EXPLICIT UPPER BOUNDS FOR THE RESIDUES AT $s=1$ OF THE DEDEKIND ZETA FUNCTIONS OF SOME TOTALLY REAL NUMBER FIELDS

by

Stéphane R. Louboutin

Abstract

We give an explicit upper bound for the residue at $s=1$ of the Dedekind zeta function of a totally real number field K for which $\zeta_{K}(s) / \zeta(s)$ is entire. Notice that this is conjecturally always the case, and that it holds true if K / \mathbf{Q} is normal or if K is cubic.

Résumé (Bornes supérieures explicites pour les résidus en $s=1$ des fonctions zêta de Dedekind de corps de nombres totalement réels)

Nous donnons une borne supérieure explicite pour le résidu en $s=1$ de la fonction zêta de Dedekind d'un corps de nombres K totalement réel pour lequel $\zeta_{K}(s) / \zeta(s)$ est entière. On remarque que c'est conjecturalement toujours le cas, et que c'est vrai si K / \mathbf{Q} est normale ou si K est cubique.

1. Introduction

Let d_{K} and $\zeta_{K}(s)$ denote the absolute value of the discriminant and the Dedekind zeta function of a number field K of degree $m>1$. It is important to have explicit upper bounds for the residue at $s=1$ of $\zeta_{K}(s)$. As for the best general such bounds, we have (see [Lou01, Theorem 1]):

$$
\operatorname{Res}_{s=1}\left(\zeta_{K}(s)\right) \leqslant\left(\frac{e \log d_{K}}{2(m-1)}\right)^{m-1}
$$

However, for some totally real number fields an improvement on this bound is known (see $[\mathbf{B L}]$ and $[\mathbf{O k}]$ for applications):

Theorem 1 (See [Lou01, Theorem 2]). - Let K range over a family of totally real number fields of a given degree $m \geqslant 3$ for which $\zeta_{K}(s) / \zeta(s)$ is entire. There exists C_{m}

[^0](computable) such that $d_{K} \geqslant C_{m}$ implies
$$
\operatorname{Res}_{s=1}\left(\zeta_{K}(s)\right) \leqslant \frac{\log ^{m-1} d_{K}}{2^{m-1}(m-1)!} \leqslant \frac{1}{\sqrt{2 \pi(m-1)}}\left(\frac{e \log d_{K}}{2(m-1)}\right)^{m-1}
$$

Moreover, for any non-normal totally real cubic field K we have the slightly better bound

$$
\operatorname{Res}_{s=1}\left(\zeta_{K}(s)\right) \leqslant \frac{1}{8}\left(\log d_{K}-\kappa\right)^{2}
$$

where $\kappa:=2 \log (4 \pi)-2-2 \gamma=1.90761 \ldots$.
Remark 2. - If K / \mathbf{Q} is normal or if K is cubic, then $\zeta_{K}(s) / \zeta(s)$ is entire.
We will simplify our previous proof of Theorem 1 (by improving those of [Lou98, Theorem 5] and [Lou01, Theorem 2]) and we will give explicit constants C_{m} for which Theorem 1 holds true:

Theorem 3. - There exists $C>0$ (effective) such that for any totally real number field K of degree $m \geqslant 3$ and root discriminant $\rho_{K}:=d_{K}^{1 / m} \geqslant C^{m}$ we have

$$
\operatorname{Res}_{s=1}\left(\zeta_{K}(s)\right) \leqslant \frac{\log ^{m-1} d_{K}}{2^{m-1}(m-1)!}
$$

provided that $\zeta_{K}(s) / \zeta(s)$ is entire. Moreover, $C=3309$ will do for m large enough.
This result is not the one we would have wished to prove. It would indeed have been much more satisfactory to prove that there exists $C>0$ (effective) such that this bound is valid for such totally real number fields K of root discriminants $\rho_{K} \geqslant C$ large enough. It would have been even more satisfactory to prove that this constant C is small enough to obtain that our bound is valid for all totally real number fields K for which $\zeta_{K}(s) / \zeta(s)$ is entire (e.g., see [Was, Page 224] for explicit lower bounds on root discriminants of totally real number fields K). Let us finally point out that, in the case that K / \mathbf{Q} is abelian, we have an even better bound (see [Lou01, Corollary 8] and use [Ram, Corollary 1]):

$$
\operatorname{Res}_{s=1}\left(\zeta_{K}(s)\right) \leqslant\left(\frac{\log d_{K}}{2(m-1)}\right)^{m-1}
$$

