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Abstract. A generalized version of the so-called chiral quark soliton model (CQSM) in
nuclear physics is introduced. The Hamiltonian of the generalized CQSM is given by a Dirac
type operator with a mass term being an operator-valued function. Some mathematically
rigorous results on the model are reported. The subjects included are: (i) supersymmetric
structure; (ii) spectral properties; (iii) symmetry reduction; (iv) a unitarily equivalent model.
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1 Introduction

The chiral quark soliton model (CQSM) [5] is a model describing a low-energy effective theory
of the quantum chromodynamics, which was developed in 1980’s (for physical aspects of the
model, see, e.g., [5] and references therein). The Hamiltonian of the CQSM is given by a Dirac
type operator with iso-spin, which differs from the usual Dirac type operator in that the mass
term is a matrix-valued function with an effect of an interaction between quarks and the pion
field. It is an interesting object from the purely operator-theoretical point of view too. But
there are few mathematically rigorous analyses for such Dirac type operators (e.g., [2], where
the problem on essential self-adjointness of a Dirac operator with a variable mass term given by
a scalar function is discussed).

In the previous paper [1] we studied some fundamental aspects of the CQSM in a mathemat-
ically rigorous way. In this paper we present a slightly general form of the CQSM, which we call
a generalized CQSM, and report that results similar to those in [1] hold on this model too, at
least, as far as some general aspects are concerned.

2 A Generalized CQSM

The Hilbert space of a Dirac particle with mass M > 0 and iso-spin 1/2 is taken to be
L?(R3;C*) ® C2. For a generalization, we replace the iso-spin space C? by an abitrary com-
plex Hilbert space K. Thus the Hilbert space H in which we work in the present paper is given
by

H:=L*R*CHeK.

We denote by B(K) the Banach space of all bounded linear operators on K with domain A.
Let T : R® — B(K); R? > & = (21,22,73) — T(z) € B(K) be a Borel measurable mapping
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such that, for all x € R3, T(x) is a non-zero bounded self-adjoint operator on K such that

IT||0o := sup ||T(x)] < oo, where ||T'(x)|| denotes the operator norm of T'(x).
zER3

Example 1. In the original CQSM, K = C? and T(z) = 7 - n(x), where n : R? — R3 is a
measurable vector field with |n(x)| = 1, a.e. (almost everywhere) & € R? and 7 = (71, 72, 73) is
the set of the Pauli matrices.

We denote by {1, a9, as, 3} the Dirac matrices, i.e., 4 x 4-Hermitian matrices satisfying
{aj,apy =26,  {aj,B}=0, p*=1, k=123,
where {A, B} := AB + BA.
Let F : R3 — R be measurable, a.e., finite and
Up :=(cosF) @I +i(sin F)y; @ T,

where I denotes identity and 5 := —iajagas. We set a := (a1, a9, a3) and V := (Dq, Da, D3)
with D; being the generalized partial differential operator in the variable x;. Then the one
particle Hamiltonian of a generalized CQSM is defined by

H:=—ia-V&I+MPBI)Up

acting in the Hilbert space H. For a linear operator L, we denote its domain by D(L). It
is well-known that —ic - V is self-adjoint with D(—ia - V) = H?ZID(Dj). Since the operator
M(B @ I)Up is bounded and self-adjoint, it follows that H is self-adjoint with domain D(H) =
ﬂ?le(Dj ®I) = HY(R?*; C* ® K), the Sobolev space of order 1 consisting of C* ® K-valued
measurable functions on R3. In the context of the CQSM, the function F is called a profile
function. In what follows we sometimes omit the symbol of tensor product ® in writing equations
down.

Example 2. Usually profile functions are assumed to be rotation invariant with boundary
conditions

F(0) = —m, lim F(x)=0.

|| —o0

The following are concrete examples [6]:

(I)  F(x)=—mexp(—|z|/R), R =0.55 x 10" m;

(1) F(@) = —r{as exp(—[@]/R1) + az exp(—[w]*/ B},

a1 = 0.65, R; =058 x 107 m, as = 0.35, Ry =v0.3x 10 P m;
(IT) F(x) = —7 (1 — \/ﬁw> ., A=104x10"Pm.
We say that a self-adjoint operator A on H has chiral symmetry if 75 A C A~s.

