Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 2 (2006), 026, 18 pages      hep-ph/0602165      https://doi.org/10.3842/SIGMA.2006.026

Functional Integral Approaches to the Bosonization of Effective Multi-Quark Interactions with UA(1) Breaking

Brigitte Hiller a, Alexander A. Osipov b, Véronique Bernard c and Alex H. Blin a
a) Centro de Física Teórica, Departamento de Física da Universidade de Coimbra, 3004-516 Coimbra, Portugal
b) Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
c) Laboratoire de Physique Théorique 3-5, Université Louis Pasteur, rue de l'Université, F-67084 Strasbourg, France

Received October 27, 2005, in final form February 13, 2006; Published online February 23, 2006

Abstract
Low energy hadron phenomenology involving the (u,d,s) quarks is often approached through effective multi-quark Lagrangians with the symmetries of QCD. A very successful approach consists in taking the four-quark Nambu-Jona-Lasinio Lagrangian with the chiral UL(3) × UR(3) symmetry in the massless limit, combined with the UA(1) breaking six-quark flavour determinant interaction of 't Hooft. We review the present status and some very recent developments related to the functional integration over the cubic term in auxiliary mesonic variables that one introduces to bosonize the system. Various approaches for handling this functional, which cannot be integrated exactly, are discussed: the stationary phase approximation, the perturbative expansion, the loop expansion, their interrelation and importance for the evaluation of the effective action. The intricate group structure rules out the method of Airy's integral. The problem of the instability of the vacuum is stated and a solution given by including eight-quark interactions.

Key words: field theory; functional integral methods; stationary phase method; 't Hooft interactions; semiclassical corrections; effective action.

pdf (308 kb)   ps (307 kb)   tex (119 kb)

