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Abstract. We review the application of a duality-symmetric approach to gravity and
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1 Introduction

We are living in an epoch of Duality. Starting at the first half of the last century with Quantum
Mechanics, solid states and condensed matter physics, Duality was recognized at early 70th as
a very useful tool in studying high energy physics of strong interactions. Later on, Duality
was successfully applied for developing non-perturbative methods in QCD. Other interesting
observations on Duality in supergravities and perturbative String theory lent credence to Duality
as a key ingredient of a Unified Theory, whatever it would be.

A most promising way we could follow in our quest for a Unified Theory is the Superstring
theory [52, 66, 90]. However, the initial success in the development of string theory after the
“First Superstring revolution” revealed a drawback, when at the end of 80th it was understood
that the map of perturbative Superstring theory looks like
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Figure 1. Strings’ Theory map before the “Second Superstring Revolution”.
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Clearly, this picture demonstrated a very strange and unexpected feature of the String theory
such as having five consistent ten-dimensional Unified Theories instead of a naively expected
and desirable one Theory of Everything. Many questions were also addressed to the role of
eleven-dimensional supergravity in the picture, since it was hardly related to any Strings, and
its interpretation within Superstring theory was obscured. These and other related problems of
String theory were resolved with discovering different kinds of Dualities between String theories
in weak and strong coupling constant regimes [60]. As a result, the map of String theories was
modified to
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Figure 2. M-theory map.

The heart of the non-perturbative unification of String theories was christened M-theory. During
the last decade M-theory was under the active studying, but one should ascertain that our
knowledge of M-theory structure is still far from complete. Curiously enough, we had more strong
evidence on conjectured time ago quantum symmetries of M-theory such as U-duality [84], having
for the time being no classical M-theory description which would contain classical U-duality as
a symmetry group. We can also discuss a Landscape of all possible vacua of M-theory [98, 44],
bearing in mind at the same time a Landscepticism to this approach [8]. We can find various
scenario of appearing the de Sitter phase in M-theory Cosmology [68], having nowadays no good
mechanism of supersymmetry breaking and a solution to the cosmological constant problem. We
have known the spectrum of free higher-spin fields in String theory, but it is not clear to date
how to extract from M-theory a detailed information on higher-spin fields interactions. One can
continue this list of potential problems of M-theory, and most of these problems are indications
that little is known on a microscopic formulation of M-theory.

The role of eleven-dimensional supergravity [26] in M-theory picture becomes transparent: it
is the low-energy limit of M-theory. In its turn, ten-dimensional supergravities [92] correspond
to the low-energy limits of different superstrings when strings tension goes to infinity. Many
initial conjectures on dualities between string theories and M-theory were successfully proved
for corresponding supergravities. And vice versa, many substantial fragments of Dualities in
supergravities were regained for Strings.

Though Supergravity has been approved as a very useful tool in studying M-theory, such
an approach is apparently restrictive. The field content of (ungauged) D = 10 supergravities
consists only of massless fields which form the bottom of the whole spectrum of superstrings’
excitations. The total number of superstring modes is infinite, and other fields of Superstring
spectrum are massive, with masses of an order of the Plank mass. Clearly, these fields are too
heavy to include it in Supergravity as a low-energy effective theory constructed out of light
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fields. However, in the opposite to the low energy limit the string tension goes to zero, all the
String modes become massless, and we are going to tell on the high energy limit of String theory,
where the full hidden symmetry of String theory is restored. (To make the discussion on various
limits of String theory more transparent to the reader we add the corresponding Appendix.)
An effective field theory which will describe the high energy limit of String theory and will
manifestly be invariant under the full symmetry of String theory has to deal with infinite set of
massless higher-spin fields, and shall be a dual to Supergravity theory [53]. The strong coupling
limit of String theory could be obtained then via the hidden symmetry breaking upon coming
from ultra-high energies to the Plank energy. Hence, figuring out the full hidden symmetry
structure will supply us with an important information on the effective action of String theory
in the strong coupling regime.

So far we did not specify the String theory we will consider in the strong coupling regime.
However, the strong coupling limit of type IIA superstring theory is precisely M-theory [100, 106],
so following the way of the reasoning in the above we have to conclude that a symmetry of
M-theory shall be big enough to accommodate infinite number of fields: it has to be infinite-
dimensional!

An infinite-dimensional algebraic structure is common for Strings. A first quantized (su-
per)string theory is managed by the infinite-dimensional Virasoro algebra [101, 48], which is
a particular example of the Kac–Moody algebras [65]. The infinite-dimensional structure of an
M-theory symmetry should have an impact on the low-energy effective action. So, we could
pose a natural question: how would we observe fragments of this infinite-dimensional symmetry
inside of D = 11 supergravity?

A way of producing Kac–Moody structures in Supergravities is known: they come from the
toroidal dimensional reduction of D = 10/11 Supergravities. To be precise, the following chain
of En groups (E1 ∼ R+, E2 = A1, E3 = A2 ⊕A1, E4 = A4, E5 = D5; see e.g. [84])

E1 −→ E2 −→ E3 −→ E4 −→ E5 −→ E6 −→ E7 −→ E8

appears under dimensional reduction of D = 11 supergravity on

T1 −→ T2 −→ T3 −→ T4 −→ T5 −→ T6 −→ T7 −→ T8

and these global symmetry groups are in general hidden. To recover such a hidden symmetry
structure one should dualize higher-rank fields, with the rank r > (D− n)/2, that appear upon
the reduction on a n-dimensional torus Tn [23, 24, 25].

So far we did not succeed in our quest of a Kac–Moody structure. However, let us take
a conjecture that doing the reduction to D = 2 [62, 63, 80], D = 1 [63, 78] and, finally, to
D = 0 [76] we will further continue the En-series like

· · · −→ E9 −→ E10 −→ E11.

Once we accept this, we get what we need, because, algebraically, E9 is the (unique possible)
affine extension of E8, and a non-trivial affine extension of any Lie algebra corresponds to a
Kac–Moody algebra. The structure of E10, E11 is, of course, more complicated, but anyway this
is an extension of the Kac–Moody structure.

Remarkably, it was proved that the conjecture does work, at least when one reduces D = 11
Supergravity to two and to one dimensions, and indeed, E9 and E10 global symmetry algebras
appear [80, 74]. Hence, it is very likely that we can expect a still elusive E11 to also appear in
the end.

We have sketched out a scheme of appearance of the Kac–Moody algebras inside of Super-
gravity, but in a reduced theory. It is not a priori obvious that there exists a way to relate
algebraic structures of a reduced theory with that of the unreduced theory. But it turned out
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that it is really possible to identify the global symmetry groups of the dimensionally reduced
on Tn supergravities to the hidden symmetry group of M-theory [41]. Some observations in
favor of such an identification were made in mid 80th [42, 43, 77], and following them it was
demonstrated [67] that the “exceptional geometry” of the D = 3 maximal Supergravity admits
a re-formulation of D = 11 Supergravity in a E8 invariant way. Put it another way, some of the
objects which appear upon the reduction do naturally appear in the unreduced theory.

More evidence in favor of E11 as a hidden symmetry of M-theory was found in [102, 103, 93,
94, 104]. There it was considered a non-linear realization of gravity and of the bosonic sector
of maximal supergravities which is based on a generalization of Borisov–Ogievetsky formalism
[16, 85]. As well as D = 4 gravity [16, 85], D = 11 supergravity can be realized as to be invariant
under an infinite-dimensional group, which is the closure of a G11 invariance group [102] and the
conformal group SO(2, 10). The group G11 is formed out of the affine group IGL(11) extended
with the subgroup which is generated by antisymmetric type generators with three and six
indices. These new generators correspond to Ac1c2c3 gauge field of D = 11 supergravity and to
its dual partner Ac1c2···c6 , and form a subalgebra.

Being finite-dimensional, G11 is apparently not a Kac–Moody algebra, and its coset represen-
tatives (see [102]) are not members of a Borel subgroup of a larger group as it should be for the
coset formulation of the dimensionally reduced D = 11 supergravity [24, 25]. A way to overcome
this obstacle is to invoke more than just antisymmetric gauge fields duality in the picture and to
enlarge G11 with a generator corresponding to a dual to graviton field [103]. Then it turns out
that simple roots of a Kac–Moody algebra we seek are those of simultaneously sharing SL(11)
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Figure 3. Dynkin diagram of SL(11).

and E8 subalgebras
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Figure 4. Dynkin diagram of E8.

Gluing two Dynkin diagrams together leads to desired E11 = E+++
8
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Figure 5. Dynkin diagram of E11.

which is nothing but the extension of the E8 Dynkin diagram with three additional nodes, called
the very-extension of E8 [104, 49].

It has to be emphasized that a dual to graviton field was a missing point which should be
recovered for the following reasons. From the algebraic point of view, having new generator of
the dual to graviton field in a reduced E11 algebra is crucial for recovering the correct algebra for
a non-linear realization of type IIA supergravity [104]. This algebra includes generators of fields
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entering type IIA supergravity multiplet together with generators which correspond to their
Hodge dual partners. Hence, a non-linear realization based on this algebra results in a duality-
symmetric formulation of type IIA supergravity when fields of the supergravity multiplet and
their duals enter the formulation on an equal footing and from the very beginning. In its turn,
the structure of G11 dictates the duality-symmetric structure of D = 11 supergravity. Such
a duality-symmetric formulation of the antisymmetric gauge field sector was proposed in [5]
to couple a dynamical M5-brane [6, 1] to D = 11 supergravity. However, having just duality-
symmetric structure of the gauge sector in D = 11 is not enough to recover duality-symmetric
structure of type IIA supergravity after reduction [7]. It was straightforward once a dual to
graviton field would be taken into account [82], that we are further going to demonstrate.

Any duality-symmetric formulation double physical, i.e. on-shell, degrees of freedom as com-
pared to a standard approach. This mismatch is removed by imposing relations between dual
partners, the so-called duality relations. A minimal, but not convenient for further possible ap-
plications, way to take duality relations into account is to impose them by hand as an additional
part to equations of motion (see e.g. [13]). Following this way, we have to bear in mind that
further modifications of equations of motion, such as coupling to external sources, introducing
a non-trivial self-interaction of fields, taking into account quantum corrections etc., will require
an appropriate change of the duality relations which would be hard in general to guess. More
conveniently, but technically more complicated, is to figure out a way to derive duality relations
from an action as equations of motion (see [96] for a review). There are many roads to this end;
here we will mainly follow [86, 87, 88], reviewing in brief other approaches.