2. Proof of Theorem 1

Proposition 4. - Let K be a totally real number field of degree $m \geqslant 1$, set $d=\sqrt{d_{K}}$, and assume that $\zeta_{K}(s) / \zeta(s)$ is entire. Then, $\operatorname{Res}_{s=1}\left(\zeta_{K}(s)\right) \leqslant \rho_{m-1}(d)$ where

$$
\begin{equation*}
\rho_{m-1}(d):=\operatorname{Res}_{s=1}\left\{s \mapsto\left(\pi^{-s / 2} \Gamma(s / 2) \zeta(s)\right)^{m-1}\left(\frac{1}{s}+\frac{1}{s-1}\right)\left(d^{s-1}+d^{-s}\right)\right\} \tag{1}
\end{equation*}
$$

Proof. - To begin with, we set some notation: if K is a totally real number field of degree $m \geqslant 1$, we set $A_{K}=\sqrt{d_{K} / \pi^{m}}$ and $F_{K}(s)=A_{K}^{s} \Gamma^{m}(s / 2) \zeta_{K}(s)$. Hence, $F_{K}(s)$ is meromorphic, with only two poles, at $s=1$ and $s=0$, both simple, and it satisfies the functional equation $F_{K}(1-s)=F_{K}(s)$.
We then set $F_{K / \mathbf{Q}}(s)=F_{K}(s) / F_{\mathbf{Q}}(s)$, which under our assumption is entire, and satisfies the functional equation $F_{K / \mathbf{Q}}(1-s)=F_{K / \mathbf{Q}}(s)$, and $A_{K / \mathbf{Q}}:=A_{K} / A_{\mathbf{Q}}=$ $\sqrt{d_{K} / \pi^{m-1}}$. Notice that $F_{K / \mathbf{Q}}(1)=\sqrt{d_{K}} \operatorname{Res}_{s=1}\left(\zeta_{K}(s)\right)$. Let

$$
\begin{equation*}
S_{K / \mathbf{Q}}(x):=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F_{K / \mathbf{Q}}(s) x^{-s} d s \quad(c>1 \text { and } x>0) \tag{2}
\end{equation*}
$$

denote the Mellin transform of $F_{K / \mathbf{Q}}(s)$. Since $F_{K / \mathbf{Q}}(s)$ is entire, it follows that $S_{K / \mathbf{Q}}(x)$ satisfies the functional equation

$$
\begin{equation*}
S_{K / \mathbf{Q}}(x)=\frac{1}{x} S_{K / \mathbf{Q}}\left(\frac{1}{x}\right) \tag{3}
\end{equation*}
$$

(shift the vertical line of integration $\Re(s)=c>1$ in (2) leftwards to the vertical line of integration $\Re(s)=1-c<0$, then use the functional equation $F_{K / \mathbf{Q}}(1-s)=F_{K / \mathbf{Q}}(s)$ to come back to the vertical line of integration $\Re(s)=c>1)$, and

$$
\begin{equation*}
F_{K / \mathbf{Q}}(s)=\int_{0}^{\infty} S_{K / \mathbf{Q}}(x) x^{s} \frac{d x}{x}=\int_{1}^{\infty} S_{K / \mathbf{Q}}(x)\left(x^{s}+x^{1-s}\right) \frac{d x}{x} \tag{4}
\end{equation*}
$$

is the inverse Mellin transform of $S_{K / \mathbf{Q}}(x)$.
Now, set

$$
\begin{align*}
F_{m-1}(s) & =F_{\mathbf{Q}}^{m-1}(s)=\left(\pi^{-s / 2} \Gamma(s / 2) \zeta(s)\right)^{m-1} \tag{5}\\
A_{m-1} & =A_{\mathbf{Q}}^{m-1}=\pi^{-(m-1) / 2}
\end{align*}
$$

and let

$$
\begin{equation*}
S_{m-1}(x):=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F_{m-1}(s) x^{-s} d s \quad(c>1 \text { and } x>0) \tag{6}
\end{equation*}
$$

denote the Mellin transform of $F_{m-1}(s)$. Here, $F_{m-1}(s)$ has two poles, at $s=1$ and $s=0$, the functional equation $F_{m-1}(1-s)=F_{m-1}(s)$ yields

$$
\operatorname{Res}_{s=0}\left(F_{m-1}(s) x^{-s}\right)=-\operatorname{Res}_{s=1}\left(F_{m-1}(s) x^{s-1}\right)
$$

and

$$
\begin{equation*}
S_{m-1}(x)=\operatorname{Res}_{s=1}\left\{F_{m-1}(s)\left(x^{-s}-x^{s-1}\right)\right\}+\frac{1}{x} S_{m-1}\left(\frac{1}{x}\right) \tag{7}
\end{equation*}
$$

