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Abstract. This paper presents recent work on connections between symmetries and con-
servation laws. After reviewing Noether’s theorem and its limitations, we present the Direct
Construction Method to show how to find directly the conservation laws for any given sys-
tem of differential equations. This method yields the multipliers for conservation laws as
well as an integral formula for corresponding conserved densities. The action of a symme-
try (discrete or continuous) on a conservation law yields conservation laws. Conservation
laws yield non-locally related systems that, in turn, can yield nonlocal symmetries and in
addition be useful for the application of other mathematical methods. From its admitted
symmetries or multipliers for conservation laws, one can determine whether or not a given
system of differential equations can be linearized by an invertible transformation.
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1 Introduction

In this paper, we discuss several connections between symmetries and conservation laws. In the
classical Noether’s theorem [1], if a given system of differential equations (DEs) has a variational
principle, then a continuous symmetry (point, contact or higher order) that leaves invariant the
action functional to within a divergence yields a conservation law [2, 3, 4, 5]. A system of DEs (as
written) has a variational principle if and only if its linearized system is self-adjoint [4]. There are
several limitations to Noether’s theorem: It is restricted to variational systems. Consequently,
to be applicable to a given system as written, the given system must be of even order, have
the same number of dependent variables as the number of equations in the system and have no
dissipation. There is also the difficulty of finding symmetries admitted by the action functional.
Moreover, the use of Noether’s theorem to find conservation laws is coordinate-dependent.

The Direct Construction Method (DCM) gets around the limitations of Noether’s theorem
for finding conservation laws. A given system of DEs has a conservation law if and only if
all Euler operators associated with its dependent variables annihilate the scalar product of
multipliers with each DE where in the resulting expression the solutions of the system of DEs
are replaced by arbitrary functions. The DCM [6, 7, 8, 9] yields an integral formula for the
corresponding conservation law for any such set of multipliers. On the solution space of the given
system of DEs, multipliers are symmetries provided its linearized system is self-adjoint; otherwise
they are solutions of the adjoint of the linearized system. The use of adjoint linearization to
find multipliers for conservation laws is extensively discussed in [10] and references therein.
A comprehensive discussion of the computational aspects of the DCM and comparisons with
three other approaches to calculate conservation laws appears in [11].
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For any system of DEs, a symmetry (point or contact) of the system maps conservation laws
to conservation laws. In particular, any symmetry of the system induces a symmetry that leaves
invariant the determining equations for multipliers of its conservation laws. Moreover, there is
a formula to determine the action of a symmetry (discrete or continuous) on the multipliers of
a given conservation law and from this action one can determine in advance whether or not the
resulting conservation law will be new [12].

For any system of DEs, useful conservation laws yield equivalent non-locally related systems
of DEs [13]. Such non-locally related systems (and some of their subsystems) in turn can
yield nonlocal conservation laws and nonlocal symmetries for the given system. This leads to
the important problem of finding extended trees of equivalent non-locally related systems of
DEs [14].

For any system of DEs, from its admitted symmetry group one can determine whether or
not it can be mapped into a linear system and find the explicit mapping [5, 15, 16, 17]; from
its admitted multipliers for conservation laws, one can also determine whether or not it can be
mapped into a linear system–here the solution of the determining system for multipliers yields
the adjoint of the resulting linear system [13, 18].

This paper is organized as follows. In section two we review Noether’s theorem and discuss
its limitations. In section three we present the Direct Construction Method to find conservation
laws. In section four we consider the use of symmetries to find new conservation laws from
known conservation laws. In section five we show how conservation laws lead to equivalent non-
locally related systems for finding nonlocal symmetries. In section six we compare the roles of
symmetries and multipliers for conservation laws in determining whether or not a given system
can be linearized by an invertible transformation. Finally, several examples are presented in
section seven to illustrate the work discussed in this paper.

2 Review of Noether’s theorem

Consider a functional J [U ] in terms of n independent variables x = (x1, . . . , xn) and m arbitrary
functions U = (U1(x), . . . , Um(x)) of the independent variables x defined on a domain Ω,

J [U ] =
∫

Ω
L[U ]dx =

∫
Ω
L(x,U, ∂U, . . . , ∂kU)dx, (1)

with x derivatives of U up to some order k. We let ∂U, ∂2U, etc. denote all derivatives of Uγ

of a given order with respect to xi. We denote partial derivatives ∂/∂xi by subscripts i, i.e.,
Uγi = ∂Uγ

∂xi
, Uγij = ∂2Uγ

∂xi∂xj
, etc. Corresponding total derivatives are denoted by Di = ∂

∂xi
+

Uγi
∂

∂Uγ + · · · + Uγii1···ij
∂

∂Uγ
i1···ij

+ · · · . We let F [U ] denote a function F depending on x, U and

derivatives of U with respect to x. Throughout this paper we use the summation convention for
any repeated indices. The Euler operator with respect to Uγ is denoted by

EUγ =
∂

∂Uγ
−Di

∂

∂Uγi
+ · · ·+ (−1)jDi1 · · ·Dij

∂

∂Uγi1···ij
+ · · · .