References

  1. Shifman M.A., Vainshtein A.I., Zakharov V.I., QCD and resonance physics. Theoretical foundations, Nucl. Phys. B, 1979, V.147, 385-447.
    Shifman M.A., Vainshtein A.I., Zakharov V.I., QCD and resonance physics. Applications, Nucl. Phys. B, 1979, V.147, 448-518.
    Shifman M.A., Vainshtein A.I., Zakharov V.I., QCD and resonance physics: the r- w mixing, Nucl. Phys. B, 1979, V.147, 519-534.
  2. Weinberg S., Phenomenological Lagrangians, Phys. A, 1979, V.96, 327-340.
  3. Gasser J., Leutwyler H., Chiral perturbation theory to one loop, Ann. of Phys. (N.Y.), 1984, V.158, 142-210.
    Gasser J., Leutwyler H., Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B, 1985, V.250, 465-516.
  4. 't Hooft G., A planar diagram theory for strong interactions, Nucl. Phys. B, 1974, V.72, 461-473.
    't Hooft G., A two-dimensional model for mesons, Nucl. Phys. B, 1974, V.75, 461-470.
  5. Witten E., Baryons in the 1/N expansion, Nucl. Phys. B, 1979, V.160, 57-115.
  6. Manohar A.V., Large Nc QCD, in Probing the Standard Model of Particle Interactions, Les Houches LXVIII (1997), Editors R. Gupta et al., Elsevier, Amsterdam, 1999, Vol. II, 1091-1169, hep-ph/9802419.
  7. Pich A., Colourless mesons in a polychromatic world, in The Phenomenology of Large-Nc QCD (January 9-11, 2002, Tempe, Arizona), Editor R. Lebed R., Singapore, World Scientific, 2002, 239-258, hep-ph/0205030.
  8. Gasiorowicz S., Geffen D.A., Effective lagrangians and field algebras with chiral symmetry, Rev. Mod. Phys., 1969, V.41, 531-573.
    Volkov M.K., Meson Lagrangians in a superconductor quark model, Ann. of Phys. (N.Y.), 1984, V.157, 282-303.
    Meißner U.-G., Low energy hadron physics from effective chiral lagrangians with vector mesons, Phys. Rep., 1988, V.161, 213-362.
    Espriu D., de Rafael E., Taron, J., The QCD effectve action at long distances, Nucl. Phys. B, 1990, V.345, 22-56.
    Bijnens J., Chiral Lagrangians and Nambu-Jona-Lasinio like models, Phys. Rep., 1996, V.265, 369-446, hep-ph/9502335.
  9. Nambu Y., Jona-Lasinio G., Dynamical model of elementary particles based on an analogy with superconductivity, I, Phys. Rev., 1961, V.122, 345-358.
    Nambu Y., Jona-Lasinio G., Dynamical model of elementary particles based on an analogy with superconductivity, II, Phys. Rev., 1961, V.124, 246-254.
    Vaks V.G., Larkin A.I., On the application of the methods of superconductivity theory to the problem of the masses of elementary particles, Zh. Éksp. Teor. Fiz., 1961, V.40, 282-285 (English transl.: Sov. Phys. JETP, 1961, V.13, 192-193).
    Arbuzov B.A., Tavkhelidze A.N., Faustov R.N., On the fermion mass in the g5-invariant model of the quantum field theory, Docl. Akad. Nauk. SSSR, 1961, V.139, 345-347 (English transl.: Sov. Phys. Dokl., 1962, V.6, 598-600).
  10. Eguchi T., New approach to collective phenomena in superconductivity models, Phys. Rev. D, 1976, V.14, 2755-2763.
    Kikkawa K., Quantum corrections in superconductor models, Progr. Theor. Phys., 1976, V.56, 947-955.
  11. Volkov M.K., Ebert D., Four-quark interactions as a common dynamical basis of the s model and the vector dominance model, Sov. J. Nucl. Phys., 1982, V.36, 736-742.
    Ebert D., Volkov M.K., Composite meson model with vector dominance based on U(2) invariant four quark interactions, Z. Phys. C, 1983, V.16, 205-210.
  12. Dhar A., Wadia S., The Nambu-Jona-Lasinio model: an effective Lagrangian for quantum chromodynamics at intermediate length scales, Phys. Rev. Lett., 1984, V.52, 959-962.
    Dhar A., Shankar R., Wadia S., Nambu-Jona-Lasinio type effective Lagrangian: anomalies and nonlinear Lagrangian of low-energy, large-N QCD, Phys. Rev. D, 1985, V.31, 3256-3267.
    Ebert D., Reinhardt H., Effective chiral hadron lagrangian with anomalies and Skyrme terms from quark flavour dynamics, Nucl. Phys. B, 1986, V.271, 188-226.
    Schüren C., Arriola E.R., Goeke K., Explicit chiral symmetry breaking in the Nambu-Jona-Lasinio model, Nucl. Phys. A, 1992, V.547, 612-632.
    Bijnens J., Bruno C., de Rafael E., Nambu-Jona-Lasinio like models and the low energy effective action of QCD, Nucl. Phys. B, 1993, V.390, 501-541, hep-ph/9206236.