(shift the vertical line of integration $\Re(s)=c>1$ in (6) leftwards to the vertical line of integration $\Re(s)=1-c<0$, notice that you pick up residues at $s=1$ and $s=0$, then use the functional equation $F_{m-1}(1-s)=F_{m-1}(s)$ to come back to the vertical line of integration $\Re(s)=c>1)$. Finally, we set

$$
H_{m-1}(x):=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \Gamma^{m-1}(s / 2) x^{-s} d s \quad(c>1 \text { and } x>0)
$$

Notice that $0<H_{m-1}(x)$ for $x>0$ (see [Lou00, Proof of Theorem 2] $\left.{ }^{(1)}\right)$. Now, write

$$
\zeta_{K}(s) / \zeta(s)=\sum_{n \geqslant 1} a_{K / \mathbf{Q}}(n) n^{-s}
$$

and

$$
\zeta^{m-1}(s)=\sum_{n \geqslant 1} a_{m-1}(n) n^{-s}
$$

Then, $\left|a_{K / \mathbf{Q}}(n)\right| \leqslant a_{m-1}(n)$ for all $n \geqslant 1$ (see [Lou01, Lemma 26]). Since

$$
S_{K / \mathbf{Q}}(x)=\sum_{n \geqslant 1} a_{K / \mathbf{Q}}(n) H_{m-1}\left(n x / A_{K / \mathbf{Q}}\right)
$$

and

$$
0 \leqslant S_{m-1}(x)=\sum_{n \geqslant 1} a_{m-1}(n) H_{m-1}\left(n x / A_{m-1}\right)
$$

we obtain

$$
\begin{equation*}
S_{K / \mathbf{Q}}(x) \leqslant S_{m-1}(x / d) \text { with } d:=A_{K / \mathbf{Q}} / A_{m-1}=\sqrt{d_{K}} \tag{8}
\end{equation*}
$$

We are now ready to proceed with the proof of Proposition 4. We have

$$
\begin{aligned}
d \operatorname{Res}_{s=1}\left(\zeta_{K}(s)\right)= & F_{K / \mathbf{Q}}(1)=\int_{1}^{\infty} S_{K / \mathbf{Q}}(x)\left(1+\frac{1}{x}\right) d x \quad(\text { by }(4)) \\
\leqslant & \int_{1}^{\infty} S_{m-1}(x / d)\left(1+\frac{1}{x}\right) d x \quad(\text { by }(8)) \\
= & \int_{1 / d}^{\infty} S_{m-1}(x)\left(d+\frac{1}{x}\right) d x \\
= & \int_{1}^{\infty} S_{m-1}(x)\left(d+\frac{1}{x}\right) d x+\int_{1}^{d} \frac{1}{x} S_{m-1}\left(\frac{1}{x}\right)\left(\frac{d}{x}+1\right) d x \\
\leqslant & (d+1) \int_{1}^{\infty} S_{m-1}(x)\left(1+\frac{1}{x}\right) d x \\
& \quad-\int_{1}^{d} \operatorname{Res}_{s=1}\left\{F_{m-1}(s)\left(x^{-s}-x^{s-1}\right)\right\}\left(\frac{d}{x}+1\right) d x
\end{aligned}
$$

(by (7), and for $S_{m-1}(x) \geqslant 0$ for $x>0$)
${ }^{(1)}$ Notice the misprints in [Lou00, page 273, line 1] and [Lou01, Theorem 20] where one should read

$$
\left(M_{1} \star M_{2}\right)(x)=\int_{0}^{\infty} M_{1}(x / t) M_{2}(t) \frac{d t}{t}
$$

$$
\begin{aligned}
=(d & +1) \int_{1}^{\infty} S_{m-1}(x)\left(1+\frac{1}{x}\right) d x \\
& \quad-\operatorname{Res}_{s=1}\left\{F_{m-1}(s) \int_{1}^{d}\left(x^{-s}-x^{s-1}\right)\left(\frac{d}{x}+1\right) d x\right\}
\end{aligned}
$$