From the calculus of variations, it follows that if U = u is an extremum of J [U ], then

(EUγL[U ])|U=u = 0, γ = 1, . . . ,m. (2)

The function L[U ] is called a Lagrangian and the integral J [U ] of (1) an action (or variational)
integral. The extremal system of differential equations (2) with independent variables x and
dependent variables u = (u1(x), . . . , um(x)) are called the Euler–Lagrange equations for an
extremum U = u(x) of J [U ].
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Now consider the Euler–Lagrange equations (2) as a given system of differential equations

Gγ [u] = EuγL[u] = 0, γ = 1, . . . ,m (3)

whose solutions u(x) are extrema of some action integral (1). A local conservation law of
system (3) is a divergence expression

DiΦi[u] = 0 (4)

that holds for all solutions u(x) of system (3); Φi[u], i = 1, . . . , n are called the conserved
densities.

Consider a local symmetry generator in evolutionary form [3, 4, 5]

X = ησ[U ]
∂

∂Uσ
; (5)

X defines a point symmetry generator if ησ[U ] is of the linear form ησ[U ] = ησ(x,U)+ξi(x,U)Uσi ,
σ = 1, . . . ,m; X defines a contact symmetry generator if m = 1 and η1[U ] = η[U ] depends at
most on first partials of U , i.e. η[U ] = η(x,U, ∂U); X defines a higher order symmetry generator
if it is neither a point symmetry nor contact symmetry generator. Higher order symmetries
were first mentioned by Emmy Noether in her celebrated paper [1]. The pth extension of a local
symmetry generator (5) is given by

X(p) = ησ[U ]
∂

∂Uσ
+ (Diη

σ[U ])
∂

∂Uσi
+ · · ·+ (Di1 · · ·Dipη

σ[U ])
∂

∂Uσi1···ip
.

A local symmetry generator (5) defines a variational symmetry of the action integral (1) if and
only if

X(k)L[U ] = Dif
i[U ] (6)

holds for some functions f i[U ]. If (5) defines a variational symmetry of (1), then one can derive
the identity [3, 4, 5]

ησ[U ]Gσ[U ] = ησ[U ]EUσL[U ] = Di(f i[U ]−W i[U, η[U ]]) (7)

where

W i[U, η[U ]] =

ησ[U ]EUσ
i

+
∑
j=2

(Di1 · · ·Dij−1η
σ[U ])EUσ

ii1···ij−1

L[U ].

Consequently, a variational symmetry (5) of the action integral (1) yields the conservation law

DiΦi[u] = Di(W i[u, η[u]]− f i[u]) = 0

of the given system of differential equations arising from the extrema of the action integral (1).
In particular, from (7) we see that Noether’s theorem yields a conservation law of the variational
system (3) for any set of multipliers {ησ[U ]} for which ησ[U ] ∂

∂Uσ is a variational symmetry of
the action integral (1).

Since a variational symmetry leaves the Lagrangian L[U ] invariant to within a divergence,
it follows that a variational symmetry of the action integral J [U ] leaves invariant its family of
extrema U = u. Hence a variational symmetry (5) of the action integral (1) yields a symmetry
X = ησ[u] ∂

∂uσ of the system of differential equations (3), i.e.,

X(2k)Gγ [U ]
∣∣∣
U=u

= 0, γ = 1, . . . ,m. (8)

Conversely, a symmetry X = ησ[u] ∂
∂uσ of a system of DEs (3) derivable from an action integ-

ral (1) does not necessarily yield a variational symmetryX = ησ[U ] ∂
∂Uσ of the action integral (1).
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2.1 Limitations of Noether’s theorem

1. The difficulty of finding variational symmetries. To find variational symmetries for a given
variational system (3), first one determines local symmetriesX = ησ[u] ∂

∂uσ admitted by the
Euler–Lagrange equations (3) through the extension of Lie’s algorithm to include higher
order symmetries. Then for each such admitted symmetry, one checks if X = ησ[U ] ∂

∂Uσ

leaves invariant the Lagrangian L[U ] to within a divergence, i.e., equation (6) is satisfied.

2. A given system of DEs is not variational as written. A given system of differential equa-
tions, as written, is variational if and only if its linearized system (Fréchet derivative)
is self-adjoint [4]. Consequently, it is necessary that a given system of DEs, as written,
must be of even order, have the same number of equations in the system as its number of
dependent variables and be non-dissipative to directly admit a variational principle.

3. Artifices may make a given system of DEs variational. Such artifices include:

• The use of multipliers. As an example, the PDE

utt +H ′(ux)uxx +H(ux) = 0,

as written, does not admit a variational principle since its linearized equation ςtt +
H ′(ux)ςxx + (H ′′(ux) + H ′(ux))ςx = 0 is not self-adjoint. However, the equivalent
PDE

ex[utt +H ′(ux)uxx +H(ux)] = 0,

as written, is self-adjoint!
• The use of a contact transformation of the variables. As an example, the ODE

y′′ + 2y′ + y = 0, (9)

as written, obviously does not admit a variational principle. But the point transfor-
mation x→ X = x, y → Y = yex, maps ODE (9) into the variational ODE Y ′′ = 0.
It is well-known that every second order ODE, written in solved form, can be mapped
into Y ′′ = 0 by some contact transformation but there is no finite algorithm to find
such a transformation.