Proposition 1. The Hamiltonian H has no chiral symmetry.

Proof. It is easy to check that, for all v € D(H), 51 € D(H) and [vs, H]tp = 2M~56Up.
Note that Ur # 0. Hence, [vs, H] # 0 on D(H). [

We note that, if F and T are differentiable on R® with sup|0; F(x)| < oo and sup||0;T(z)|| < oo
zER3 zeR3
(j = 1,2,3), then the square of H takes the form
H?> = (~A+M*)®I—iMBa - (VUR) + M*sin®> F @ (T? - I).

This is a Schrodinger operator with an operator-valued potential.
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3 Operator matrix representation

For more detailed analyses of the model, it is convenient to work with a suitable representa-
tion of the Dirac matrices. Here we take the following representation of o and 3 (the Weyl
representation):

o 0 01
o= (T 5 ) =(10)

where o1, o2 and o3 are the Pauli matrices. Let o := (01, 02,03) and
Op:=(cosF)@I+i(sinF)1T.

Then we have the following operator matrix representation for H:
—io -V Mo}
H= .
M(I)F io0-V
4 Supersymmetric aspects

Let ¢ : R3 — B(K) be measurable such that, for all z € R3, £(z) is a bounded self-adjoint
operator on K and &(x)? = I, Vx € R3. Let

[(x):=ipA0E(x), =R
We define an operator I'onH by

(T () := T(x)(x), Vv eH, a.e. x € R3.
The following fact is easily proven:

Lemma 1. The operator I is self-adjoint and unitary, i.e., it is a grading operator on H:
M*=r,1r=r

Theorem 1. Suppose that £ is strongly differentiable with sup ||0;¢(x)| < oo (j =1,2,3) and
zE€R3

3
D~ a;® Dig(w) = M3 {&(w), T(w)} sin F(). (1)

Then I D(H) € D(H) and {T',H}¢ =0, V¢ € D(H).

Proof. For all ¢ € Dy := C°(R?) ®a1g (C?* ® K) (®a1g denotes algebraic tensor product), we
have

DTy = ivs8® (D;€)v + ivs8 @ £(D;j). (2)

By a limiting argument using the fact that Dg is a core of D; ® I, we can show that, for
all ¥ € D(D;), I' is in D(D;) and (2) holds. Hence, for all ¢» € D(H), I'y € D(H) and (2)
. 3
holds. Thus we have for all ¢» € D(H) {I', H}¢p = C19+ Coyp with C := Y {8®¢, o D;} and
j=1
Cy == iM{v®¢&, BUr}. Using the fact that {5, 3} = 0 and [y5, ;] =0 (j = 1,2, 3), we obtain
3

Cip = —v6(> ojD;€)tp. Similarly direct computations yield (Cotp)(x) = —M sin F(x) ®
j=1

{&(x), T(x)}p(z). Thus (1) implies {I", H}t) = 0. ]
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Theorem 1 means that, under its assumption, H may be interpreted as a generator of a su-
persymmetry with respect to T'.

Example 3. Consider the case K = C2. Let f,g : R3 — R be a continuously differentiable
function such that

(14 C?) f(x)* + g(z)* = 1.
with a real constant C # 0 and n(z) := (f(x), Cf(x), g(x)). Then |n(x)| =1,V x € R3. Let

. c 1
= T — T,
Viter ' Jixer?

Then ¢2 = I and (&, T) satisfies (1).

T(x) =1 -n(x).

To state spectral properties of H, we recall some definitions. For a self-adjoint operator S,
we denote by o (.5) the spectrum of S. The point spectrum of S, i.e., the set of all the eigenvalues
of S is denoted op,(S). An isolated eigenvalue of S with finite multiplicity is called a discrete
eigenvalue of S. We denote by 04(S) the set of all the discrete eigenvalues of S. The set
Oess(S) := 0 (5) \ 0q(9) is called the essential spectrum of S.