(compute these residues as contour integrals along a circle of center 1 and of small radius, and use Fubini's theorem)

$$
\begin{aligned}
=(d & +1)\left(\int_{1}^{\infty} S_{m-1}(x)\left(1+\frac{1}{x}\right) d x-\operatorname{Res}_{s=1}\left\{F_{m-1}(s)\left(\frac{1}{s}+\frac{1}{s-1}\right)\right\}\right) \\
& +\operatorname{Res}_{s=1}\left\{F_{m-1}(s)\left(d^{s}+d^{1-s}\right)\left(\frac{1}{s}+\frac{1}{s-1}\right)\right\} .
\end{aligned}
$$

The desired result now follows from Lemma 5 below.
Lemma 5. - Set

$$
G_{m-1}(s):=F_{m-1}(s)\left(\frac{1}{s}+\frac{1}{s-1}\right) .
$$

Then,

$$
I_{m-1}:=\int_{1}^{\infty} S_{m-1}(x)\left(1+\frac{1}{x}\right) d x=\operatorname{Res}_{s=1}\left(G_{m-1}(s)\right)
$$

Proof. - By (6) and Fubini's theorem, we have

$$
I_{m-1}=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F_{m-1}(s)\left(\int_{1}^{\infty}\left(x^{-s}+x^{-s-1}\right) d x\right) d s=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} G_{m-1}(s) d s
$$

The functional equation $G_{m-1}(1-s)=-G_{m-1}(s)$ yields

$$
\begin{aligned}
I_{m-1} & =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} G_{m-1}(s) d s \\
& =\operatorname{Res}_{s=1}\left(G_{m-1}(s)\right)+\operatorname{Res}_{s=0}\left(G_{m-1}(s)\right)+\frac{1}{2 \pi i} \int_{1-c-i \infty}^{1-c+i \infty} G_{m-1}(s) d s \\
& =2 \operatorname{Res}_{s=1}\left(G_{m-1}(s)\right)-I_{m-1},
\end{aligned}
$$

from which the desired result follows.
Let us now complete the proof of Theorem 1. Since

$$
\begin{equation*}
\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\frac{1}{s-1}-a+O(s-1) \tag{9}
\end{equation*}
$$

with $a=(\log (4 \pi)-\gamma) / 2=0.97690 \ldots$, using (1) we obtain

$$
\rho_{m-1}(d)=\frac{1}{(m-1)!} \log ^{m-1} d-\frac{c_{m-1}}{(m-2)!} \log ^{m-2} d+O\left(\log ^{m-3} d\right)
$$

with $c_{m-1}:=(m-1) a-1>0$ for $m \geqslant 3$, and the desired first result follows. In the special case $m=3$, in writing

$$
\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\frac{1}{s-1}-a+b(s-1)+O\left((s-1)^{2}\right)
$$

with $b=1.00024 \ldots$, and in setting $\kappa^{\prime}=\kappa / 2:=2 a-1=\log (4 \pi)-1-\gamma=0.95380 \ldots$ and $\kappa^{\prime \prime}=3+2 a^{2}-4 b=0.90769 \ldots$, we have

$$
\rho_{2}(d)=\frac{1}{2}\left(\left(\log d-\kappa^{\prime}\right)^{2}-\kappa^{\prime \prime}\right)+\frac{1}{2 d}\left(\left(\log d+\kappa^{\prime}\right)^{2}-\kappa^{\prime \prime}\right) \leqslant \frac{1}{2}\left(\log d-\kappa^{\prime}\right)^{2}
$$

for $(d+1) \kappa^{\prime \prime} \geqslant\left(\log d+\kappa^{\prime}\right)^{2}$, hence for $d=\sqrt{d_{K}} \geqslant \sqrt{148}$ (notice that 148 is the least discriminant of a non-normal totally real cubic field).

3. Proof of Theorem 3

Set $\kappa_{K}:=\operatorname{Res}_{s=1}\left(\zeta_{K}(s)\right), d=\sqrt{d_{K}}, g(t)=\sum_{n \geqslant 1} e^{-\pi n^{2} t}(t>0)$ and $\Lambda(s):=$ $s(s-1) \pi^{-s / 2} \Gamma(s / 2) \zeta(s)$. We have

$$
\begin{equation*}
\Lambda(s)=1+s(s-1) \int_{1}^{\infty} g(t)\left(t^{s / 2}+t^{(1-s) / 2}\right) \frac{d t}{t} \tag{10}
\end{equation*}
$$