To summarize our Introduction, let us recall that the duality-symmetric structure of D = 11
supergravity is very natural on the way of dynamical realization of E11 conjecture, and if we
require the hidden symmetry algebra to be a Kac–Moody-type algebra, we have to figure out
a way of dualization of gravity.

The rest of the paper is organized as follows: in the following section we consider a warm-up
exercise of dualization of three-dimensional gravity with a cosmological constant. Though this
example cannot be considered as a general case, it nevertheless demonstrates some common
features of the dualization which will be helpful in further generalization of the dual description
to higher dimensions. In Section 3 we construct the on-shell dual gravity in the space-time of
dimensions higher than three. Then, in Section 4 we uplift our formulation at the off-shell level.
A brief review of the construction in the linearized approximation is given in Section 5, and
our conclusions are summarized in the last section. Remarks on the construction, discussion
on formulations we use and examples of application are adduced throughout the paper. Our
notation and conventions, as well as an informative summary on different limits of String theory,
are collected in two Appendices.

2 Dualization of D = 3 gravity

We are getting started with the action of D = 3 gravity with a cosmological constant λ

S =
∫
d3x

√
g(R+ λ), (2.1)

and the inclusion of non-zero cosmological constant into the action is important for the sub-
sequent dualization of the model. It will also be convenient for this purpose to present the
originally second order action (2.1) in the form of the Hilbert–Palatini first order action

S =
∫
d3x

[
εmnkeka

(
1
2
Rmn

bcεabc

)
+ λ det eam

]
. (2.2)
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In the first order formulation a dreibein eam and SO(1, 2) spin connection ωab
m are supposed

to be independent variables. The curvature tensor depends only on the connection

Rab
mn = 2∂[mω

ab
n] + 2ωac

[mω
db
n]ηcd ≡ ∂mω

ab
n − ∂nω

ab
m +

(
ωac

mω
db
n − ωac

n ω
db
m

)
ηcd,

where ηab is the Minkowski metric tensor with the mostly minus signature (see Appendix A for
the notation). As a result, the Einstein equation that comes from the first order action (2.2) is
of the first order in the connection. To arrive at the standard second order equation of motion of
a spin two bosonic field, one should violate the initial independence of variables and to resolve an
algebraic relation between the dreibein and the spin connection. This relation follows from (2.2)
when one varies the action over the spin connection as an independent variable. Once the
connection is expressed in terms of the dreibeins the standard second order Einstein equation
is recovered. Therefore, the dreibeins are the true dynamical variables of the theory, while the
spin connection plays the role of an additional but not of a fundamental variable.

However, it is possible to replace vielbeins with other fundamental variables. Let us note to
this end that the form of (2.2) suggests the definition of a new connection

Aa
m =

1
2
εabcωmbc

with the same as the dreibeins index structure. In terms of the new variables the curvature
tensor acquires the form of a Yang–Mills field strength [89]

F a
mn = 2∂[mA

a
n] + εabcAmbAnc. (2.3)

Then the Hilbert–Palatini action (2.2) becomes

S =
∫
d3x

[
εmnkekaF

a
mn + λ det eam

]
, (2.4)

and it is easy to see that the true equation of motion following from (2.4) upon varying over the
dreibein is

∗Fma + λeema = 0. (2.5)

We have denoted e = det eam in the above and have used the following definition of the dual,
with respect to the curved indices, tensor

∗Fma = εmnkF a
nk.

The other equation which can be read off (2.4) is

Dm(εmnkeka) = 0. (2.6)

Here Dm is the covariant with respect to Aa
m derivative, and (2.6) is the algebraic relation which

expresses the initially independent variables Aa
m through eam.

As for the standard first order formulation of gravity in (eam, ω
ab
m ) variables the integrability

condition to equations (2.6), (2.5), viz.

DmDn(εmnkeka) = 0,
Dm(∗Fma + λeema) = 0 (2.7)

results in the first-type (for torsion) and in the second-type (for curvature) Bianchi identities
respectively. We remind that in the former set of variables these Bianchi identities are Ra

[nkl] = 0
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and D[mR
ab

nk] = 0. Note also that taking into account (2.6) the integrability condition (2.7)
can be rewritten as

Dm(εmnkF a
nk) = 0, (2.8)

which is nothing but the Bianchi identity for the Yang–Mills field strength (2.3). Strictly spea-
king, the Bianchi identity (2.8) has nothing to do with the integrability condition (2.7), since it
directly follows from the definition (2.3); rather the integrability condition (2.7) is satisfied due
to the zero torsion equation (2.6) and the Bianchi identity (2.8).

So far we considered eam as the fundamental variables. However, we can also think about Aa
m

as the other fundamental variables. To go from one to another we shall use equation (2.5).
Taking the determinant of (2.5) leads to

−det(∗Fma) = λ3e2, (2.9)

after that one can resolve (2.5) as

ema = ∓ 1

λ
√
− 1

λ3 det(∗Fma)
∗ Fma. (2.10)

In effect, we have completely determined the dreibein in terms of the dual curvature or, equiv-
alently, in terms of the new connection Aa

m. Substituting this solution to the Lagrangian back
results in

S = ∓2 sign(λ)
∫
d3x

√
− 1
λ

det(∗Fma) (2.11)

that is the action of the model in terms of Aa
m.

Let us now compare the equation of motion following from (2.11) with equations (2.5)
and (2.6). Varying (2.11) with respect to Aa

m we get the Yang–Mills-type equation of motion
(see [89] for details)

Dm

(√
gFmn

a

)
= 0 (2.12)

on a curved manifold endowed with the metric depending on Aa
m. As it follows from (2.9)

√
g =

√
− 1
λ3

det(∗Fma).

In addition we have to complete (2.12) with the Bianchi identity (2.8) which follows from the
definition of the new curvature (2.3).

One could note that equation (2.12) is nothing but equation (2.6) written down in terms of
the new variables when (2.5) is taken into account. In its turn the Bianchi identity (2.8) follows
from (2.7) as the integrability condition to the relation (2.5) that is algebraic in this picture.
Put it differently an algebraic relation that comes from the action in standard variables becomes
the equation of motion of the model in new variables. This phenomenon is a remnant of the
dualization, when the Bianchi identities (algebraic relations) of gauge fields become equations
of motion of the dual gauge fields. Hence, one can say that (2.11) is the action for gravity in
dual variables, or, for short, the dual gravity.

What we can learn from this example? We have observed that the problem is completely
resolved in D = 3 case. However, it is only resolved for gravity with a cosmological constant, and
the dual Lagrangian is not well defined in the zero cosmological constant limit. Furthermore,
the case under consideration cannot be treated as a general case, and the above mentioned way
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of the dualization is not a general scheme, since gravity in D = 3 possesses the features which
cannot be encountered for gravitational theory in other space-time dimensions. For instance,
it is the very case where the dualized over SO(1,2) indices connection has the same index
structure as the dreibein, and we have used this fact to completely get rid of the dreibeins as
fundamental dynamical variables in favor of the dual connection. It would be pertinent to note
that using a connection as a fundamental variable is one of the features of the Loop Quantum
Gravity (see [79] for a recent review). Also, D = 3 gravity does not have dynamical degrees of
freedom [34, 35, 36], and is interesting rather as a topological exactly (classically and quantum)
solvable theory [105].

Taking into account the above, perspectives to generalize such a dual description to higher
dimensions do not seem to be so direct. Starting with D = 4 gravity with a cosmological constant
we will not have so simple form of equations of motion that would suggest a way of resolving
vielbeins in terms of the dual curvature/dual connection. For example, applying the determinant
to both sides of the four-dimensional Einstein equation with a cosmological constant does not
lead to the dual theory. It results in the Eddington–Schrödinger formulation of gravity [97, 46]
which is classically equivalent to the Einstein formulation (see [33, 37] for other treatments of
the problem). But even if we were succeed in dualization of higher-dimensional gravity with a
cosmological constant it would not be a resolution to the problem in the M-theory context, since
there is no place for a cosmological constant in D = 11 supergravity [9].

Finally, we have to emphasize an important point: because of the square root the dual
Lagrangian resembles the Nambu–Goto action for strings and branes, it is non-polynomial and
it has infinite number of terms with infinite number of derivatives in the small cosmological
constant limit λ→ 0 supporting with the weak field approximation. In this limit the gravity can
be approximated with a small perturbation around Minkowski flat space (it does not contradict
the results of [22] since the cosmological constant tends to zero in the limit), and passing to a
new curvature through ∗Fma = ∗Fmnean we get first

det (∗Fma) = det eam det (∗Fmn).

Second, we approximate the new curvature as

∗Fmn = Ληmn + ∗Rmn, (2.13)

where ηmn is the inverse to the Minkowski flat metric tensor, and we have fixed for definiteness
λ < 0, Λ = |λ|. Also we would like to fix the “minus” sign on the r.h.s. of (2.10), so under these
assumptions the Lagrangian for the dual gravity becomes

L = 2

√
1
Λ

det eam det (∗Fmn).

Substituting (2.13) into the above, we arrive at

L = 2Λ
√

det eam

√
det (δn

m +
1
Λ
∗Rn

m),

that after taking into account detM = exp (Tr lnM) results in

L =
√

det eam

[
2Λ + ∗Rm

m −
1

2Λ

(
∗Rmn ∗Rmn −

1
2
(∗Rm

m)2
)

+ · · ·
]
.

This reminds the situation which one encounters in non-local theories. However, in our
example this non-polynomiality appeared because of the choice of dual variables and, as in the
case of the Nambu–Goto action, it is harmless. At the same time this observation suggests that
in a general case proper non-locality could appear as a by-product of dualization.
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3 On-shell dual gravity in D > 3: Bianchi vs. Einstein

After an examination of three-dimensional gravity, let us try to figure out a way of proceeding
in D > 3 case. What we shall find first is a convenient representation of the Einstein equation
in a way that allows us to present it as the Bianchi identity for a dual field. It turns out to be
convenient for this purpose to write down the Einstein equation in a form which is similar to
the dynamics of Maxwell theory with a source.