Theorem 2. Under the same assumption as in Theorem 1, the following holds:
(i) o(H) is symmetric with respect to the origin of R, i.e., if X € o(H), then —\ € o(H).
(ii) ox(H) (# = p,d) is symmetric with respect to the origin of R with
dimker(H — \) = dimker(H — (—A))
for all A € o4 (H).
(iil) oess(H) is symmetric with respect to the origin of R.

Proof. Theorem 1 implies a unitary equivalence of H and —H (fH I!'=—-H ). Thus the
desired results follow. |

Remark 1. Suppose that the assumption of Theorem 1 holds. In view of supersymmetry
breaking, it is interesting to compute dim ker H. This is related to the index problem: Let

Hy :=ker(l—1), H_:=ker(I'+1)
and

Hy := H|H+.

Then H; (resp. H_) is a densely defined closed linear operator from H, (resp. H_) to H_
(resp. H4) with D(Hy) = D(H)N'H4 (resp. D(H_) = D(H) N D(H-)). Obviously

ker H =ker Hy @ ker H_.
The analytical index of H is defined by
index(H ) := dimker H, — dimker HY,

provided that at least one of dimker H; and dimker HY is finite. We conjecture that, for a
class of F' and T, index(Hy) = 0.
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5 The essential spectrum and finiteness
of the discrete spectrum of H

5.1 Structure of the spectrum of H

Theorem 3. Suppose that dim K < co and

| l‘im F(x)=0. (3)
Then

ess(H) = (—00, —M] U [M, o0), (4)

oa(H) C (=M, M). (5)

Proof. We can rewrite H as H = Hy® I +V with Hy := —iaa- V+ MpB and V := M(B® I)
(Ur — I). We denote by xr (R > 0) the characteristic function of the set {x € R3||x| < R}. It
is well-known that, for all z € C\ R, (Hy — 2z) "'\ is compact [7, Lemma 4.6]. Since K is finite
dimensional, it follows that (Ho ® I — 2z)"'xr ® I is compact. We have

T 2
V@)l < M({eos Fla) ~ 1]+ lsin Fl@)Tl) < 31 (F55 4 @17 ).

Hence, by (3), we have lim sup [|[V(x)|| = 0. Then, in the same way as in the method

R—00 |g|>R
described on [7, pp. 115-117], we can show that, for all z € C\ R, (H — 2)"! — (Hy® I — 2)~!
is compact. Hence, by a general theorem (e.g., [7, Theorem 4.5]), 0ess(H) = 0ess(Ho ® I). Since
Oess(Ho) = (—o00, —M|U[M, o0) (|7, Theorem 1.1]), we obtain (4). Relation (5) follows from (4)
and oq(H) = o(H) \ 0ess(H). [ |

5.2 Bound for the number of discrete eigenvalues of H

Suppose that dim K < oo and (3) holds. Then, by Theorem 3, we can define the number of
discrete eigenvalues of H counting multiplicities:

Ny = dimRan Ey((—M, M)), (6)

where Ey is the spectral measure of H.
To estimate an upper bound for Ny, we introduce a hypothesis for F' and T

Hypothesis (A).
3
(i) T(z)? =1,V x € R® and T is strongly differentiable with Y (D;T(z))? being a multipli-
j=1

cation operator by a scalar function on R3.

(ii) F € CL(R3).

(it)) sup [D;F(z)] < o0, sup [ DT (@)]| < o0 (j = 1,2,3).
zER3 xcR3

Under this assumption, we can define

3
Vp(z) =, |[VF(@)]> + Y _(D;T(x))?sin® F(x).
j=1
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Theorem 4. Let dim K < co. Assume (3) and Hypothesis (A). Suppose that

Cp = /}R6 Vr(2)Vr(y)

=y dxdy < oo.

Then Ny is finite with

(dim K) M2C
Nyg< —+—
H = 472

A basic idea for the proof of Theorem 4 is as follows. Let
L(F) := H?> — M>.