• The use of a differential substitution. As an example, the Korteweg–de Vries (KdV)
equation

uxxx + uux + ut = 0,

as written, obviously does not admit a variational principle since it is of odd order.
But the well-known differential substitution u = vx yields the related transformed
KdV equation vxxxx + vxvxx + vxt = 0 which is the Euler–Lagrange equation for an
extremum V = v of the action integral with Lagrangian L[V ] = 1

2(Vxx)2 − 1
6(Vx)3 −

1
2VxVt.

4. Noether’s theorem is coordinate-dependent. The use of Noether’s theorem to obtain a con-
servation law is coordinate-dependent since the action of a contact transformation can
transform a DE having a variational principle to one that does not have one. On the other
hand it is well-known that conservation laws are coordinate-independent in the sense that
a contact transformation maps a conservation law into a conservation law (see, for examp-
le [12].)

5. Artifice of a Lagrangian. One should be able to find the conservation laws of a given
system of DEs directly without the need to find a related functional whether or not the
given system is variational.
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3 Direct construction method to find conservation laws

Through the Direct Construction Method, one can get around the limitations of Noether’s
theorem. Here one works directly with a given system of DEs whether or not its linearized
system is self-adjoint. The starting point is the observation from equation (7) that conservation
laws obtained through Noether’s theorem arise from multipliers that must be local symmetries
of the given system of DEs (3). Moreover (from equations (8)), the local symmetries of a system
of DEs are the solutions of its linearized system. Now suppose we have a given system of M
differential equations

Gα[u] = Gα
(
x, u, ∂u, . . . , ∂Ku

)
= 0, α = 1, . . . ,M (10)

with n independent variables x = (x1, . . . , xn) and m dependent variables u = (u1, . . . , um). It
is understood that the system of DEs (10) includes all its differential consequences. The local
symmetry X = ησ[u] ∂

∂uσ is admitted by (10) if and only if

X(K)Gα[u]
∣∣∣
Gγ [u]=0, γ=1,...,M

= 0, α = 1, . . . ,M. (11)

Equations (11) are commonly called the linear determining equations for the local symmetries
admitted by the given system (10). Let L be the linearizing operator (Fréchet derivative) for sys-
tem (10) that arises from equations (11). Then the determining equations (11) can be expressed
as a linear system

Lη[u] = 0. (12)

The given system (10), as written, has a variational principle if and only if L is a self-adjoint
operator, i.e., L∗ = L where L∗ is the adjoint of L.

A set of multipliers {Λσ[U ]} yields a conservation law of the given system (10) if and only if

Λσ[U ]Gσ[U ] = DiΦi[U ]

for some {Φi[U ]}. Then the conservation law DiΦi[u] = 0 holds if U = u solves the given
system (10). The aim is to first find all such sets of multipliers {Λσ[U ]} for conservation laws
of (10) and then obtain the corresponding set of conserved densities {Φi[u]} for each set of
multipliers. The determining equations for multipliers result from the following theorem that
can be proved by direct computation.

Theorem 1. A set of multipliers {Λσ[U ]} yields a conservation law of the given system of
differential equations (10) if and only if the equations

EUγ (Λσ[U ]Gσ[U ]) = 0, γ = 1, . . . ,m (13)

hold for arbitrary functions U = (U1(x), . . . , Um(x)).

The set of equations (13) are the linear determining equations for the multipliers for conser-
vation laws admitted by the given system (10). One can show [4, 6, 7, 8, 9, 19] that if {Λσ[U ]}
yields a conservation law for system (10), then for the adjoint operator L∗ of the linearization op-
erator L arising from the linear determining equations (12) for local symmetries of system (10),
one has

L∗Λ[u] = 0.

If L∗ = L, then Λσ[u] ∂
∂uσ is a local symmetry admitted by system (10); if L∗ 6= L, then Λσ[u] ∂

∂uσ

is not a local symmetry admitted by system (10). When L∗ = L, the determining equations (13)
include as a subset the set of determining equations for local symmetries admitted by system (10)
and in this case any solution of the determining equations (13) must be a variational symmetry.
Most importantly, given a set of multipliers {Λσ[U ]} yielding a conservation law for system (10),
the integral formulas for the corresponding conserved densities {Φi[u]} are given in [6, 7, 8, 9, 19].
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4 Use of symmetries to find new conservation laws from known
conservation laws

Any symmetry (discrete or continuous) admitted by a given system of DEs (10) maps a con-
servation law of (10) into another conservation law of (10). Usually, the same conservation law
of (10) is obtained. An admitted symmetry of system (10) induces a symmetry that leaves
invariant the linear determining system (13) for its multipliers. Hence, it follows that if we
determine the action of a symmetry on a set of multipliers {Λσ[U ]} for a known conservation
law of (10) to obtain another set of multipliers {Λ̂σ[U ]}, then a priori we see whether or not
a new conservation is obtained for (10).