3.1 Maxwell-like representation of the Einstein equation

To arrive at such a representation let us get started with the Hilbert–Palatini action of D-di-
mensional gravity

SHP =
∫
MD

R̂â1â2 ∧ Σ̂â1â2 , (3.1)

where

R̂âb̂ = dω̂âb̂ − ω̂â
ĉ ∧ ω̂ĉb̂

is the curvature two-form expressed via SO(1, D − 1) connection ω̂âb̂ and

Σ̂â1···ân =
1

(D − n)!
εâ1···âD

êân+1 ∧ · · · ∧ êâD

is a (D−n)-form constructed out of vielbeins êa. Since we will use in what follows the reduction
of the action to (D− 1)-dimensions, we have reserved hats to distinguish D-dimensional indices
and variables from (D − 1)-dimensional quantities. This notation is generally accepted in the
Kaluza–Klein literature, and we will follow it.

Upon varying with respect to the vielbein and the connection we get the Einstein equation
of motion

Σ̂âb̂ĉ ∧ R̂
b̂ĉ = 0, (3.2)

and an algebraic relation

Σ̂âb̂ĉ ∧ T̂
ĉ = 0,

which sets the torsion 2-form T̂ â = dêâ − êb̂ ∧ ω̂ â
b̂

to zero. The latter allows expressing the

originally independent connection ω̂âb̂ through vielbeins and their derivatives

ω̂âb̂(ê) =
1
2
êĉ
[
êm̂ĉ ê

n̂â∂[m̂ê
b̂
n̂] − êm̂ĉ ê

n̂b̂∂[m̂ê
â
n̂] − ên̂âêŝb̂∂[n̂êŝ]ĉ

]
. (3.3)

After replacing the connection with (3.3) the Einstein equation is written down in the fol-
lowing form (see [83])

d(∗̂dêâ) = ∗̂ ˆ̃J [1]
â , (3.4)

where a one-form ˆ̃J [1]
â is

ˆ̃J [1]
â = (−)

D(D−5)
2 Ĵ

[1]
â + ∗̂dŜ[D−2]

â , (3.5)
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and

Ĵ
[1]
â = ∗̂

[
ω̂b̂ĉ(ê) ∧ dΣ̂âb̂ĉ + (−)D−3 ω̂b̂

d̂
(ê) ∧ ω̂d̂ĉ(ê) ∧ Σ̂âb̂ĉ

]
, (3.6)

Ŝ
[D−2]
â = ∗̂(êb̂ ∧ êâ) êm̂ĉ ên̂b̂ ∂[m̂ê

ĉ
n̂]. (3.7)

Two remarks are appropriate here.

Remark 1. Equation (3.4) looks like that of the Maxwell electrodynamics with an electric-type
source. This form of the Einstein equation is not a new one; it has been pointed out in literature
for a long time (see e.g. [99, 15]). Since the equation is written in terms of differential forms,
it is manifestly invariant under general coordinate transformations. But its manifest invariance
under local Lorentz rotations is lost. However, the right hand side of (3.4) is a modified Landau–
Lifshitz pseudo-tensor, so the non-covariance on the left hand side is compensated by the pseudo-
tensor-type transformations on the right hand side. Hence, equation (3.4) is covariant under the
general coordinate transformations and the Lorentz rotations in the tangent space.

Remark 2. In the form of (3.4) the Einstein equation is closely related to the so-called “telepa-
rallel” version of General Relativity (see [3] for a review).

As a next step towards realization of our program we have to rewrite the Einstein equa-
tion (3.4) as the Bianchi identity of a dual field. The Poincaré lemma claims that in a trivial

space-time topology setting one can present the conserved “current” form ˆ̃J [1]
â as the curl of

a “pre-current” form

∗̂ ˆ̃J [1]
â = d∗̂ ˆ̃G[2]

â . (3.8)

With account of it, the Einstein equation becomes d(· · · ) = 0 which is the Bianchi identity for
a dual field. That is exactly what we need. Therefore, to make the final step from Einstein to
Bianchi, we have to resolve (3.8) to find ˆ̃G[2]

â .
As to the explicit expression of the “current” (cf. equations (3.5), (3.6), (3.7)) it is not so

simple to derive the “pre-current” ˆ̃G[2]
â exactly, and in a local form. Furthermore, there are no

general arguments that ˆ̃G[2]
â has always to be a local expression. So it does not become a surprise

that a general procedure of resolving (3.8) sacrifices locality and leads to local expressions for
“pre-currents” only for “currents” of a special type.

3.2 Resolving via inverse d’Alembertian

To write down equation (3.4) in terms of a (Hodge) dual field one has to introduce the dual
field strength

F̂â = ∗̂dêâ,

after that the Einstein equation recasts in

dF̂â = ∗̂ ˆ̃J [1]
â . (3.9)

The general solution to an equation

dK = J ; J 6= J (K), (3.10)

which is presumably the case under consideration, is as follows

K = 2−1δJ + dχ. (3.11)
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Here δ = (−)(D−p)p−1 ∗ d∗ is the D-dimensional co-derivative operator acting on a p-form,
2 = dδ + δd is the d’Alembertian and χ is a differential form of the appropriate rank. To
verify (3.11) one should notice the Hodge identity

d2−1δ + δ2−1d = 1,

which is easy to prove with taking into account

[d,2] = 0, [δ,2] = 0. (3.12)

These relations follow from the d’Alembertian definition. Then, for any form Ω

Ω = 1 · Ω = d
(
2−1δΩ

)
+ δ
(
2−1dΩ

)
, (3.13)

and the last term on the r.h.s. of (3.13) vanishes for a closed form. Thus, the solution (3.11)
is the sum of a particular solution to the non-homogeneous differential equation (3.10) and the
general solution to the homogeneous equation dK = 0.

What is a restriction on this approach? If J is a co-closed form, i.e. δJ = 0, or in other
words is a zero mode of the d’Alembertian, the way of the reasoning apparently fails. Hence,
the current form J has not to be co-closed.

But what we have to do if nevertheless the current is a co-closed form? In such a case we
have to apply a regularization. There are many ways to this end, we will treat it as follows.
Recall the following integral representation for a variable ρ

1
ρn

=
1

(n− 1)!

∫ ∞

0
dt tn−1e−tρ, n > 0, (3.14)

which follows from the Euler integral for the gamma-function. This representation can be used
to define the inverse d’Alembertian

1
2
ψ =

∫ ∞

0
dt e−t2ψ (3.15)

if a (vector-indices) function ψ will be regarded as the sum over the complete set of the
d’Alembertian eigenfunctions ψn with coefficients αn

ψ =
∑

n

αnψn.

By definition

2ψn = λnψn (3.16)

with eigenvalues λn. Then, (3.15) and (3.16) result in

2−1ψn = λ−1
n ψn,

and we have to complete the definition of the inverse operator to include the d’Alembertian zero
modes. It could for instance be done by replacing the eigenvalues with λreg.n = λn + e(λ, n) such
that λn +e(λ, n) 6= 0 [45], and the regularized d’Alembertian has a well defined inverse operator.

To figure out other features of the method, let us apply the procedure of resolving to a well-
known case borrowed for instance from supergravities. A simplest example is the Bianchi identity
for D = 11 supergravity gauge field [5, 25] in the zero fermion setting

dF (7) = F (4) ∧ F (4); F (4) = dA(3), ∗F (4) = F (7). (3.17)
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The r.h.s. of (3.17) is a current form in our jargon, and it is easy to see that the pre-current form
is G(7) = A(3) ∧ F (4). Hence the solution to the Bianchi identity is F (7) = dA(6) + A(3) ∧ F (4).
Let us now recover this result by use of (3.11). It leads to

F (7) = dχ(6) + 2−1δ
(
F (4) ∧ F (4)

)
.

Noticing that F (4) ∧ F (4) = d(A(3) ∧ F (4)) we have

2−1δd
(
A(3) ∧ F (4)

)
= 2−1(2− dδ)A(3) ∧ F (4) = A(3) ∧ F (4) − d2−1δ

(
A(3) ∧ F (4)

)
.

To get the last expression we have used [2−1, d] = 0, which comes from (3.12) as

[d,2] = 0 ; d = 2d2−1 ; 2−1d = d2−1.

Finally,

F (7) = d
(
χ(6) −2−1δ

(
A(3) ∧ F (4)

))
+A(3) ∧ F (4) ≡ dA(6) +A(3) ∧ F (4).

The final result is a local expression since any trace of non-locality is hidden with introducing
a new field. As a consequence, an appropriate local gauge transformation has to be assigned
to A(6) rather than to χ(6).

We would like to point out that one may encounter an opposite situation when an initially
local theory possesses an invariance under special non-local transformations. An example of such
transformations is duality rotations in four-dimensional Maxwell theory [39]. A good choice of
new variables may help to avoid non-locality as we will see under discussing different approaches
to duality-symmetric theories.

3.3 Dual to graviton field and its equation of motion

At this stage we have all necessary tools to accomplish the current task: equation (3.9) is resolved
with

F̂
[D−2]
â = dÂ

[D−3]
â + ∗̂ ˆ̃G[2]

â ≡ F̂[D−2]
â + ∗̂ ˆ̃G[2]

â (3.18)

(cf. equation (3.11)), where

∗̂ ˆ̃G[2]
â = �̂−1δ̂∗̂ ˆ̃J [1]

â .

Here we have introduced the inverse to the D-dimensional d’Alembertian �̂ operator together
with the D-dimensional co-derivative δ̂. Though the new gauge field Â

[D−3]
â is the Hodge dual

to the vielbein we will nevertheless call them “the graviton dual field”.
Equation (3.18) is apparently non-local, but what is more important for us is the locality of

the dual field equation of motion. This equation is

d
(
∗̂dÂ[D−3]

â

)
+ d ˆ̃G[2]

â = 0,

and since

d ˆ̃G[2]
â = d∗̂

(
�̂−1δ̂∗̂ ˆ̃J [1]

â

)
= d∗̂

(
�̂−1δ̂d ˆ̃S[D−2]

â

)
= d∗̂

(
�̂−1(�̂− dδ̂)Ŝ[D−2]

â

)
= d∗̂Ŝ[D−2]

â − d∗̂�̂−1dδ̂Ŝ
[D−2]
â = d∗̂Ŝ[D−2]

â − d∗̂
(
d
[
�̂−1δ̂Ŝ

[D−2]
â

])
,
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we arrive at

d
(
∗̂d
(
Â

[D−3]
â − �̂−1δ̂S

[D−2]
â

))
= −d∗̂Ŝ[D−2]

â .