Then we have

0o Wi
L(F)_—A+M( W 0F>

with Wg := 10 - V®p. Note that
WiWp = WeW;5 = VA,
Let
Lo(F) :=—-A—MVp.
For a self-adjoint operator .S, we introduce a set
N_(S) := the number of negative eigenvalues of S counting multiplicities.

The following is a key lemma:

Lemma 2.

Ni < N_(L(F)) < N_(Lo(F)). (7

~—

Proof. For each A € oq(H) N (=M, M), we have ker(H — \) C ker(L(F) — E)) with E) =
A2 — M? < 0. Hence the first inequality of (7) follows. The second inequality of (7) can
be proven in the same manner as in the proof of [1, Lemma 3.3], which uses the min-max
principle. |

On the other hand, one has

N_(Lo(F)) < @hnﬁi)é\ﬂé‘p

(the Birman—Schwinger bound [4, Theorem XIII.10]). In this way we can prove Theorem 4.
As a direct consequence of Theorem 4, we have the following fact on the absence of discrete
eigenvalues of H:

Corollary 1. Assume (3) and Hypothesis (A). Let (dim K)M?Cp < 4w2. Then oq(H) = @,
i.e., H has no discrete eigenvalues.
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6 Existence of discrete ground states
Let A be a self-adjoint operator on a Hilbert space and bounded from below. Then
Ep(A) :==info(A)

is finite. We say that A has a ground state if Eq(A) € op(A). In this case, a non-zero vector in
ker(A — Ey(A)) is called a ground state of A. Also we say that A has a discrete ground state if
Eo(A) S Ud(A).

Definition 1. Let
Ef (H) :=inf [o(H) N [0,00)], Ey(H) :=suplo(H) N (—o0,0]].
(i) If Ear(H) is an eigenvalue of H, then we say that H has a positive energy ground state

and we call a non-zero vector in ker(H — EJ (H)) a positive energy ground state of H.

(ii) If E, (H) is an eigenvalue of H, then we say that H has a negative energy ground state
and we call a non-zero vector in ker(H — Ej (H)) a negative energy ground state of H.

(iii) If Ef (H) (vesp. Ey (H)) is a discrete eigenvalue of H, then we say that H has a discrete
positive (resp. negative) energy ground state.

Remark 2. If the spectrum of H is symmetric with respect to the origin of R as in Theorem 2,
then Ej (H) = —E, (H), and H has a positive energy ground state if and only if it has a negative
energy ground state.

Assume Hypothesis (A). Then the operators
Si(F):=—-A=+ M(DscosF)

are self-adjoint with D(S4(F')) = D(A) and bounded from below.
As for existence of discrete ground states of the Dirac operator H, we have the following
theorem:

Theorem 5. Let dimK < oo. Assume Hypothesis (A) and (3). Suppose that Eo(S+(F)) < 0
or Eo(S_(F)) < 0. Then H has a discrete positive energy ground state or a discrete negative
ground state.

Proof. We describe only an outline of proof. We have
Tess(L(F)) = [0,00),  oa(L(F)) C [-M?,0).

Hence, if L(F') has a discrete eigenvalue, then H has a discrete eigenvalue in (=M, M). By the
min-max principle, we need to find a unit vector ¥ such that (U, L(F)¥) < 0. Indeed, for each
f € D(A), we can find vectors \I/]jcE € D(L(F)), such that <\Il?,L(F)\I/JjE> = (f,S+f). By the
present assumption, there exists a non-zero vector fo € D(A) such that (fo, S+(F)fo) < 0 or
(fo, S—(F) fo) < 0. Thus the desired results follow. [ |

To find a class of F' such that Ey(S+(F)) < 0 or Eg(S_(F)) < 0, we proceed as follows. For
a constant € > 0 and a function f on R?, we define a function f. on R? by

fe(z) = f(ex), =z eR%

The following are key Lemmas.
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Lemma 3. Let V : R — R be in L _(RY) and
S, =—-A+V..
Suppose that:

(i) For alle >0, S: is self-adjoint, bounded below and cess(Se) C [0, 00).
(ii) There exists a nonempty open set Q C {x € R4V (z) < 0}.