Suppose the invertible point transformation

x = x(x̃, Ũ), U = U(x̃, Ũ), (14)

with inverse

x̃ = x̃(x,U), Ũ = Ũ(x,U),

is admitted by a given system of DEs (10). Then

Gα[U ] = Aβα[Ũ ]Gβ[Ũ ] (15)

holds for some {Aβα[Ũ ]}. One can easily prove the following theorem [12, 20].

Theorem 2. Under the point transformation (14), there exist functions Ψi[Ũ ] such that

J [Ũ ]DiΦi[U ] = D̃iΨi[Ũ ] (16)

where the Jacobian determinant

J [Ũ ] =
D(x1, . . . , xn)
D(x̃1, . . . , x̃n)

=

∣∣∣∣∣∣∣∣∣
D̃1x1 D̃1x2 · · · D̃1xn
D̃2x1 D̃2x2 · · · D̃2xn
...

...
...

...
D̃nx1 D̃nx2 · · · D̃nxn

∣∣∣∣∣∣∣∣∣ (17)

and

Ψi1 [Ũ ] = ±

∣∣∣∣∣∣∣∣∣
Φ1[U ] Φ2[U ] · · · Φn[U ]
D̃i2x1 D̃i2x2 · · · D̃i2xn
...

...
...

...
D̃inx1 D̃inx2 · · · D̃inxn

∣∣∣∣∣∣∣∣∣ . (18)

In (18), (i1, i2, . . . , in) denotes all cyclic permutations of the indices 1, 2, . . . , n and the ± sign
is chosen according to whether the permutation has even or odd order, i.e. (i1, i2, . . . , in) =
(1, 2, . . . , n), (2, 3, . . . , 1), . . . , (n, 1, . . . , n − 1) are alternately even and odd. The coordinates of
Φi[U ] in (16) are expressed in terms of the point transformation (14).

The following corollary results immediately from Theorem 2.

Corollary 1. If the point transformation (14) is admitted by the DE system (10), then a con-
servation law (4) of system (10) is mapped to a conservation law

DiΨi[u] = 0

of system (10) with conserved densities Ψi[u].
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In [3, 4, 21] it is shown how to obtain a conservation law from a known conservation law
through the action of the infinitesimal generator of an admitted continuous symmetry (in evo-
lutionary (characteristic) form) on the given conservation law. Here it is necessary to use diffe-
rential consequences of the given system (10) even in the case when the symmetry is equivalent
to a point or contact symmetry. A priori, one is unable to determine whether or not a new
conservation law is obtained.

Now suppose the set of multipliers {Λσ[U ]} yields a conservation law with densities Φi[u] of
a given system of DEs (10), i.e.,

Λσ[U ]Gσ[U ] = DiΦi[U ]. (19)

One can prove the following theorem [12].

Theorem 3. Suppose the point transformation (14) is admitted by (10) and {Λσ[U ]} is a set
of multipliers for a conservation law of (10) with conserved densities Φi[u]. Then

Λ̂β[Ũ ]Gβ[Ũ ] = D̃iΨi[Ũ ] (20)

where

Λ̂β[Ũ ] = J [Ũ ]Aβα[Ũ ]Λα[U ], β = 1, . . . ,M, (21)

with the coordinates of derivative terms in Λα[U ] expressed in terms of the natural extension
of transformation (14) to the derivatives of U [3, 4, 5, 19]. In (20), Ψi[Ũ ] are given by the
determinant (18) and, in (21), Aβα[Ũ ] are given by (15) and the Jacobian determinant J [Ũ ] is
given by (17).

After replacing the coordinates x̃i by xi, Ũσ by Uσ, Ũσi by Uσi , etc. in (20), one obtains the
following corollary.

Corollary 2. If {Λα[U ]} is a set of multipliers yielding a conservation law of system (10) ad-
mitting the point transformation (14), then {Λ̂β [U ]} yields a set of multipliers for a conservation
law of (10) where Λ̂β [U ] is given by (21) after replacing x̃i by xi, Ũσ by Uσ, Ũσi by Uσi , etc.
The set of multipliers {Λ̂β [U ]} yields a new conservation law of system (10) if and only if this
set is nontrivial on all solutions U = u(x) of system (10), i.e. Λ̂β [u] 6= cΛβ[u], β = 1, . . . ,M ,
for some constant c.

Now suppose the point transformation (14) is a one-parameter (ε) Lie group of point trans-
formations

x = x(x̃, Ũ ; ε) = eεX̃ x̃, U = U(x̃, Ũ ; ε) = eεX̃ Ũ (22)

in terms of its infinitesimal generator (and extensions) X̃ = ξj(x̃, Ũ) ∂
∂x̃j

+ ησ(x̃, Ũ) ∂
∂Ũσ

. If (19)
holds, then from (16) and the Lie group properties of (22), it follows that

J [U ; ε]eεX(Λσ[U ]Gσ[U ]) = DiΨi[U ; ε] (23)

in terms of the (extended) infinitesimal generator X = ξj(x,U) ∂
∂xj

+ ησ(x,U) ∂
∂Uσ .