Introducing a new field Â[D−3]
â = Â

[D−3]
â − �̂−1δ̂S

[D−2]
â we finally get the local equation of

motion for the dual field

d
(
∗̂dÂ[D−3]

â + ∗̂Ŝ[D−2]
â

)
= 0. (3.19)

The next point we have to check is the number of physical degrees of freedom which is
described by the dual field. Since this field possesses a gauge invariance under

δÂ[D−3]
â = dα̂

[D−4]
â ,

fixing the gauge and the on-shell local Lorentz invariance (see a more detailed discussion below)
results in

D × (D − 2)︸ ︷︷ ︸
gauge fixing on-shell

− 1
2
D × (D − 1)︸ ︷︷ ︸
local Lorentz

=
1
2
D × (D − 3) d.o.f., (3.20)

which matches precisely the on-shell degrees of freedom of the vielbein êâm̂.
The equation of motion for the dual field has an odd structure from the point of view of

dynamics of self-interacting fields. But this peculiarity comes directly from the absence of the
true type dual field in our construction. Roughly speaking, if we were deal with the true type
graviton dual field it would be realized in having self-interacting terms of the graviton dual field
in its equation of motion. Moreover, it would also be natural to use another (generalized) Hodge
star operator in the equation like (3.19) that would correspond to a new type metric tensor (or
its generalization) constructed out of the true type dual field. In the approach we follow, we
deal instead with a non-complete dualization when the self-interacting part of the “dual” field
dynamics is replaced with a self-interaction of vielbeins, and the Hodge star operator is defined
in the standard manner. However, it does not mean that equation (3.19) is a free field equation
for the graviton dual: the Hodge star clearly indicates that Â[D−3]

â interacts with gravity.

Remark 3. The situation we encountered here is another side of numerous no-go theorems
on constructing the self-interacting dual models of Yang–Mills theories and General Relativity
[39, 11, 10, 17, 31, 38]. Drawbacks on this way could be recognized just looking at the system
of a Yang–Mills equation of motion and the Bianchi identity

DA ∗ F = 0, DAF = 0.

Naively, it seems to be a symmetry that would be a generalization of Abelian duality rotations
that change F with ∗F and the equation of motion with the Bianchi identity. In fact, F ↔ F̃ ≡
∗F results in

DAF̃ = 0, DA ∗ F̃ = 0. (3.21)

But (3.21) is not the set of equations of the true self-interacting dual system

DÃF̃ = 0, DÃ ∗ F̃ = 0,

where DÃ has to be the covariant with respect to the true dual gauge field Ã derivative, and
the field strength of Ã is F̃ .
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This example shows that the definition of duality (self-duality)

F̃mn =
1
2
εmnpqF

pq (F̃ = F )

borrowed from the Maxwell theory does not guarantee the pass to the dual (self-dual) description
and even less meaningful for a Yang–Mills theory.

All these facts are tightly related to a classical result by Wu and Yang [108] which consists
of two statements: the field strength of a non-Abelian field does not determine the gauge field
even locally in any small region, and that the dual of a sourceless non-Abelian gauge field is
not always also a gauge field (see also [40, 32]). Another illustration of this result is absence of
duality rotations in a Yang–Mills theory [39].

4 Duality-symmetric action for General Relativity

After having established the on-shell description of the dual field, the next task is to figure out
an action from which this dynamics follows. As we already discussed, the dual field does interact
with gravity. To produce this interaction we shall take into account the dynamics of gravity.
Then the action we seek should contain at least the Einstein–Hilbert–Palatini Lagrangian to-
gether with terms which manage the dynamics of the dual field Â[D−3]

â . Therefore, we have to
deal with a duality-symmetric formulation which is democratic with respect to the fields. In
presence of dual partners the initial degrees of freedom double, so to reduce it twice we have to
impose the duality relation

∗̂dêâ = F̂
[D−2]
â ≡ F̂[D−2]

â + ∗̂ ˆ̃G[2]
â (4.1)

at least by hands. Recall that in (4.1)

F̂[D−2]
â = dÂ[D−3]

â , ∗̂ ˆ̃G[2]
â = Ŝ

[D−2]
â + (−)

D(D−5)
2 �̂−1δ̂∗̂Ĵ [1]

â ,

the forms Ŝ[D−2]
â and Ĵ [1]

â have been introduced in (3.6), (3.7), and

Â[D−3]
â = Â

[D−3]
â − �̂−1δ̂S

[D−2]
â .

It is not so straightforward to realize the explicit form of the Lagrangian for the dual field.
This is mainly due to the vielbeins’ interacting part Ŝ[D−2]

â in (3.19). In principle, it is enough
to get a formulation from which (4.1) will follow as an equation of motion and as a supplement
to the Einstein equation. But it is still difficult to deduce this additional part to the Einstein–
Hilbert–Palatini action from the very beginning. We propose to reach the goal indirectly by use
of the following road map:

êâm̂

KK reduction

��

(
êâm̂, Â

â
m̂1...m̂D−3

)
(
eam, φ, A

[1]
)

φ, A[1] dualization

// ( ︷ ︸︸ ︷
eam, φ, A

[1],
︷ ︸︸ ︷
A[D−4], A[D−3]

)KK oxidation

OO

Drawing this picture we have taken into account that a part of the dual to graviton field will
become dual fields to a dilaton and to a Kaluza–Klein vector after reduction of gravity from D
to D− 1 dimensional theory. We are going to use this fact to deduce a reduction ansatz for the
graviton dual field strength which will produce the correct structure of the duality-symmetric
gravity in D− 1 dimensions. After establishing the ansatz we will apply it for the uplifting the
known D− 1 dimensional action to get the action in D dimensions.
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4.1 Dimensional reduction ansatz

To pass through the abovementioned route we shall reduce D-dimensional gravity action first.
Let us split the indices as (a, z) with a = 0, . . . , D − 2 and choose the standard Kaluza–Klein
ansatz for vielbeins

êa[1] = eαφea[1], êz[1] = eβφ
(
dz +A[1]

)
, (4.2)

where φ denotes the dilaton field, A[1] stands for the Kaluza–Klein vector field and z is the
direction of the reduction. All the fields on the r.h.s. of equation (4.2) are independent on the
reduction coordinate. The parameters α and β are related to the number of the space-time
dimensions and to each other as [69]

α2 =
1

2(D − 2)(D − 3)
, β = −(D − 3)α,

that corresponds to the Einstein frame after reduction.
Using the standard technique of dimensional reduction [69, 91] one can verify that a set of

equations that come from the reduction of D-dimensional Einstein equation (3.2) in a D− 1-
dimensional zero-torsion setting follows from the action

S =
∫
MD−1

[
−Rab ∧ Σab +

1
2
dφ ∧ ∗dφ− 1

2
e−2(D−2)αφF [2] ∧ ∗F [2]

]
,

where quantities without hats refer to D− 1 dimensions and F [2] = dA[1]. These equations are

δL
δφ

= 0 ; d(∗dφ) + (D − 2)α F [2] ∧ e−2(D−2)αφ ∗ F [2] = 0, (4.3)

δL
δA[1]

= 0 ; d
(
e−2(D−2)αφ ∗ F [2]

)
= 0, (4.4)

δL
δωab

= 0 ; Σabc ∧ T c = 0, (4.5)

δL
δea

= 0 ; Σabc ∧Rbc − (−)D−4M [D−2]
a = 0. (4.6)

The latter equation involves the energy-momentum tensor of the dilaton and of the Kaluza–Klein
vector field which is defined by

M [D−2]
a ≡ δ

δea
(−)D−4

(
1
2
dφ ∧ ∗dφ− 1

2
e−2(D−2)αφF [2] ∧ ∗F [2]

)
.

It is easy to see that the second order equations (4.3) and (4.4) can be recast in the first
order Bianchi identities for (Hodge) dual to φ and A[1] fields, which are defined by the following
duality relations

∗dφ = −dA[D−3] + (D − 2)α dA[D−4] ∧A[1], (4.7)

e2(β−α)φ ∗ dA[1] = −dA[D−4]. (4.8)

To reach a D− 1-dimensional analog of (3.4), one has to resolve the torsion free condition (4.5)
and to substitute the solution into the Einstein equation (4.6). In effect, we get the following
equation of motion for vielbeins

d(∗dea) = − ∗ J[1]
a ,

J[1]
a = (−)

(D−1)(D−6)
2 J [1]

a − ∗dS[D−3]
a , (4.9)
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and

J [1]
a = ∗

(
ωbc(e) ∧ dΣabc + (−)D−4ωb

d(e) ∧ ωdc(e) ∧ Σabc +M [D−2]
a

)
,

S[D−3]
a = ∗(eb ∧ ea) emc enb ∂[me

c
n].

Hence a D− 1-dimensional analog of (4.1) becomes

∗dea = −(dA[D−4]
a + ∗G[2]

a ), (4.10)

where

∗G[2]
a = 2−1δ ∗ J[1]

a .

Following the same calculations resulted in (3.19) one gets the equation of motion of the dual
field A[D−4]

a

d(∗dA[D−4]
a − ∗S[D−3]

a ) = 0,

where A[D−4]
a is the redefined field

A[D−4]
a = A[D−4]

a + 2−1δS[D−3]
a .

In terms of the latter the duality relation (4.10) becomes

∗dea = −
(
dA[D−4]

a + ∗G[2]
a

)
, ∗G[2]

a = (−)
(D−1)(D−6)

2 2−1δJ [1]
a − S[D−3]

a . (4.11)

So, we have derived the duality relations between D− 1-dimensional fields. Let us now turn
to the question what an ansatz for the D-dimensional graviton dual field should be to recover
relations (4.7), (4.8) and (4.11) directly from (4.1)?