$\left(\right.$ see $[\text { Lan, Page 250] })^{(2)}$ and

$$
H_{m-1}(s)=\frac{2 s-1}{s^{m}} \Lambda^{m-1}(s)
$$

According to Proposition 4, we have

$$
\begin{aligned}
\kappa_{K} & \leqslant \rho_{m-1}(d)=\operatorname{Res}_{s=1}\left\{s \mapsto \frac{1}{(s-1)^{m}}\left(d^{s-1}+d^{-s}\right) \frac{2 s-1}{s^{m}} \Lambda^{m-1}(s)\right\} \\
& =\left.\frac{1}{(m-1)!} \frac{\mathrm{d}^{m-1}}{\mathrm{~d} s^{m-1}}\right|_{s=1}\left(d^{s-1}+d^{-s}\right) H_{m-1}(s) \\
& =\left.\frac{1}{(m-1)!} \sum_{k=0}^{m-1}\binom{m-1}{k}\left(\log ^{m-1-k} d\right)\left(1+\frac{(-1)^{m-1-k}}{d}\right) \frac{\mathrm{d}^{k} H_{m-1}(s)}{\mathrm{d} s^{k}}\right|_{s=1}
\end{aligned}
$$

Now, $H_{m-1}(1)=\Lambda(1)=1$ and

$$
H_{m-1}^{\prime}(1)=1-(m-1)\left(1-\Lambda^{\prime}(1)\right):=-c_{m-1}<0
$$

for $m \geqslant 3$ (for $\Lambda^{\prime}(1)=(2+\gamma-\log (4 \pi)) / 2=0.02309 \ldots$). Using Lemma 6 below, we obtain

$$
\begin{aligned}
((m-1)!) \cdot \kappa_{K} \leqslant & \left(1+\frac{(-1)^{m-1}}{d}\right) \log ^{m-1} d \\
& \quad-(m-1)\left(1+\frac{(-1)^{m-2}}{d}\right) c_{m-1} \log ^{m-2} d \\
+ & ((m-1)!) \cdot\left(1+\frac{1}{d}\right) \frac{2 r+1}{(1-r) r^{m-1}}\left(\frac{\Lambda(1+r)}{1-r}\right)^{m-1} \sum_{k=0}^{m-3} \frac{(r \log d)^{k}}{k!}
\end{aligned}
$$

[^1]Now, assume that $d \geqslant \exp (2(m-3) / r)$. Then,

$$
\frac{(r \log d)^{k}}{k!} \leqslant \frac{(r \log d)^{m-3}}{(m-3)!} 2^{-(m-3-k)} \text { for } 0 \leqslant k \leqslant m-3
$$

and

$$
\begin{aligned}
\frac{(m-1)!}{\log ^{m-1} d} \kappa_{K}-1 \leqslant & \frac{1}{d}-(m-1)\left(1-\frac{1}{d}\right) c_{m-1} \log ^{-1} d \\
& +2(m-1)(m-2)\left(1+\frac{1}{d}\right) \frac{2 r+1}{(1-r) r^{2}}\left(\frac{\Lambda(1+r)}{1-r}\right)^{m-1} \log ^{-2} d,
\end{aligned}
$$

and this right hand side is clearly negative for $m \geqslant 3$ and $d \geqslant d_{m}$ large enough. Now, we take

$$
r=\frac{2}{(m-1)\left(1+\Lambda^{\prime}(1)\right)}
$$

(hence, $0<r<1$ for $m \geqslant 3$) and we still assume that

$$
d \geqslant \exp (2(m-3) / r)=\exp \left(\left(1+\Lambda^{\prime}(1)\right)(m-3)(m-1)\right) .
$$

We have

$$
\frac{2 r+1}{(1-r) r^{2}}\left(\frac{\Lambda(1+r)}{1-r}\right)^{m-1}=\frac{1}{4}\left(1+\Lambda^{\prime}(1)\right)^{2} e^{2} m^{2}+O(m)
$$

and for any

$$
C^{\prime} \frac{\left(1+\Lambda^{\prime}(1)\right)^{2} e^{2}}{2\left(1-\Lambda^{\prime}(1)\right)}=4.052168162 \ldots
$$

we obtain $((m-1)!) \cdot \kappa_{K} \leqslant \log ^{m-1} d$ for $d \geqslant \exp \left(C^{\prime} m^{2}\right)$ and m large enough, which proves the desired result for any $C=\exp \left(2 C^{\prime}\right)>3308.78497 \ldots$.