Now assume that the Lie group of point transformations (22) is admitted by a given system
of DEs (10). Then for some {aβρα[U ]}, one has

eεXGα[U ] =
∑

ερaβραGβ[U ].
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Then, after expanding both sides of equation (23) in terms of power series in ε, one obtains an
expression of the form∑

εpΛ̂σ[U ; p]Gσ[U ] =
∑

εp Di

(
1
p!
dp

dεp
Ψi[U ; ε]

)∣∣∣∣
ε=0

. (24)

Corresponding to the sequence of sets of multipliers {Λ̂σ[U ; p]}, p = 1, 2, . . . , arising in expres-
sion (24), one obtains a sequence of conservation laws

Di

(
dp

dεp
Ψi[u; ε]

)∣∣∣∣
ε=0

= 0, p = 1, 2, . . .

for system (10) from its known conservation law DiΦi[u] = 0.
The results presented in this section extend to contact transformations in the case of a scalar

DE [12].

5 Connections between conservation laws
and nonlocal symmetries

Through useful conservation laws, one can obtain a tree of non-locally related systems and
subsystems for a given system of DEs. Such non-locally related systems lead to the possibility
of using Lie’s algorithm to seek nonlocal symmetries for the given system. For details of the
work discussed in this section see [5, 13, 14] and references therein.

In this section, let x = (x1, x2) = (t, x); u = (u1, . . . , um). Consider a given system of PDEs

Gα[u] = Gα(t, x, u, ∂u, . . . , ∂ku) = 0, α = 1, . . . ,M. (25)

Suppose G1[u] is written as a conservation law:

G1[u] = DtT [u] +DxX[u] = 0. (26)

Then through the conservation law (26), one can introduce an auxiliary potential dependent
variable v. It is easy to see that system (25) is non-locally equivalent to the potential system

vt +X[u] = 0,
vx − T [u] = 0,
Gα[u] = 0, α = 2, . . . ,M. (27)

Suppose a point symmetry (not in evolutionary form)

X = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t
+ ηj(x, t, u, v)

∂

∂uj
+ φ(x, t, u, v)

∂

∂v

is admitted by the equivalent potential system (27). Then X yields a nonlocal symmetry of the

given system (25) if and only if (ξv)2 + (τv)2 +
m∑
j=1

(ηjv)2 6= 0.

Now suppose none of the equations of a given system of PDEs (25) is written as a conservation
law. Suppose the set of multipliers {Λσ[U ]} yields a conservation law of system (25), i.e.,

Λσ[U ]Gσ[U ] = DtT [U ] +DxX[U ]. (28)

Suppose for some β,Λβ[U ] 6= 0 and suppose every solution of the system Λβ [u] = 0, Gσ[u] = 0,
σ = 1, . . . ,M with σ 6= β, is also a solution of the given system of PDEs (25). Then the
conservation law (28) is said to be a useful conservation law of system (25). In the case of
a useful conservation law (without loss of generality β = 1), the given system of PDEs (25)
is non-locally equivalent to a resulting potential system of the form (27) since this equivalence
follows when one replaces Λ1[u]G1[u] = 0 by the potential equations (27a,b).
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6 Connections between symmetries and conservation laws
for linearization

In [5, 16], the following two theorems are proven for determining whether or not a given nonlinear
system of PDEs (10) can be invertibly mapped to some linear system of PDEs and to find such
a mapping when it exists in terms of admitted symmetries of the nonlinear system. Here we
present the theorems when the number of dependent variables m ≥ 2.

Theorem 4 (Necessary conditions for the existence of an invertible mapping). If
there exists an invertible transformation that maps a given nonlinear system of PDEs (10) to
some linear system of PDEs, then

1. the mapping must be a point transformation of the form

zj = φj(x, u), j = 1, 2, . . . , n,
wγ = ψγ(x, u), γ = 1, 2, . . . ,m; (29)

2. the given system of PDEs (10) must admit an infinite-parameter Lie group of point trans-
formations having an infinitesimal generator

X = ξi[u]
∂

∂xi
+ ην [u]

∂

∂uυ
(30)

with each ξi[u], ην [u] characterized by

ξi[u] =
m∑
σ=1

ασi (x, u)F
σ(x, u), ην [u] =

m∑
σ=1

βσν (x, u)F σ(x, u), (31)

where ασi , β
σ
ν are specific functions of x and u, and F = (F 1, F 2, . . . , Fm) is an arbitrary

solution of some linear system of PDEs

LF = 0 (32)

with L representing a linear differential operator in terms of some independent variables
X = (X1(x, u), X2(x, u), . . . , Xn(x, u)).