Then then there exists a constant g > 0 such that, for all € € (0,e0), Se has a discrete ground
state.

Proof. A basic idea for the proof of this lemma is to use the min-max principle (see [1, Lem-
ma 4.3]). [

Lemma 4. V : R?Y — R be continuous with V(x) — 0(|z| — o). Suppose that {x € RV (z) <
0} # @. Then:

(i) —A+V is self-adjoint and bounded below.
(i) Oess(—A 4+ V) =0, 00).

(ili) Se has a discrete ground state for all € € (0,e0) with some g > 0.

Proof. The facts (i) and (ii) follow from the standard theory of Schrédinger operators. Part (iii) fol-
low from a simple application of Lemma 3 (for more details, see the proof of [1, Lemma 4.4]). B

We now consider a one-parameter family of Dirac operators:
, 1
H., = (—i)a-V+ EM(ﬁ ®@ NUF..

Theorem 6. Let dim K < oo. Assume Hypothesis (A) and (3). Suppose that Dscos F is not
identically zero. Then there exists a constant €9 > 0 such that, for all € € (0,e0), H: has
a discrete positive energy ground state or a discrete negative ground state.

Proof. This follows from Theorem 5 and Lemma 4 (for more details, see the proof of [1, Theo-
rem 4.5]). [

7 Symmetry reduction of H
Let T1, T3 and T3 be bounded self-adjoint operators on K satisfying

2 _ s
TP=1,  j=1,23
T =iTs, Thls=iT), T3Ty =iTs.

Then it is easy to see that the anticommutation relations
{T;,Ti} = 2611, 5, k=1,2,3

hold. Since each T} is a unitary self-adjoint operator with T} # %1, it follows that
o(Ty) = op(T)) = {£1}.

We set T' = (11,15, T3).
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In this section we consider the case where T'(x) is of the following form:
T(x) =n(x)- T,

where n(x) is the vector field in Example 1. We use the cylindrical coordinates for points
x = (21,72, 73) € R3:

x1 =rcosb, To = rsinb, T3 = 2,

where 0 € [0,27), r > 0. We assume the following:

Hypothesis (B). There exists a continuously differentiable function G : (0,00) x R — R such
that

(i) F(z) = G(r,2), z € R3\ {0};
(i) lim G(r,z) =0;

r+|z|—o0

(iii) sup (|0G(r,z)/0r|+ |0G(r,z)/0z|) < oo.

r>0,zeR

We take the vector field n : R? — R3 to be of the form
n(z) := (sinO(r, z) cos(mb), sin O(r, z) sin(mb), cos O(r, 2)),

where © : (0,00) x R — R is continuous and m is a natural number.
Let L3 be the third component of the angular momentum acting in L?(R?) and

Kg::L3®I+%Eg®I+%I®T3 (8)
with X3 := 03 @ 03. It is easy to see that K3 is a self-adjoint operator acting in H.
Lemma 5. Assume that

O(er,ez) = O(r, 2), (r,z) € (0,00) x R, e>0. (9)
Then, for allt € R and € > 0, the operator equality

s f_o—itKs — (10)
holds.

Proof. Similar to the proof of [1, Lemma 5.2]. We remark that, in the calculation of
3
eZtKgT(m)e—ZtKg _ Z ethgnj (x)e—th;geztngTje—ztng’
7=1

the following formulas are used:
(Th cosmt — Ty sin mt)eitmT3 =T, (Ty sinmt + T; cos mt)eitmTi” =Ts. |

Definition 2. We say that two self-adjoint operators on a Hilbert space strongly commute if
their spectral measures commute.

Lemma 6. Assume (9). Then, for alle >0, H. and K3 strongly commute.

Proof. By (10) and the functional calculus, we have for all s,t € R eKs¢eisHe o=itKs — gisH-
which is equivalent to efseislle = ¢istl=¢itKs 5 ¢ ¢ R. By a general theorem (e.g., [3, Theo-

rem VIIL.13]), this implies the strong commutativity of K3 and H,. |
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Lemma 6 implies that H. is reduced by eigenspaces of K3. Note that

¢
o(K3) = op(K3) = {€+;+2’€€Z,s:il,t:il}.