By construction the second term entering the r.h.s. of (4.1) is a function of vielbeins, hence
its reduction is completely determined by the standard Kaluza–Klein ansatz. The same is also
true for the l.h.s. of (4.1). To reduce the first term on the r.h.s. of (4.1) we propose the following
ansatz (see [83] for details)

F̂a[D−2] = e2(D−3)αφ ∗ ga[1]

+ e−αφ
(
dAa[D−4] + ∗Ga[2] + α ∗ (dφ ∧ ea) + e−αφ ∗Ga[2]

)
∧
(
dz +A[1]

)
, (4.12)

F̂z[D−2] = −e−βφ
(
dA[D−3] − (D − 2)α dA[D−4] ∧A[1]

)
− e2(D−3)αφ+βφ(1− β) ∗ dφ

+ e2(D−3)αφ ∗ gz[1] + e−βφ
(
dA[D−4] + e−2αφ+βφ ∗Gz[2]

)
∧
(
dz +A[1]

)
. (4.13)

Here we have used the fact that under reduction

ˆ̃G[2]
a = G[2]

a + g[1]
a ∧

(
dz +A[1]

)
,

ˆ̃G[2]
z = G[2]

z + g[1]
z ∧

(
dz +A[1]

)
,

and A[D−3], A[D−4] fields come from Âz[D−3] component of the field Ââ[D−3]. It is easy to check
that the ansatz does lead to the correct duality relation after the reduction of (4.1).

As we have mentioned above, we are going to use the reduction ansatz to construct the action
from which duality relations will follow as equations of motion. To handle this problem let us
discuss first different ways to its possible solution.
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4.2 Non-covariant and covariant approaches to duality-symmetric theories

There are two different ways of describing classical gauge fields. One of them is to describe
a gauge theory in terms of appropriate fields, which are naturally associated with a theory
(antisymmetric tensor gauge fields for a gauge system, spin-2 field for gravity etc.), another
way is to make it in terms of their dual partners, which possess the same number of dynamical
degrees of freedom on-shell.

To construct a formulation where fields and their dual partners would be on an equal footing,
but without spoiling the initial degrees of freedom, one should double the fields with their duals
and to imply duality relations which have to decrease twice the degrees of freedom of a doubled
fields system. Such a formulation is called duality-symmetric. In some cases when a gauge field
satisfies the self-duality condition, the duality-symmetric formulation describes solely a single
chiral (or self-dual) field which has twice less dynamical degrees of freedom in compare with its
non-chiral companion.

Approaches which are used to describe self-dual fields could be generically divided into two
categories: ones which sacrifice covariance in favor of manifest duality, and manifestly covariant
approaches. We will briefly review both of them.

As an example of manifestly dual but non-covariant approach let us consider the duality-
symmetric formulation of D = 4 Maxwell theory [39].

Equations of D = 4 electrodynamics without sources

∂E

∂t
= O×B, O ·E = 0,

∂B

∂t
= −O×E, O ·B = 0,

are invariant under duality rotations

δE = αB, δB = −αE, (4.14)

while the Lagrangian

L =
1
2
[
E2 −B2

]
is apparently not. Since B = O × A is the solution to the Bianchi identity O · B = 0, rota-
tions (4.14) become spatially non-local in terms of E and A

δE = α O×A, δA = α 4−1(O×E).

Here 4−1 is the inverse to the three-dimensional Laplacian operator.
Turning to the Hamiltonian, one can see that

H =
1
2
(
E2 + B2

)
−A0 O ·E, (4.15)

and, from the point of view of the Hamiltonian approach, O · E = 0 is a constraint which
enters (4.15) via the Lagrange multiplier A0. One can resolve this constraint as E = O×Z and
substitute this solution to the Hamiltonian back. After that the Hamiltonian transforms into

H =
1
2
(
(O×Z)2 + (O×A)2

)
.

In terms of the new variables A and Z duality rotations are local

δZ = α A, δA = −α Z, (4.16)

and the Hamiltonian is apparently invariant under (4.16). But what about the Lagrangian?
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To tackle this question, it is convenient to consider the Lagrangian in the first order form
L = pq̇ −H. Then the Lagrangian becomes

L = ȦO×Z − 1
2
(
(O×Z)2 + (O×A)2

)
,

or

L =
1
2
εabŻ

b(O×Za)− 1
2
δab(O×Za)(O×Zb)

+ (total time derivative) + (total spatial derivative),

where we have joined two potentials into Za = (Z,A). If we will chose boundary conditions to
be good enough to get rid of total derivatives, then the Lagrangian will also be invariant under
duality rotations (4.16). This form of the non-covariant first-order Lagrangian proposed in [39]
was re-derived later in [95] within the pure Lagrangian framework.

Remark 4. The first duality-symmetric formulation of D = 4 Maxwell theory with two gauge
potentials was proposed in [109]. A benefit of the approaches [109] and [39] is having the
manifest duality symmetry. However, to reach the formulation of [39] constraints have to be
resolved. It is not a problem for an Abelian theory, but it becomes a problem for a non-Abelian
gauge theory as well as for General Relativity.

It is also noteworthy to point out that the formulation of [95] is flexible enough to describe
not only self-dual fields which possess an invariance under duality rotations, but also duality-
symmetric fields, dual to each other in the Hodge sense, and do not possessing an invariance
under duality transformations like (4.14). The formalism of [39] is mostly well-suited to cases
with self-dual fields. Another advantage of [95] is a possibility to covariantize the description as
we will see in a minute.

Progress towards the Lagrangian covariant description of self-dual gauge fields was hampered
by the no-go theorem of [70]. This caused problems with consistent coupling of self-dual fields
to gravity and other fields, which was important in the context of constructing the type IIB
supergravity action with a rank four self-dual field, as well as for searching for effective actions
for super-p-branes with self-dual fields on their worldvolume in a supergravity background.
However, in the end, there were proposed covariant actions for duality-symmetric theories which
overcame the no-go theorem by drawing auxiliary fields into the construction.

Let us demonstrate a way of keeping covariance with the following example of the duality-
symmetric Maxwell theory in D = 3 space-time dimensions. The Maxwell field action

S =
∫
d3x

1
4
FmnF

mn, Fmn = 2∂[mAn]

determines the gauge field dynamical equation

∂mF
mn = 0, (4.17)

and due to the gauge invariance, Am contains one degree of freedom. The same number of
degrees of freedom can be associated with a scalar field ϕ, which is dual to the original gauge
field. The duality between fields means, in particular, that one can present the equation of
motion (4.17) as the Bianchi identity for the dual field, and this Bianchi identity (as well as the
original gauge field equation of motion) follows from the duality relation

Fmn − εmnk∂
kϕ = 0. (4.18)



Duality-Symmetric Approach to General Relativity and Supergravity 19

Indeed, applying ∂m to (4.18) leads to the equation of motion (4.17) since

∂mεmnk∂
kϕ = 0

is the Bianchi identity for the scalar field.
However, the duality relation (4.18) contains also the dynamics of the dual field. One can

present (4.18) in the equivalent form

εmnkFmn − 2∂kϕ = 0,

and acting on the latter with ∂k leads now to the equation of motion for the dual field

∂m∂
mϕ = 0

since

εmnk∂mFnk = 0

is the Bianchi identity for the original gauge field.
Hence, one can describe the original system in the duality-symmetric manner doubling the

fields and thus having 1 + 1 = 2 degrees of freedom, that will reduce to one initial degree of
freedom after imposing the duality relation between dual partners. Indeed, the dynamics of the
doubled field system is defined by the following set of equations

Fmn − εmnk∂kϕ = 0,
∂m∂

mϕ = 0,
∂mF

mn = 0, (4.19)

and depending on our purposes we can choose between describing the model in terms of the
vector potential Am, of the scalar ϕ, or in terms of both fields when we describe them in the
duality-symmetric manner.

It is easy to recover the action which generates the dynamics of dual fields in the case,
however we would like to find an action from which it could be possible to derive the duality
relation as well. A simplest way is to incorporate (4.18) into the action with help of a Lagrange
multiplier

S =
∫
d3x

[
1
4
FmnF

mn +
1
2
∂mϕ∂

mϕ+ Λ(1)mn

(
Fmn − εmnk∂kϕ

)]
, (4.20)

but the Lagrange multiplier should not carry new degrees of freedom. In practice we have an
opposite situation: the Lagrange multiplier propagates and there is no additional symmetry
to kill its dynamical degrees of freedom. To observe the Lagrange multiplier propagation it is
enough to take a look at equations of motion that come from (4.20)

Fmn − εmnk∂kϕ = 0,

∂m∂
mϕ+ ∂mε

mnkΛ(1)nk = 0,

∂mF
mn + ∂mΛmn

(1) = 0, (4.21)

and to compare this set to that of the duality-symmetric theory (4.19). It is easy to see that (4.21)
recasts in (4.19) iff

∂mΛmn
(1) = 0, ∂mε

mnkΛ(1)nk = 0,
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that means in its turn

Λ(1)mn = 2∂[mB(1)n].

Hence Λ(1)mn corresponds to a propagating field.
We can try to correct such a situation with introducing a new Lagrange multiplier, varying

over which will lead to setting Λ(1)mn to zero. That is consider the action

S =
∫
d3x

[
1
4
FmnF

mn +
1
2
∂mϕ∂

mϕ+ Λ(1)mn

(
Fmn − εmnk∂kϕ

)
− 1

2
Λ(1)mnΛ(1)mn + Λ(2)mnΛ(1)mn

]
.

Variation over Λ(2)mn results in Λ(1)mn = 0. But the same analysis as before demonstrates that
the new Lagrange multiplier is dynamical and there is no additional symmetry to get rid of the
new degrees of freedom.

We can continue this process further on, and it never stops. Hence, the action we will get in
the end is

S =
∫
d3x

[
1
4
FmnF

mn +
1
2
∂mϕ∂

mϕ+ Λ(1)mn

(
Fmn − εmnk∂kϕ

)
− 1

2
Λ(1)mnΛ(1)mn

]
+
∫
d3x

∞∑
n=0

(−)nΛ(n+1)mnΛ(n+2)mn,

and this is a manifestly Lorentz covariant action constructed out of an infinite tail of Lagrange
multipliers [73, 107, 71, 12, 14].