Theorem 5 (Sufficient conditions for the existence of an invertible mapping). Suppose
a given nonlinear system of PDEs (10) admits an infinitesimal generator (30) whose coefficients
are of the form (31) with F being an arbitrary solution of some linear system (32) with specific
independent variables X = (X1(x, u), X2(x, u), . . . , Xn(x, u)). If the linear homogeneous system
of m first order PDEs for the scalar function Φ given by

ασi (x, u)
∂Φ
∂xi

+ βσν (x, u)
∂Φ
∂uν

= 0, σ = 1, 2, . . . ,m, (33)

has n functionally independent solutions X1(x, u), X2(x, u), . . . , Xn(x, u), and the linear system
of m2 first order PDEs

ασi (x, u)
∂ψγ

∂xi
+ βσν (x, u)

∂ψγ

∂uν
= δγσ, γ, σ = 1, 2, . . . ,m, (34)

where δγσis the Kronecker symbol, has a solution ψ = (ψ1(x, u), ψ1(x, u), . . . , ψm(x, u)), then
the invertible mapping given by

zj = φj(x, u) = Xj(x, u), j = 1, 2, . . . , n,
wγ = ψγ(x, u), γ = 1, 2, . . . ,m,
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transforms the nonlinear system of PDEs (10) to the linear system of PDEs given by

Lw = g(z)

for some function g(z).

The theorems for linearization through admitted infinite-parameter groups have their counter-
parts for admitted multipliers for conservation laws [13]. This follows first from the observation
that for any linear operator L and its adjoint operator L∗, one has the well-known relationship

V LU − UL∗V = DiP
i[U, V ] (35)

for some P i[U, V ] that depend bilinearly on any functions U(x), V (x) and their derivatives to
some finite order. Hence if a given system of PDEs (10) is linear, i.e., it is of the form

Lu = 0, (36)

then any set of multipliers {Λσ(x)} satisfying

L∗Λ(x) = 0 (37)

yields a conservation law for system (35).
The above observation combined with the result that a point transformation (29) maps any

conservation law of a given system of PDEs into a conservation law of another system of PDEs
in terms of the variables of the point transformation [12], shows that if a given nonlinear system
of PDEs (10) is linearizable by a point transformation (29), then it is necessary that (10) admits
a set of multipliers {Λσ[U ]} of the form

Λσ[U ] = Aσρ [U ]F ρ(X); (38)

Aσρ are specific functions of x, U and derivatives of U to some finite order, and X = (X1(x,U),
X2(x,U), . . . , Xn(x,U)) are specific functions of x and U with the property that if U = u is
any solution of the given nonlinear system (10), then for some linear operator L∗ in terms of
independent variables z = X = (X1(x, u), X2(x, u), . . . , Xn(x, u)), one has

L∗F = 0. (39)

If a given nonlinear system (10) can be mapped by a point transformation (29) into a linear
system Lw = 0, then the operator L∗ in (39) is the adjoint of L.

The results presented in this section extend to contact transformations in the case of a scalar
DE [5, 13, 15, 16, 17, 18].

In summary, if a given nonlinear system of PDEs can be mapped invertibly into a linear
system, then its admitted symmetries yield the linear system and the mapping to the linear
system whereas its admitted multipliers yield the adjoint linear system. Further details on
linearization through conservation laws will appear in [18].

7 Examples

Now we illustrate all of the above connections between symmetries and conservation laws through
several examples involving the nonlinear telegraph (NLT) equation

utt − (F (u)ux)x − (G(u))x = 0. (40)
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For any (F (u), G(u)) pair, from PDE (40) written as a conservation law, we obtain potential
systems

G1[u, v] = vt − F (u)ux −G(u) = 0,
G2[u, v] = vx − ut = 0; (41)
H1[u, v, w] = G1[u, v] = 0,
H2[u, v, w] = wt − v = 0,
H3[u, v, w] = wx − u = 0. (42)

The point symmetry classification of the NLT scalar equation (40) appears in [18]. The point
symmetry classification of the potential system (41) yields nonlocal symmetries for the NLT
equation (40) for a very wide class of (F (u), G(u)) pairs [23]. For specific (F (u), G(u)) pairs,
the conservation law classification results for potential system (41) yield additional useful con-
servation laws and an extended tree of non-locally related systems [14, 24]. For the potential
system (41), it is interesting to compare its conservation law and point symmetry classifica-
tions [25].