The eigenspace of K3 with eigenvalue ¢ + (s/2) + (mt/2) is given by
Mpsi = M@Cs @74
with Cy := ker(33 — s) and 7; := ker(T5 — t). Then H has the orthogonal decomposition
H = Spezste{+1}Mes t-
Thus we have:
Lemma 7. Assume (9). Then, for all e >0, H. is reduced by each My .
We denote by H.(/,s,t) by the reduced part of H. to M, and set
H(l,s,t):= Hy({,s,t).
For s = +1 and ¢ € Z, we define

9?2 10 2 9
Y g L LMD, cosG
or2  ror + r2 + 022 ts cos

acting in L?((0,00) x R, rdrdz) with domain

Ly(G,¢) =

D(Ls(G,0)) := C5°((0,00) x R)
and set

Eo(Ls(G,0)) = inf LG, O f).
0( ( )) fecgo(((]’()o)XR)’”f”L2((O,oo)XR,rd'rdz):l<f ( >f>

The following theorem is concerned with the existence of discrete ground states of H (¢, s,t).

Theorem 7. Assume Hypothesis (B) and (9). Fiz an ¢ € Z arbitrarily, s = £1 and t = £1.
Suppose that dim 7; < co and

Eo(Ls(GL,0)) < 0.
Then H (¢, s,t) has a discrete positive energy ground state or a discrete negative ground state.

Proof. Similar to the proof of Theorem 5 (for more details, see the proof of [1, Theorem 5.5]). W

Theorem 8. Assume Hypothesis (B) and (9). Suppose that dimT; < oo and that D, cosG is
not identically zero. Then, for each ¢ € 7Z, there exists a constant €y > 0 such that, for all
e € (0,e9), each H.(¢,s,t) has a discrete positive energy ground state or a discrete negative
ground state.

Proof. Similar to the proof of Theorem 6 (for more details, see the proof of [1, Theorem 5.6]). W

Theorem 8 immediately yields the following result:

Corollary 2. Assume Hypothesis (B) and (9). Suppose that dim7; < oo and that D, cos G is
not identically zero. Let gy be as in Theorem 8 and, for each n € N and k > n (k,n € Z),

Vkn = I}1<iIl}<k£g. Then, for each ¢ € (0,v,), H: has at least (k — n) discrete eigenvalues
n+1<4<

counting multiplicities.

Proof. Note that o,(H:) = Uz, s t=+10p(H:(¢, 5, 1)). [
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8 A unitary transformation

We go back again to the generalized CQSM defined in Section 2. It is easy to see that the
operator

1 T 1-— T
Xp = _;75 exp (iF@ 2> + 275 exp (—iF@ 2)

is unitary. Under Hypothesis (A), we can define the following operator-valued functions:
Bj(z) := - D;[F(z)T(x)], =xcR®  j=1,23.

We set
B := (B, By, B3)

and introduce
H(B):=(-i)a-V+Mp—-0o-B

acting in H. Since o - B is a bounded self-adjoint operator, H(B) is self-adjoint with D(H(B)) =
N3_,D(D; @ I).

Proposition 2. Assume Hypothesis (A) and that T(x) is independent of . Then
XpHX;' = H(B).
Proof. Similar to the proof of [1, Proposition 6.1]. |

Using this proposition, we can prove the following theorem:

Theorem 9. Let dimK < oco. Assume Hypothesis (A) and that T'(x) is independent of x.
Suppose that

lim |VF(z)| = 0.

|| —o0
Then

Gees(H) = (—00, —M] U [M, o). (1)
Proof. By Proposition 2, we have gess(H) = 0ess(H(B)). By the present assumption, Bj(x) =

D;F(x)T(0)/2. Hence

3
sup [lo- B(z)| <Y _(IT(0)[/2) sup |D;jF(=)] =0  (R— o).
le|>R j=1 || >R

Therefore, as in the proof of Theorem 3, we conclude that oess(H (B)) = (—oo, —M]| U [M, o).
Thus (11) follows. u
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