However, there is a way [86, 87, 88] to cut the infinite tail at an N + 1-th step replacing the
N -th Lagrange multiplier with ∂[na(x)Λ(0)m]k∂

ka(x). Then, in the simplest case of N = 1, the
action becomes

S =
∫
d3x

[
1
4
FmnF

mn +
1
2
∂mϕ∂

mϕ+ Λ(1)mn

(
Fmn − εmnk∂kϕ

)
− 1

2
Λ(1)mnΛ(1)mn

]
+
∫
d3xΛmn

(2)

(
Λ(1)mn − Λ(0)mp∂

pa∂na
)
.

One can solve algebraic equations of motion of Lagrange multipliers to finally get

S =
∫
d3x

[
1
4
FmnF

mn +
1
2
∂mϕ∂

mϕ− 1
2(∂a)2

∂mFmnFnp∂
pa

]
. (4.22)

Here Fmn = Fmn − εmnk∂kϕ, and (4.22) is the action originally proposed in [86, 87, 88]. Note
the appearance of the new field a(x) which ensures the covariance of the model.

Let us compare the equations of motion coming from the PST action (4.22) with that of (4.19).
Varying the action over Am and ϕ results in

∂mF
mn − ∂m

(
2

1
(∂a)2

∂[maFn]p∂pa

)
= 0,

∂m∂
mϕ+ εmnk∂k

(
1

(∂a)2
∂[maFn]p∂pa

)
= 0. (4.23)

Clearly, if the generalized field strength Fmn were satisfied Fmn = 0 on the mass shell, it would
produce the duality relation (4.18), and the set of equations of motion following from the PST
action would be the same as (4.19). Moreover, it is enough to get solely the duality relation
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from the action since the dynamics of fields is encoded within. Another way to reach the same
conclusion is to take into account the following identity

1
(∂a)2

∂[maFn]p∂pa =
1
2
Fmn − 3

2
1

(∂a)2
∂[maFnp]∂pa, (4.24)

and to write down (4.23) as

∂m

(
1

(∂a)2
∂[maFnp]∂pa

)
= 0, εmnk∂

k

(
1

(∂a)2
∂[maFnp]∂pa

)
= 0. (4.25)

Obviously, Fmn = 0 is at least a particular solution to (4.25), and we can use the duality relation
as a generating dynamical equation.

In fact, one can establish more: the latter system of equations can be exactly reduced to the
duality relation Fmn = 0 [86, 87, 88]. This is provided by one of the two special symmetries of
the action (4.22), the so-called PST symmetries, and we will demonstrate it for our model of
the duality-symmetric gravity below in details. The other PST symmetry serves for eliminating
one additional degree of freedom coming with the PST scalar field a(x). It breaks manifest
covariance and establishes the connection to the approach of [95]. Dualization of the PST scalar
field [72] relates the PST approach to that of [109] and in such a way the latter formulation
gets related to [39, 95]. Other features of manifestly covariant duality-symmetric models can be
found in a recent review [96].

So far we outlined various methods of constructing the Lagrangians for duality-symmetric
theories, and we have to figure out the approach which would be more well-suited to the model
we describe. We would like the approach to be independent on space-time dimensions and
manifestly covariant. These requirements select the method of [86, 87, 88] as more economic in
compare with introducing the infinite tail of Lagrange multipliers, so we will follow this way.

4.3 Duality-symmetric action and its symmetries

After having discussed prerequisites let us focus on the construction of the action. This procedure
requires more tuning in comparison to the on-shell description, so we are fixing the space-
time dimensions D to be eleven. After dimensional reduction to ten dimensions we should,
in particular, reproduce from the action the duality relations (4.7), (4.8) which now have the
following form

F [8] = dA[7] + e−
3
2
φ ∗ dA[1] = 0, (4.26)

F [9] =
(
dA[8] − 3

4
dA[7] ∧A[1]

)
+ ∗dφ = 0. (4.27)

Recall that (4.26) and (4.27) are the duality relations between the scalar field φ and the Kaluza–
Klein vector field A[1] and their dual fields A[8] and A[7]. In the above we have also fixed the
parameters α and β to be

α = +
1
12
, β = −2

3
.

The relevant part of the ten-dimensional duality-symmetric action from which these relations
come is (cf. [7])

Sd.s. =
1
2

∫
M10

2∑
n=1

(
F [10−n] ∧ F [n] + ivF [10−n] ∧ v ∧ F [n] + v ∧ F [10−n] ∧ ivF [n]

)
. (4.28)
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Our aim is to demonstrate that the action (4.28) follows after dimensional reduction from
the part of the duality-symmetric gravity action

SPST =
∫
M11

1
2
v̂ ∧ F̂ â[9] ∧ iv̂F̂ b̂[2]ηâb̂, (4.29)

where we have introduced a scalar field a(x̂) [86, 87, 88] that enters the action in a non-
polynomial way through the one-form v̂

v̂ =
da(x̂)√

−∂m̂a ĝm̂n̂ ∂n̂a
,

iv̂Ω̂ denotes the contraction of v̂ with a differential form Ω̂ (see Appendix A), ηâb̂ is the Minkowski
metric tensor and

F̂ â[2] = dêâ − ∗̂
(
dÂâ[8] + ∗̂ ˆ̃Gâ[2]

)
, (4.30)

F̂ â[9] = −∗̂F̂ â[2]. (4.31)

Note that though these generalized field strengths are constructed out of non-covariant quanti-
ties, we shall require them to enter (4.30), (4.31) in the covariant combinations.

Remark 5. Let us discuss the covariance of F̂ â[2] and F̂ â[9] in more detail. We are dealing with
objects in the differential forms notation, hence we do not worry about covariance under the
general coordinate transformations. However, we have a Lorentz index which has to be rotated
under the local Lorentz transformations. Vielbeins and a spin connection are transformed as

ê′ = êΛ̂ ! ê′â = êb̂Λ̂â
b̂
,

ω̂′ = Λ̂−1ω̂Λ̂ + Λ̂−1dΛ̂ ! ω̂′âb̂ = (Λ̂−1)â
ĉω̂

ĉd̂Λ̂b̂
d̂

+ (Λ̂−1)â
ĉdΛ̂

ĉb̂,

that induces the following transformations of torsion and curvature

T̂ ′ = T̂ Λ̂, R̂′ = Λ̂−1R̂Λ̂.

They are transformed as true tensors and they are covariant objects.
On the other hand, equation (3.4) has to be covariant under the local Lorentz transformations

since it follows from the Einstein equation, which is constructed out of true tensors. However,
the l.h.s. of (3.4) does not transform as a true tensor; it has an additional part depending on
derivatives of Λ. But as it was mentioned before, the r.h.s. of the same equation is also not
a true tensor, and the additional non-tensorial part of its transformation has to compensate the
undesirable terms on the l.h.s.

To be precise,[
d(∗̂dê)− ∗̂ ˆ̃J [1]

]′ = [d(∗̂dê)− ∗̂ ˆ̃J [1]
]
· Λ̂,

that means[
dF̂ [9]

]′ = [dF̂ [9]
]
· Λ̂. (4.32)

To require the invariance of (4.29) under the local Lorentz transformations, we have to require
the covariance of F̂ [9], i.e.[

F̂ [9]
]′ = [F̂ [9]

]
· Λ̂. (4.33)
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At a first glance the latter does not seem possible because of an apparent contradiction when
we compare (4.33) with (4.32). But we still have a freedom in assigning a gauge transformation
to Â[8]. Taking such a transformation in the form[

dÂ[8]
]′ = d

(
Â[8] · Λ̂

)
+ d−1

[
F̂ [9] ∧ dΛ̂

]
(4.34)

will formally solve the problem. Here we have introduced the inverse to d operator whose action
on an arbitrary form is defined via Schwingers’ proper-time trick

d−1ω[p] =
∫ ∞

0
dτ e−τd ω[p], (4.35)

or, equivalently, through equation (3.14). Clearly, this operator cannot be determined for exact
forms, since dd−1 = d−1d = id and acting on dΩ = 0 with d−1 results in Ω = 0, ∀ Ω that
is not true of course. We have emphasized that the inverse to the d’Alembertian operator is
determined on a space of forms modulo the d’Alembertian zero modes. The same is relevant
for (4.35), since exact forms are zero modes of d. However, as in the former case, one can
regularize the external derivative operator to include its zero modes into consideration. It also
has to be emphasized that one shall take care in treating d−1, taking dd−1 = d−1d = id first.
For instance, the expression ddd−1 · · · has to be equal to d · · · rather than to zero.

Although the transformation (4.34) is highly non-local, it is reduced on shell to the standard
local Lorentz transformation what we have used in (3.20).

To reduce the action (4.29), we split off the eleventh coordinate z from the ten-dimensional
tangent space indices a = 0, . . . , 9 after that we can rewrite the former action as

SPST =
∫
M11

1
2
v̂ ∧ F̂a[9] ∧ iv̂F̂b[2]ηab −

1
2
v̂ ∧ F̂z[9] ∧ iv̂F̂z[2].

By use of ansätze (4.12), (4.13) one gets

F̂a[2] = e
1
12

φ
[
dea + ∗

(
dAa[7] + ∗Ga[2]

)]
≡ e

1
12

φFa[2],

F̂a[9] = e−
1
12

φFa[8] ∧
(
dz +A[1]

)
, Fa[8] = ∗Fa[2],

F̂z[9] = −e
2
3
φ
(
F [9] −F [8] ∧

(
dz +A[1]

))
,

F̂z[2] = e−
2
3
φ
(
F [2] −F [1] ∧

(
dz +A[1]

))
, F [9] = ∗F [1], F [8] = e−

3
2
φ ∗ F [2],

where F [8], F [9] were previously defined in (4.26), (4.27) (they are not equal to zero of course;
the latter shall follow from the action). With the following ansatz for v̂ [7]

v̂ = e
1
12

φv, iv
(
dz +A[1]

)
= 0, v =

da(x)√
−∂ma gmn ∂na

, v 6= v(z),

and using the standard rules of dimensional reduction [69, 91] (see also [7] for details of reduction
within the PST-type approach) one arrives at

SPST = −1
2

∫
M10

v ∧ Fa[8] ∧ ivFb[2]ηab − v ∧ F [8] ∧ ivF [2] − v ∧ F [9] ∧ ivF [1].