7.1 Nonlocal symmetries

The point symmetry

X = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t
+ η(x, t, u, v)

∂

∂u
+ φ(x, t, u, v)

∂

∂v
(43)

is admitted by the potential system (41) if and only if the system of determining equations

ξv − τu = 0,
ηu − φv + ξx − τt = 0,
G(u)[ηv + τx] + ηt − φx = 0,
ξu − F (u)τv = 0,
φu −G(u)τu − F (u)ηv = 0,
G(u)ξv + ξt − F (u)τx = 0,
F (u)[φv − τt + ξx − ηu − 2G(u)τv]− F ′(u)η = 0,
G(u)[φv − τt −G(u)τv]− F (u)ηx −G′(u)η + φt = 0,

holds for arbitrary values of x, t, u, v. One can show [23] that the potential system (41) yields
a nonlocal symmetry of the NLT equation (40) if and only if

(c3u+ c4)F ′(u)− 2(c1 − c2 −G(u))F (u) = 0,

(c3u+ c4)G′(u) +G2(u)− (c1 − 2c2 + c3)G(u)− c5 = 0, (44)

for arbitrary constants ci, i = 1, . . . , 5. Moreover, the potential system (41) allows (40) to be
linearizable (by a nonlocal transformation) if and only if in (44), one has c1 = 0, c5 = c2(c3−c2).
For any (F (u), G(u)) pair satisfying ODE system (44), the potential system (41) admits a point
symmetry of the form (43) with

ξ = c1x+
∫
F (u)du,

τ = c2t+ v,

η = c3u+ c4,

φ = c5t+ (c1 − c2 + c3)v,

which in turn yields a nonlocal symmetry admitted by the given NLT equation (40) since τ has
an essential dependence on v.
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7.2 Conservation laws

The multipliers [Λ1,Λ2] = [α(x, t, U, V ), β(x, t, U, V )] yield a conservation law of the NLT po-
tential system (41) if and only if for the Euler operators EU , EV one has

EU (αG1[U, V ] + βG2[U, V ]) ≡ 0,
EV (αG1[U, V ] + βG2[U, V ]) ≡ 0, (45)

for arbitrary differentiable functions U(x, t), V (x, t). Equations (45) reduce to the following
determining equations for the multipliers:

βV − αU = 0,
βU − F (U)αV = 0,
βx − αt −G(U)αV = 0,
F (U)αx − βt − [G(U)α]U = 0. (46)

For any solution of the determining equations (46), one can show that the corresponding con-
served densities are given by

X = −
∫ u

a
α(x, t, s, b)ds−

∫ v

b
β(x, t, u, s)ds−G(a)

∫ x

α(s, t, a, b)ds,

T =
∫ u

a
β(x, t, s, b)ds+

∫ v

b
α(x, t, u, s)ds,

in terms of arbitrary constants a and b.
In solving the determining equations (46), it turns out that three cases arise in terms of

classifying functions d(U) and h(U) given by

d(U) = G′2F ′′′ − 3G′G′′F ′′ + (3G′′2 −G′G′′′)F ′,

h(U) = G′2G(4) − 4G′G′′G′′′ + 3G′′3.

In particular, one must separately consider the cases d(U) = h(U) = 0; d(U) 6= 0, h(U) ≡ 0;
d(U) 6= 0, h(U) 6= 0. For further details, see [24].

Example 1. As a first example, consider the NLT potential system

vt + (1− 2e2u)ux − eu = 0,
vx − ut = 0. (47)

After solving the corresponding determining equations (44), one can show that potential sys-
tem (47) admits the set of multipliers

α = e−
1
2
(U+t/

√
2) sin

(
1
2

(
V +

x+ 2eU√
2

))
,

β = −e−
1
2
(U+t/

√
2)

[√
2eU sin

(
1
2

(
V +

x+ 2eU√
2

))
+ cos

(
1
2

(
V +

x+ 2eU√
2

))]
(48)

with corresponding densities

T = −2e−
1
2
(u+t/

√
2) cos

(
1
2

(
v +

x+ 2eu√
2

))
,

X = 2e−
1
2
(u+t/

√
2)

[√
2eu cos

(
1
2

(
v +

x+ 2eu√
2

))
− sin

(
1
2

(
v +

x+ 2eu√
2

))]
. (49)
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Example 2. As a second example, consider the NLT potential system

vt − (sech2u)ux + tanhu = 0,
vx − ut = 0. (50)

The potential system (50) admits the set of multipliers

α = ex(2x+ t2 − V 2 − 2 log(coshU)), β = 2ex(V tanhU − t) (51)

with corresponding densities

T = ex
[
2tu− 1

3
v3 + v(t2 + 2x− 2 log(coshu))

]
,

X = ex
[
(v2 − t2 − 2x+ 2(1 + log(coshu))) tanhu− 2(tv + u)

]
. (52)

7.3 Symmetry action on conservation laws to yield new conservation laws

Example 3. The NLT potential system (47) obviously admits the discrete reflection symmetry

(t, x, u, v) = (−t̃, x̃, ũ,−ṽ) (53)

and the one-parameter (ε) family of translations

(t, x, u, v) = (t̃, x̃, ũ, ṽ + ε). (54)

Applying these symmetries to (48), (49), one is able to find three more conservation laws for
system (47).

