proposition 1, we have Theorem 1 in the case when λ = 0. We shall prove

it in general by finite dimensional approximation (using invariant subspaces) and

continuation in the parameter λ, using the theory of mapping degree. The basic a

priori estimate needed for these arguments is provided by the following lemma.

Lemma 4. — Let V be a closed invariant subspace of V
1,1/2
0 (Q, R2), let λ0 ∈ (0,∞)

and let f ∈ H
1,1/2
0 (Q, R2)∗. If |λ| 6 λ0 and if u ∈ V satisfies

(12) 〈Tλ(u) − f, Φ〉 = 0 ; Φ ∈ V,

then there exists a constant C(λ0, f) such that

(13) ‖u‖H1,1/2 6 C.

Proof. — Given ε > 0, to be fixed later, there exist f0, f1, f2 ∈ L2(Q, R2) such that

(14) 〈f, Φ〉 =
〈∂

1/2
+ f0

∂t1/2
+

∂f1

∂x1
+

∂f2

∂x2
, Φ

〉

for all Φ ∈ V,

with ‖f0‖L2 6 ε.

With Φ = u in (12) we get, using cancellation for the nonlinear term,

(15) ‖∇u‖2
L2 6 (‖f1‖L2 + ‖f2‖L2)‖∇u‖L2 + ‖f0‖L2

∥

∥

∥

∥

∂
1/2
+ u

∂t1/2

∥

∥

∥

∥

L2

.

Here one also applies the equality ‖∂1/2
− u/∂t1/2‖L2 = ‖∂1/2

+ u/∂t1/2‖L2 .

With Φ = −h(u) in (12) we get

∥

∥

∥

∥

∂
1/2
+ u

∂t1/2

∥

∥

∥

∥

2

L2

6 |λ|‖u‖2
L4‖∇u‖L2 + ‖f0‖L2

∥

∥

∥

∥

∂
1/2
+ u

∂t1/2

∥

∥

∥

∥

L2

+ (‖f1‖L2 + ‖f2‖L2)‖∇u‖L2.
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Using the Sobolev imbedding and inequality (15) we thus get

∥

∥

∥

∥

∂
1/2
+ u

∂t1/2

∥

∥

∥

∥

2

L2

6 C|λ|
∥

∥

∥

∥

∂
1/2
+ u

∂t1/2

∥

∥

∥

∥

L2

‖∇u‖2
L2 + ‖f0‖L2

∥

∥

∥

∥

∂
1/2
+ u

∂t1/2

∥

∥

∥

∥

L2

+ (‖f1‖L2 + ‖f2‖L2)‖∇u‖L2

6 C|λ0|
(

(‖f1‖L2 + ‖f2‖L2)‖∇u‖L2 + ‖f0‖L2

∥

∥

∥

∥

∂
1/2
+ u

∂t1/2

∥

∥

∥

∥

L2

)

∥

∥

∥

∥

∂
1/2
+ u

∂t1/2

∥

∥

∥

∥

L2

+ ‖f0‖L2

∥

∥

∥

∥

∂
1/2
+ u

∂t1/2

∥

∥

∥

∥

L2

+ (‖f1‖L2 + ‖f2‖L2)‖∇u‖L2.

Let us denote a2 = ‖∇u‖2
L2 and b2 = ‖∂1/2

+ u/∂t1/2‖2
L2 . The above estimates take the

form

a2
6 C1a + C2b(16)

b2
6 Cλ0‖f0‖L2b2 + C3ab + C4a + C5b,

where the constants C1, . . . , C5 are finite polynomials in λ0 and the L2-norms of

f0, f1, f2. We now choose ε so small that Cλ0‖f0‖L2 6 1/2. At this stage the latter

inequality yields that

(17) b2
6 2C3ab + 2C4a + 2C5b.

From inequality (16) we see that a 6 C6 +C7

√
b. By substituting this into inequality

(17) we infer that the quantity a2 + b2 is bounded by a constant depending only on

λ0 and the L2-norms of f0, . . . , fn.