Lemma 6. - For $k \geqslant 0$ and $0<r<1$, it holds that

$$
\left|\frac{\mathrm{d}^{k} H_{m-1}(s)}{\mathrm{d} s^{k}}\right|_{s=1} \left\lvert\, \leqslant \frac{2 r+1}{1-r}\left(\frac{\Lambda(1+r)}{1-r}\right)^{m-1} \frac{k!}{r^{k}} .\right.
$$

Proof. - Since $H_{m-1}(s)$ is analytic in the half plane $\Re(s)>0$, for any $r \in(0,1)$ we have

$$
\left.\left|\frac{\mathrm{d}^{k} H_{m-1}(s)}{\mathrm{d} s^{k}}\right|_{s=1}\left|=\left|\frac{k!}{2 \pi i} \int_{|z-1|=r} \frac{H_{m-1}(z)}{(z-1)^{k+1}} d z\right| \leqslant \frac{k!}{r^{k}} \sup _{|z-1|=r}\right| H_{m-1}(z) \right\rvert\, .
$$

Since (for $t>0$) $\sigma \mapsto t^{\sigma / 2}+t^{(1-\sigma) / 2}$ is convex in $(0, \infty)$, we have

$$
\begin{aligned}
\left|t^{z / 2}+t^{(1-z) / 2}\right| \leqslant t^{\sigma / 2}+t^{(1-\sigma) / 2} & \leqslant \max \left(t^{(1-r) / 2}+t^{r / 2}, t^{(1+r) / 2}+t^{-r / 2}\right) \\
& =t^{(1+r) / 2}+t^{-r / 2}
\end{aligned}
$$

for $\sigma=\Re(z)$ and $0<|1-z|=r<1$ and $t \geqslant 1$, and using (10) we obtain

$$
|\Lambda(z)| \leqslant 1+(1+r) r \int_{1}^{\infty} g(t)\left(t^{(1+r) / 2}+t^{-r / 2}\right) \frac{d t}{t}=\Lambda(1+r)
$$

and

$$
\left|H_{m-1}(z)\right| \leqslant \frac{2 r+1}{(1-r)^{m}} \Lambda^{m-1}(1+r)
$$

for $0<|z-1|=r<1$.

References

[BL] G. Boutteaux \& S. Louboutin - The class number one problem for the nonnormal sextic CM-fields. Part 2, Acta Math. Inform. Univ. Ostraviensis 10 (2002), p. 3-23.
[Lan] S. LANG - Algebraic number theory, 2nd ed., Graduate Texts in Math., vol. 110, Springer-Verlag, New York, 1994.
[Lou98] S. Louboutin - Upper bounds on $L(1, \chi)$ and applications, Canad. J. Math. 50 (1998), p. 794-815.
[Lou00] _ Explicit bounds for residues of Dedekind zeta functions, values of L functions at $s=1$, and relative class numbers, J. Number Theory 85 (2000), p. 263282.
[Lou01] , Explicit upper bounds for residues of Dedekind zeta functions and values of L-functions at $s=1$, and explicit lower bounds for relative class numbers of CM-fields, Canad. J. Math. 53 (2001), p. 1194-1222.
[Oka] R. OkAzAKI - Geometry of a cubic Thue equation, Publ. Math. Debrecen 61 (2002), p. 267-314.
[Ram] O. Ramaré - Approximate formulae for $L(1, \chi)$, Acta Arith. 100 (2001), p. 245266.
[SZ] H.M. Stark \& D. ZAGIER - A property of L-functions on the real line, J. Number Theory 12 (1980), p. 49-52.
[Was] L.C. Washington - Introduction to Cyclotomic Fields, 2nd ed., Graduate Texts in Math., vol. 83, Springer-Verlag, New York, 1997.

[^2]
[^0]: 2000 Mathematics Subject Classification. - 11R42.
 Key words and phrases. - Dedekind zeta function.

[^1]: ${ }^{(2)}$ It follows that $\Lambda(s)$ is positive and convex for $s>0$ (see [SZ] for a different proof, and [Lou00, Lemma 9] for a stronger result), for (10) yields $\Lambda^{(k)}(s) \geqslant 0$ for $s \geqslant 1 / 2$ and $k \geqslant 0$, and the functional equation $\Lambda(1-s)=\Lambda(s)$ then yields $(-1)^{k} \Lambda^{(k)}(s) \geqslant 0$ for $s \leqslant 1 / 2$.

[^2]: S.R. Louboutin, Institut de Mathématiques de Luminy, UMR 6206, 163, avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France - E-mail : loubouti@iml.univ-mrs.fr