Hence the reduction of the complete duality-symmetric D = 11 gravity action S = SEHP +SPST

results in

S = −
∫
M10

(
Rab ∧ Σab +

1
2
v ∧ Fa[8] ∧ ivFb[2]ηab

)
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+
1
2

∫
M10

2∑
n=1

(
F [10−n] ∧ F [n] + ivF [10−n] ∧ v ∧ F [n] + v ∧ F [10−n] ∧ ivF [n]

)
, (4.36)

where to recover this form of the action we have applied identities like (4.24) (see [7]).
In the latter form it is easy to recognize the duality-symmetric structure of D = 10 gravity

action, and the second line of (4.36) is precisely the action (4.28) we are looking for. Therefore, we
have established the relevance of the proposed SPST term in the action for the duality-symmetric
gravity.

One may wonder why having a new term entering the action we did not modify ˆ̃Gâ[2]

though (4.29) is not a topological term and therefore it should contribute into the energy-
momentum tensor. The reason is the same as for another application of the PST approach.
Additional terms which follow from the PST part of the action do not spoil the dynamics of an
original theory since they enter equations of motion only in combinations of the generalized field
strengths similar to (4.30), (4.31) which are zero on-shell. The latter is guaranteed by one of
the PST symmetries [86, 87, 88]. That is for instance why we do not need to take into account
the contribution of two last terms of (4.36) into Ga[2].

To give more rigorous arguments in favor of the discussion above, let us consider a variation
of the action

S = SEHP + SPST

with SEHP of (3.1) and SPST of (4.29). The variation of the Einstein–Hilbert–Palatini term
results in

δSEHP =
∫
M11

δêâ ∧ dF̂ b̂[9]ηâb̂. (4.37)

As for the PST term, it is convenient to split its variation into the standard part for such an
approach, where we will effectively treat the vielbeins on the same footing with other gauge
fields completely independent of metric, and the variation over the metric tensor

δSPST =
∫
M11

δ0LPST + δ∗LPST.

The standard variation ends up with

δ0SPST =
∫
M11

(
δÂâ[8] +

δa√
−(∂a)2

iv̂F̂ â[8]

)
ηâb̂ ∧ d

(
v̂ ∧ iv̂F̂ b̂[2]

)
+
∫
M11

(
δêâ +

δa√
−(∂a)2

iv̂F̂ â[2]

)
ηâb̂ ∧ d

(
v̂ ∧ iv̂F̂ b̂[9]

)
−
∫
M11

(
δêâηâb̂ ∧ dF̂

b̂[9] + δ[∗̂ ˆ̃Gâ[2]]ηâb̂ ∧ v̂ ∧ iv̂F̂
b̂[2]
)
. (4.38)

To deal with the other part of the variation we shall follow the same way as upon deriving
the energy-momentum tensor. In terms of differential forms this general variation is

δ∗
(
Ω[n] ∧ ∗Ω[n]

)
=
(
δ∗Ω[n]

)
∧ ∗Ω[n] + Ω[n] ∧ δ∗

(
∗ Ω[n]

)
=

1
(n− 1)!

δean ∧ ean−1 ∧ · · · ∧ ea1Ω[n]
a1···an−1an ∧ ∗Ω[n]

+
1
n!

1
(D − n− 1)!

Ω[n] ∧ δebD−n ∧ ebD−n−1 ∧ · · · ∧ eb1εb1···bD−n

a1···anΩ[n]
a1···an ,
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so applying it to our case leads to

δ∗SPST =
∫
M11

1
2
v̂ ∧ δêĉ9

(
1
8!
êĉ8 ∧ · · · ∧ êĉ1F̂ â[9]

ĉ1···ĉ8ĉ9

)
ηâb̂ ∧ iv̂F̂

b̂[2]

+
∫
M11

1
2
v̂ ∧ F̂ â[9]ηâb̂ ∧ δê

ĉ
(
iv̂F̂ b̂[2]

)
ĉ
. (4.39)

Taking into account (4.37), (4.38), (4.39), one can derive the following sets of the special sym-
metries of the action

δa(x̂) = 0, δêâ = da ∧ ϕ̂â[0], δÂâ[8] = da ∧ ϕ̂â[7] − d−1δ
(
∗̂ ˆ̃Gâ[2]

)
, (4.40)

δa(x̂) = Φ(x̂), δêâ = − Φ√
−(∂a)2

iv̂F̂ â[2],

δÂâ[8] = − Φ√
−(∂a)2

iv̂F̂ â[9]

− d−1

(
δ(∗̂ ˆ̃Gâ[2]) +

1
2!8!

δêĉ9 ∧ êĉ8 ∧ · · · ∧ êĉ1F̂ â[9]
ĉ1...ĉ8ĉ9

− 1
2
∗̂
(
δêĉF̂ â[2]

)
ĉ

)
. (4.41)

with local gauge parameters ϕ̂â[0], ϕ̂â[7] and Φ.
The PST transformations of the “graviton dual” field are non-local, but this non-locality

does not spoil the job of the PST symmetries (4.40), (4.41) to extract the duality relations and
to establish pure auxiliary nature of the PST scalar field.

To demonstrate that, it has to be noticed that the general solution to the equation of motion
of Ââ[8]

d
(
v̂ ∧ iv̂F̂ â[2]

)
= 0

has the following form [86, 87, 88]

v̂ ∧ iv̂F̂ â[2] = da ∧ dξ̂â[0]. (4.42)

Upon the action of (4.40) the l.h.s. of the latter expression is transformed as

v̂ ∧ iv̂F̂ â[2] −→ v̂ ∧ iv̂F̂ â[2] + da ∧ dϕ̂â[0],

and therefore, setting ξ̂â[0] = ϕ̂â[0], one can reduce (4.42) to

iv̂F̂ â[2] = 0  F̂ â[2] = 0.

Taking it into account and using the same arguments one can reduce the vielbein equation of
motion to

F̂ â[9] = 0.

The equation of motion of the PST scalar a(x̂) is identically satisfied as a consequence of the
equations of motion for the other fields. Therefore, the PST scalar equation of motion is the
Noether identity corresponding to an additional symmetry which is nothing but the symmetry
under the first of the transformations (4.41).
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4.4 Duality-symmetric action for the bosonic subsector
of D = 11 supergravity

Let us now extend the results to the bosonic sector of D = 11 supergravity. Note first that once
a three-index photon field Â[3] is taken into account equation (3.18) is replaced with

F̂
[9]
â = dÂ[8]

â + ∗̂ ˆ̃G[2]
â ≡ F̂[9]

â + ∗̂ ˆ̃G[2]
â ,

where ˆ̃G[2]
â is defined by ∗̂ ˆ̃G[2]

â = Ŝ
[D−2]
â + (−)

D(D−5)
2 �̂−1δ̂∗̂Ĵ[1]

â with ∗̂Ĵ[1]
â = ∗̂Ĵ [1]

â + M̂
[10]
â . Here

as in equation (4.9) we have introduced the Â[3] energy-momentum form M̂
[10]
â . In effect, the

reduction ansätze (4.12), (4.13) shall be modified as follows

F̂a[9] = e
4
3
φ ∗ ga[1]

+ e−
1
12

φ

(
dAa[7] + ∗G̃a[2] +

1
12
∗ (dφ ∧ ea) + e−

1
12

φ ∗Ga[2]

)
∧
(
dz +A[1]

)
, (4.43)

F̂z[9] = −e
2
3
φ

(
dA[8] − 3

4
F [8] ∧A[1] +

1
2
B[2] ∧ dB[6] − 1

4
F [6] ∧A[3]

)
− e

2
3
φ

(
1 +

2
3

)
∗ dφ+ e

4
3
φ ∗ gz[1]

+ e
2
3
φ
(
dA[7] + F [6] ∧B[2] +B[2] ∧B[2] ∧ dA[3] + e−

5
6
φ ∗Gz[2]

)
∧
(
dz +A[1]

)
. (4.44)

To arrive at (4.43), (4.44) we have used the reduction rule ˆ̃G[2]
â = G[2]

â + g[1]
â ∧ (dz + A[1]),

∗G̃a[2] is an analog of the form defined previously in (4.11) and extended with the appropriate
contribution from the energy-momentum tensor of RR 3-form A[3] and of NS 2-form B[2]. The
latter forms come from the reduction of Â[3]. Finally, F [6] and F [8] are the field strengths dual
to F [4] = dA[3] − dB[2] ∧A[1] and F [2] = dA[1]

F [6] = dA[5] +A[3] ∧ dB[2] −B[2] ∧ dA[3],

F [8] = dA[7] + F [6] ∧B[2] +B[2] ∧B[2] ∧ dA[3],

and B[6] is the dual to B[2] gauge field.
Let us end up with the action for the complete duality-symmetric bosonic sector of D = 11

supergravity (cf. [5, 7]). The action is as follows

S =
∫
M11

[
R̂âb̂ ∧ Σ̂âb̂ +

1
2
F̂ [4] ∧ ∗̂F̂ [4] − 1

3
Â[3] ∧ F̂ [4] ∧ F̂ [4]

]
+
∫
M11

1
2

[
v̂ ∧ F̂ â[9] ∧ iv̂F̂ b̂[2]ηâb̂ − v̂ ∧ F̂ [7] ∧ iv̂F̂ [4]

]
, (4.45)

with

F̂ â[2] = dêâ − ∗̂
(
dÂâ[8] + ∗̂ ˆ̃Gâ[2]

)
,

F̂ â[9] = −∗̂F̂ â[2],

F̂ [4] = dÂ[3], F̂ [7] = dÂ[6] + Â[3] ∧ F̂ [4],

F̂ [4] = F̂ [4] − ∗̂F̂ [7], F̂ [7] = −∗̂F̂ [4].

After dimensional reduction with taking into account the ansätze (4.43), (4.44) together with
the Kaluza–Klein decomposition of gauge fields

Â[3] = A[3] −B[2] ∧ dz,
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Â[6] = B[6] −A[5] ∧ dz,
F̂ [4] = F [4] + dB[2] ∧

(
dz +A[1]

)
,

F̂ [7] = dB[6] +A[3] ∧ dA[3] − F [6] ∧A[1] + F [6] ∧
(
dz +A[1]

)
,

the action (4.45) produces the following action of the completely duality-symmetric type IIA
supergravity (cf. equation (69) in [7])

S = −
∫
M10

(
Rab ∧ Σab +

1
2
v ∧ Fa[8] ∧ ivFb[2]ηab

)
+

1
2

∫
M10

4∑
n=1

(
1

3[n+ 1
4
]
F [10−n] ∧ F [n] + ivF [10−n] ∧ v ∧ F [n] + v ∧ F [10−n] ∧ ivF [n]

)
.