Proof of Theorem 1

Existence. — We start by fixing f ∈ V
1,1/2
0 (Q, R2)∗ and a sequence of finite dimen-

sional subspaces Vk ⊂ V
1,1/2
0 (Q, R2) satisfying the properties of Lemma 2. We then

fix k > 1 and consider the operator Tλ : Vk → V ∗
k (defined by the natural bilinear

form) as a (nonlinear) perturbation of the linear operator T0. By Proposition 1 it

follows that T0 : Vk → V ∗
k is a (continuous) linear isomorphism. In particular, taking

R > 0 large enough we obtain that f|Vk
∈ T0(BR(Vk)) and f|Vk

6∈ Tµ(∂BR(Vk)) for

|µ| 6 |λ|. That the last requirement is feasible follows from the a priori estimate of

Lemma 4. Since Vk is finite dimensional the mapping Tµ : Vk → V ∗
k is jointly con-

tinuous with respect to the pair (u, µ) ∈ Vk × R. Everything is now set for applying

the theory of Brouwer mapping degree. The degree of Tµ, with respect to the ball

BR(Vk) and the righthand side f|Vk
, is constant for |µ| 6 |λ|. As the degree is ±1 for

µ = 0 we conclude that f|Vk
∈ Tλ(BR(Vk)).

Let uk ∈ Vk satisfy Tλuk = f|Vk
in V ∗

k . Our a priori estimate shows that

‖uk‖H1,1/2(Q,R2) 6 C
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with a constant C independent of k. Hence, by extracting a subsequence if needed,

we may assume that

uk −→ u weakly in H
1,1/2
0 (Q, R2).

Let φ ∈ (∪∞
k=1Vk) ∩D(Q, R2) be arbitrary. For large enough k we have

∫∫

Q

(∂
1/2
+ uk

∂t1/2
,
∂

1/2
− φ

∂t1/2

)

+ (∇uk,∇φ) − λ(uk ⊗ uk,∇φ)dxdt = 〈φ, f〉.

As k → ∞ the first two terms converge to
∫∫

Q(
∂
1/2

+
u

∂t1/2 ,
∂
1/2

−
φ

∂t1/2 )dxdt and
∫∫

Q(∇u,∇φ)dxdt,

respectively. In order to treat the non-linear term, observe that by the compactness

result provided by Lemma 3 we have that uk ⊗ uk → u⊗u in L1
loc(Q), say. Since φ is

bounded with compact support we conclude that the non-linear term also converges

to what it should. The existence part of the Theorem now follows from the density

of (∪∞
i=1Vi) ∩D(Q, R2) in V

1,1/2
0 (Q).

Uniqueness. — The proof is essentially the standard argument, found for instance

in the reference [T, Chapter 3]. However, our situation is slightly different, so we

include a sketch of the proof. To begin with, we assume that u ∈ V
1,1/2
0 (Q, R2)

and v ∈ V
1,1/2
0 (Q, R2) are two solutions corresponding to the same right hand side.

Immediately from the definition we obtain u, v ∈ L2(R, V 1
0 (Ω)) in a natural sense,

where V 1
0 (Ω) stands for the completion of smooth divergence free test functions in

H1(Ω). The difference w := u − v satisfies

(18) wt = ∆w + (v · ∇)v − (u · ∇)u [ in V
1,1/2
0 (Q, R2)∗].

From integration by parts and the imbedding of Lemma 3 we infer that the right-hand

side also can be interpreted as an element of (L2(R, V 1
0 (Ω))∗. The latter space may

of course be identified with L2(R, V 1
0 (Ω)∗). Put together, we have

(19)

{

w ∈ L2(R, V 1
0 (Ω))

wt ∈ L2(R, V 1
0 (Ω)∗) ,

where it is easily verified that for almost every t, the right hand side of (18) represents

wt(t) ∈ V 1
0 (Ω)∗. Define g(t) =

∫

Ω |w(t, x)|2dx. It is standard that the knowledge (19)

allows us to deduce that g has an absolutely continuous representative satisfying the

equation

(20) g(t2) − g(t1) = 2

∫ t2

t1

(w(t), wt(t))dt,

where the pairing is with respect to the duality of V 1
0 (Ω).