The reflection symmetry (53) applied to (48) yields a second set of multipliers

[α2, β2] = [−α(x,−t, U,−V ), β(x,−t, U,−V )] (55)

with corresponding densities

[T2, X2] = [T (x,−t, u,−v),−X(x,−t, u,−v)]. (56)

The translation symmetry (54) applied to (48), (49) yields a third set of multipliers (from the
O(ε) term in the corresponding expression (24))

[α3, β3] = [α(x, t, U, V + π), β(x, t, U, V + π)] (57)

and conserved densities

[T3, X3] = [T (x, t, u, v + π), X(x, t, u, v + π)]. (58)

Finally, the reflection symmetry (53) applied to (57), (58) yields a fourth set of multipliers
[α4, β4] = [−α(x,−t, U,−V − π), β(x,−t, U,−V − π)] with corresponding densities [T4, X4] =
[T (x,−t, u,−v − π),−X(x,−t, u,−v − π)].

Example 4. The NLT potential system (50) obviously admits the one-parameter (ε) family of
translations

(t, x, u, v) = (t̃+ ε, x̃, ũ, ṽ) (59)

as well as the point symmetry associated with the infinitesimal generator

X = v
∂

∂t
+ tanhu

∂

∂x
+

∂

∂u
+ t

∂

∂v
. (60)
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Applying these two symmetries to (51), (52), one is able to generate three more conservation
laws as follows.

From the O(ε) and O(ε2) terms that result from the corresponding expression (24) when (59)
is applied to (51), (52), one respectively obtains two new sets of multipliers [α2, β2] = [tex,−ex],
[α3, β3] = [ex, 0] and conserved densities [T2, X2] = [ex(tv + u),−ex(v + t tanhu)], [T3, X3] =
[exv,−ex tanhu]. The O(ε) term that arises from expression (24) when symmetry (60) is applied
to [α2, β2], [T2, X2] yields a fourth set of multipliers [α4, β4] = [exV,−ex tanhU ] and correspon-
ding conserved densities [T4, X4] =

[
ex

(
1
2v

2 + log(coshu)
)
,−exv tanhu

]
.

7.4 Linearization

Now we consider two examples of NLT potential systems that can be linearized and see how this
can be done from admitted symmetries and observed from admitted multipliers for conservation
laws.

Example 5. The quasilinear NLT potential system

vt − F (u)ux = 0,
vx − ut = 0, (61)

admits the point symmetry X = A(u, v) ∂∂x +B(u, v) ∂∂t with

Au − F (u)Bv = 0,
Av −Bu = 0. (62)

In the symmetry Theorems 1 and 2, let x1 = t, x2 = x, u1 = u, u2 = v. Then the conditions
in Theorem 1 yield F 1 = B(u, v), F 2 = A(u, v), α1

1 = α2
2 = 1, α1

2 = α2
1 = 0, βσν = 0 with

the linear system given by (62) for (X1, X2) = (u, v). Here system (33) becomes Φt = Φx = 0
with functionally independent solutions X1 = u, X2 = v; system (34) becomes ∂ψ1

∂t = ∂ψ2

∂x = 1,
∂ψ1

∂x = ∂ψ2

∂t = 0 and has as a solution ψ1 = t, ψ2 = x. This yields the well-known hodograph
transformation z1 = u, z2 = v, w1 = t, w2 = x that maps (61) to the linear system xu−F (u)tv =
0, xv − tu = 0.

On the other hand, system (61) admits multipliers [Λ1,Λ2] = [a(U, V ), b(U, V )] satisfying the
linear system of PDEs

bV + aU = 0,
bU + F (U)aV = 0. (63)

Observe that system (63) is the adjoint of system (62).

Example 6. The NLT potential system

vt − u−2ux − u−1 = 0,
vx − ut = 0, (64)

admits the point symmetry X = −u−1A(û, v) ∂∂x +B(û, v) ∂∂t +A(û, v) ∂
∂u , û = x+ log u, with

Av +Bû = 0,
Aû +Bv −A = 0. (65)

Here the conditions in Theorem 1 yield F 1 = B(û, v), F 2 = A(û, v), α1
1 = 1, α2

2 = −u−1, α2
1 =

α1
2 = 0, β2

1 = 1, β1
1 = β2

2 = β1
2 = 0 with the linear system given by (65) for (X1, X2) = (û = x+
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log u, v). System (33) becomes Φt = 0, Φu − u−1Φx = 0 with functionally independent solutions
X1 = û, X2 = v; system (34) becomes ∂ψ1

∂t = 1, ∂ψ1

∂u − u−1 ∂ψ1

∂x = 0, ∂ψ
2

∂t = 0, ∂ψ2

∂u − u−1 ∂ψ2

∂x = 1
and has as a solution ψ1 = t, ψ2 = u. This yields the transformation z1 = û = x+ log u, z2 = v,
w1 = t, w2 = u that maps (64) to the linear system ∂w2

∂z2
+ ∂w1

∂z1
= 0, ∂w2

∂z1
+ ∂w1

∂z2
− w2 = 0.

On the other hand, system (64) admits multipliers for conservation laws given by [Λ1,Λ2] =
[Ua(Û , V ), b(Û , V )], Û = x+ logU, with

aV + bÛ = 0,
aÛ + bV + a = 0. (66)

Again observe that system (66) is the adjoint of system (65).
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