Here we have used the following set of the field strengths

F [1] = dφ, F [9] = dA[8] − 3
4
F [8] ∧A[1] +

1
2
B[2] ∧ dB[6] − 1

4
F [6] ∧A[3],

F [2] = dA[1], F [8] = dA[7] + F [6] ∧B[2] +B[2] ∧B[2] ∧ dA[3],

F [3] = dB[2], F [7] = dB[6] +A[3] ∧ dA[3] − F [6] ∧A[1],

F [4] = dA[3] − F [3] ∧A[1], F [6] = dA[5] +A[3] ∧ F [3] −B[2] ∧ dA[3],

the set of the generalized field strengths

Fa[2] = dea + ∗
(
dAa[7] + ∗G̃a[2]

)
, Fa[8] = ∗Fa[2],

F [1] = F [1] + ∗F [9], F [9] = ∗F [1],

F [3] = F [3] + e−φ ∗ F [7], F [7] = ∗F [3],

F [n] = F [n] + e
(10−2n)

4
φ ∗ F [10−n], n = 2, 4,

F [n+5] = F [n+5] + e−
n
2

φ ∗ F [5−n], n = 1, 3,

and [n+ 1
4 ] denotes the integral part of the number n+ 1

4 .
This finalizes our proof of (4.45) to be the complete duality-symmetric action of D = 11

supergravity in the zero fermion setting.

5 On-shell dual gravity in linearized approximation

Let us now turn to the discussion on the linearized limit of gravity and dualization of gravity
in this case. Such a limit is interesting for several reasons. For instance, the linearized gravity
can be reformulated in dual variables in the same way as it could be done for an Abelian-like
theory (see e.g. [50, 51, 81, 57, 58, 59, 2, 47] and references therein for various treatments of
the problem). There are also duality-invariant first order Lagrangians of D = 4 linearized
gravity [54] with [64] or without a cosmological constant. The construction of these actions
is based on the approach of [39] which applies to the linearized ADM formulation of General
Relativity [4]. However, the results of [54] as well as other results on the dual description of
gravitation theory, do not go beyond the linearized approximation [38] that does not contradict
the summary made in [39]. Though there is no rigorous proof, the same is expected for D = 4
(a)dS linearized gravity [64], since just introducing a cosmological constant would not improve
the situation. A reason for the “no-go” theorem of [39] is easy to understand: to reach the
manifestly dual formulation in a spirit of [39], the constraints have to be resolved. It is hard to
do for the original ADM constraints with keeping locality in the end, while it turns out to be
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possible after the linearization [54]. The dual description of gravity as a self-interacting theory
is hampered by other “no-go” theorems (see e.g. [10, 11]) which claim that the dual description
of spin-2 self-interacting theory is inaccessible with keeping the locality of the theory. We avoid
these “no-go” theorems by putting non-locality on the scene. In effect, a consistency requirement
for our approach is locality of the dual gravity in the linearized approximation.

To move on such an approximation we have to expand vielbeins near the flat space limit

êâ = dXm̂uâ
m̂ + Ê â, (5.1)

where uâ
m̂ is a constant matrix. After that we should find a representation for equations of

motion (equation (3.4) in our case) which would be linear in fields. Taking into account (5.1),
one gets

ω̂âb̂(ê) ∼=
1
2
dX k̂uĉ

k̂

[
um̂

ĉ u
n̂â∂[m̂Ê b̂

n̂] − um̂
ĉ u

n̂b̂∂[m̂Ê â
n̂] − un̂âuŝb̂∂[n̂Êŝ]ĉ

]
+O

(
Ê2
)
,

that means

Ĵ
[1]
â
∼= O

(
Ê2
)
,

hence it does not enter the linearized equation of motion, and

Ŝ
[D−2]
â = ∗̂

(
dX k̂ub̂

k̂
∧ dX l̂ul̂â

)
um̂

ĉ u
n̂
b̂
∂[m̂Ê ĉ

n̂] +O(Ê2) ≡ Ŝ[D−2]
â +O

(
Ê2
)
.

Then, equation of motion (3.4) becomes

d
(
∗̂dÊâ − Ŝ[D−2]

â

)
= 0. (5.2)

A non-locality corresponding to a self-interacting part of the whole action disappears in the
linearized limit. Moreover, we can write down (5.2) in a form which will be manifestly invariant
under the local Lorentz rotations

d
(
∗̂d
(
Ê âum̂

â

)
−
(
Ŝ[D−2]âum̂

â

))
= 0.

As a consequence, the Lorentz transformations of the dual field will be free of non-locality.
These observations lend credence to the local formulation of action for the duality-symmetric
linearized gravity. Details on the action we postpone to a forthcoming paper.

6 Summary

We would like to summarize with the following points. The main refrain of this paper is non-
locality which arises upon dualization. We have tried to shed some light on non-locality in duality
rotations, actions and off-shell gauge transformations, and have demonstrated that depending
on the approach we follow it is possible to keep locality upon dualization. However, it is kind
of exceptional, rather than general cases, and we have to conclude that non-locality shall be
expected upon the construction of duality-symmetric theories.

We have reviewed a part of dynamical realization of the E11 conjecture. There are other
approaches which are tightly related to the conjecture, and which we would like to mention in
brief. Many important observations in favor of E11 were made within the Cosmological Billiards
in String Cosmology [27, 28] (and references therein), as well as within the E10 approach to
M-theory [29]. Properties of imaginary roots of E10 in correspondence with branes, higher order
corrections to M-theory and orbifolds were studied in [19, 18, 30]. A correspondence between
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M(atrix)-theory and E11 was reviewed in [21], and interesting observations on orbifolding E11

were made in [75]. It is also worth mentioning the role of Borcherds superalgebras in M-
theory [55, 56] and a Mysterious duality between the U-duality group of (dimensionally reduced)
M-theory and classical symmetries of del Pezzo surfaces [61].

Finally, in D = 4 Yang–Mills theory there exists the true duality-symmetric on-shell formu-
lation, which is based on the loop space approach to the YM and on a generalization of the
Hodge duality to non-Abelian fields [20]. It is a very intriguing problem to realize the same for
General Relativity.

A Notation and conventions

Our notation and conventions which we use throughout the paper are as follows. We reserve the
hat symbol to distinguish D-dimensional quantities from D− 1 dimensional ones. Letters from
the middle of the Latin alphabet are used for the curved indices, while letters from the beginning
stand for the indices in tangent space. We use the same notation for groups and corresponding
algebras.

We choose the mostly minus signature ηab = diag(+ − − · · · − −). The antisymmetric D
dimensional Levi-Civita tensor εa1···aD is defined by

ε01···(D−1) = 1, ε01···(D−1) = (−)D−1,

so that

εa1···aDεa1···aD = (−)D−1D!.

In a curved space the latter becomes

εm1···mDεm1···mD = det g D!.

An arbitrary n-form has the following representation in holonomic and non-holonomic basis

ω[n] =
1
n!
dxmn ∧ · · · ∧ dxm1 ω

[n]
m1···mn =

1
n!
ean ∧ · · · ∧ ea1 ω

[n]
a1···an ,

and the exterior derivative acts from the right.
We define the Hodge star as

∗(ebn ∧ · · · ∧ eb1) =
αn

(D − n)!
eaD−n ∧ · · · ∧ ea1εa1···aD−n

b1···bn ,

that in turn implies

∗
(
dxkn ∧ · · · ∧ dxk1

)
=

1
(D − n)!

αn√
|g|

dxmD−n ∧ · · · ∧ dxm1εm1···mD−n

k1···kD−n .

The coefficients αn can be fixed to obey

αn · αD−n = (−)(D−n)n+(D−1),

that provides the universal identity

∗2 = 1.
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In odd space-time dimensions all αn are equal to one, while in even dimensions we have a freedom
in fixing their values. In such cases we will consider

αn = 1, n < D/2;
αn = (−)(D−n)n+(D−1), n > D/2;
α2

n = (−)n+(D−1), n = D/2.

Finally, the D-dimensional volume form is as follows

dxm1 ∧ · · · ∧ dxmD = dDx εm1···mD ,

ea1 ∧ · · · ∧ eaD = dDx det e εa1···aD ,

and the contraction of a form with a one-form v is defined by

ivω
[n] = vaiaω

[n] = vmimω
[n],

iaω
[n] =

1
(n− 1)!

ean−1 ∧ · · · ∧ ea1ωaa1···an−1 ,

imω
[n] =

1
(n− 1)!

dxmn−1 ∧ · · · ∧ dxm1ωmm1···mn−1 .

B Low-energy, strong coupling and high energy limits
of String theory

In this Appendix we briefly recall why the low-energy limit corresponds to sending the string
tension to infinity, why the strong coupling regime comes once the tension sends to zero, and
what is the difference between the high energy limit and the strong coupling limit.

Let us begin with the latter. In String theory there is a relation between the string tension T ,
a spin of a strings’ mode s and its mass M :

M2 ∼ T · s. (B.1)

A set of these relations defines the Regge trajectories of particles in the string spectrum.
There are also two different scales: the Plank scale lP and the string scale ls which are related

to each other via a string coupling constant gs

l3P = gs · l3s .

The string tension is measured in the string scale units

T ∼ l2s .

Then, keeping the Plank scale fixed and sending the tension to zero, it becomes gs →∞ that is
the strong coupling limit. In this limit all the string modes become massless due to (B.1).

Let us now turn to the low-energy limit. In this limit gs → 0, hence to keep lP we have
to send ls → ∞ that is T → ∞. In such a limit massive states are so heavy that they become
“frozen”, and dynamics is managed by massless states.

Finally, in the high-energy limit of String theory the Plank energy sends to infinity, viz.
lP →∞. Then massive states become ultra-heavy, only light modes are dynamical, hence ls → 0
and gs →∞.
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[24] Cremmer E., Julia B., Lü H., Pope C.N., Dualisation of dualities I, Nucl. Phys. B, 1998, V. 523, 73–144;
hep-th/9710119.
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