We next substitute (18) in (20) and differentiate to obtain for almost every t

(21)
d

dt
‖w(t)‖2

L2(Ω) + 2‖∇w(t)‖2
L2(Ω) = −2

∑

i,j

∫

Ω

wi(t)∂ivj(t)wj(t)dx.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004



152 M. FONTES & E. SAKSMAN

Above we applied a standard cancellation of terms. A scaling of the standard Sobolev

imbedding yields ‖φ‖2
L4(Ω) 6 C‖φ‖L2(Ω)‖∇φ‖L2(Ω). This together with the simple

inequality ab 6 εa2 + (1/ε)b2 gives the estimate

|(w(t) ⊗ v(t), w(t))| 6 2‖∇w(t)‖2
L2(Ω) + C1‖w(t)‖2

L2(Ω)‖∇v(t)‖2
L2(Ω).

Let us denote g(t) = ‖w(t)‖2
L2(Ω) and h(t) = ‖∇v(t)‖2

L2(Ω). Note that h ∈ L1(R). By

combining the above inequality with (21) we see that

g′(t) 6 C1g(t)h(t).

Assume that g(t) 6= 0. The Grönwall lemma yields for all t′ < t the lower bound

g(t′) > C2g(t),

with the constant C2 = exp(−C1

∫ ∞

−∞
h(s)ds) > 0. This contradicts the fact that

g ∈ L1(R), and we deduce that g(t) = 0 for all t.

We finally consider the situation where the data is supported in positive time.

Denote Q+ = Ω× (0,∞). We say that an element f ∈ V
1,1/2
0 (Q, R2)∗ has support on

Q+ if 〈f, v〉 = 0 for all v ∈ V
1,1/2
0 (Q) that vanish on Ω × (−∞, 0).

Lemma 5. — Assume that supp(Tλ(u)) ∈ Q+. Then supp(u) ∈ Q+.

Proof. — Let χ(t) be a smooth decreasing function vanishing on (0,∞) and satisfying

0 6 χ 6 1. Then

〈ut, χu〉 =

∫∫

Q

(∂
1/2
+ u

∂t1/2
,
∂

1/2
− χu

∂t1/2

)

dxdt =

∫∫

Q

−χ′(t)|u(x, t)|2dxdt,

which is easily verified by approximating u with smooth functions and observing that

the map H1/2 3 g 7→ ∂
1/2
− (χg) ∈ L2 is bounded. Hence, pairing the equation with χu

we obtain
∫∫

Q

−χ′(t)|u(x, t)|2dxdt +

∫∫

Q

χ(t)|∇u(x, t)|2dxdt = 0.

We conclude that u(x, t) = 0 almost everywhere on Ω × (−∞, 0).

The next results is an immediate corollary to this lemma and Theorem 1. It solves

the problem of homogeneous initial data.

Theorem 2. — Given f ∈ V
1,1/2
0 (Q, R2)∗ with support on Q+ there exists a unique

u ∈ V
1,1/2
0 (Q, R2) such that Tλ(u) = f . Furthermore u is supported in Q+.

Observe that if u ∈ V
1,1/2
0 (Q, R2) is supported in Q+, it need not have a trace in

the usual sense at t = 0, but it is well-known that then the integral

∫∫

Q+

u2(x, t)

t
dxdt

converges.

SÉMINAIRES & CONGRÈS 9
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Remarks. — All the arguments go through unchanged if the domain Ω is unbounded

but lies in between to parallel hyperplanes.

It is of interest to notice that the method works and all results are true if we replace

the Laplacian in the nonlinear operator with a linear uniformly elliptic operator of

divergence form ∇ · (A(x)∇u)), where A is a bounded measurable matrix valued

function on Ω. One can even get results along the same lines when one replaces the

Laplacian in the equation with a nonlinear elliptic operator.

One of the original motivations for this work was to build a theory which enables

one to easily construct finite element schemes for the non stationary Navier-Stokes

equations with data that is very rough in time. Our Propositions 1 and 2 together

with Theorem 1 provide a starting point for stability estimates covering rough data.
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