    Bernard V., Osipov A.A., Meißner U.-G., The momentum - space bosonization of the Nambu-Jona-Lasinio model with vector and axial-vector mesons Phys. Lett. B, 1994, V.324, 201-208, hep-ph/9312203.
    Bernard V., Blin A.H., Hiller B., Ivanov Yu.P., Osipov A.A., Meißner U.-G., Pion observables in the extended NJL model with vector and axial-vector mesons Ann. of Phys. (N.Y.), 1996, V.249, 499-531, hep-ph/9506309.
    Osipov A.A., Hiller B., Effective chiral meson Lagrangian for the extended Nambu-Jona-Lasinio model, Phys. Rev. D, 2000, V.62, 114013, 10 pages, hep-ph/0007102.
    Osipov A.A., Sampaio M., Hiller B., Implications of a new effective chiral meson Lagrangian, Nucl. Phys. A, 2000, V.703, 378-392, hep-ph/0110285.
    Osipov A.A., Hiller B., Generalized proper time approach for the case of broken isospin symmetry, Phys. Rev. D, 2001, V.63, 094009, 10 pages, hep-ph/0012294.
  13. 't Hooft G., Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D, 1976, V.14, 3432-3450; Erratum, Phys. Rev. D, 1978, V.18, 2199.
  14. Diakonov D., Instantons at work, Progr. Part. Nucl. Phys., 2003, V.51, 173-222, hep-ph/0212026.
    Shuryak E.V., Applying the many-body theory to quarks and gluons, Phys. Rept., 2004, V.391, 381-428.
  15. Simonov Yu.A., Effective quark Lagrangian in the instanton-gas model, Phys. Lett. B, 1997, V.412, 371-376, hep-th/9703205.
  16. Bali G.S., QCD forces and heavy quark bound states, Phys. Rept., 2001, V.343, 1-136, hep-ph/0001312.
  17. Witten E., Instantons, the quark model, and 1/N expansion, Nucl. Phys. B, 1979, V.149, 285-320.
  18. Simonov Yu.A., Chiral Lagrangian with confinement from the QCD Lagrangian, Phys. Rev. D, 2002, V.65, 094018, 10 pages, hep-ph/0201170.
  19. Bernard V., Jaffe R.L., Meissner U.-G., Flavor mixing via dynamical chiral symmetry breaking, Phys. Lett. B, 1987, V.198, 92-98.
    Bernard V., Jaffe R.L., Meissner U.-G., Strangeness mixing and quenching in the Nambu-Jona-Lasinio model, Nucl. Phys. B, 1988, V.308, 753-790.
  20. Reinhardt H., Alkofer R., Instanton induced flavour mixing in mesons, Phys. Lett. B, 1988, V.207, 482-488.
  21. Osipov A.A., Hiller B., Path integral bosonization of the 't Hooft determinant: quasiclassical corrections, Eur. Phys. J. C, 2004, V.35, 223-241, hep-th/0307035.
  22. Klimt S, Lutz M., Vogl U., Weise W., Generalized SU(3) Nambu-Jona-Lasinio model. Part 1. Mesonic modes, Nucl. Phys A, 1990, V.516, 429-468.
    Vogl U., Lutz M., Klimt S., Weise W., Generalized SU(3) Nambu-Jona-Lasinio model. Part 2. From current to constituent quarks, Nucl. Phys A, 1990, V.516, 469-495.
  23. Bernard V., Blin A.H., Hiller B., Meißner U.-G., Ruivo M.C., Strong and radiative meson decays in a generalized Nambu-Jona-Lasinio model, Phys. Lett. B, 1993, V.305, 163-167, hep-ph/9302245.
    Dmitrasinovic V., UA(1) symmetry breaking, scalar mesons and the nucleon spin problem in an effective chiral field theory, Nucl. Phys. A, 2001, V.686, 379-392, hep-ph/0010047.
  24. Klevansky S.P., The Nambu-Jona-Lasinio model of quantum chromodynamics, Rev. Mod. Phys., 1992, V.64, 649-708.
    Hatsuda T., Kunihiro T., QCD Phenomenology based on a chiral effective Lagrangian, Phys. Rept., 1994, V.247, 221-367, hep-ph/9401310.
  25. Osipov A.A., Hiller B., Bernard V., Blin A.H., Aspects of UA(1) breaking in the Nambu and Jona-Lasinio model, Ann. of Phys. N.Y., 2006, to appear, hep-ph/0507226.
  26. Osipov A.A., Hiller B., da Providência J., Multi-quark interactions with a globally stable vacuum, Phys. Lett. B, 2006, V.634, 48-54, hep-ph/0508058.
  27. Coleman S., Weinberg E., Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D, 1973, V.7, 1888-1910.
  28. Okubo S., Phi meson and unitary symmetry model, Phys. Lett. B, 1963, V.5, 165-168.
    Zweig G., An SU(3) model for strong interaction symmetry and its breaking. 2, CERN Report No. 8419/TH412, 1964.
    Iizuka I., A systematics and phenomenology of meson family, Progr. Theor. Phys., 1966, V.37-38, suppl., 21-34.
  29. Witten E., Current algebra theorems for the U(1) "Goldstone boson", Nucl. Phys. B, 1979, V.156, 269-283.
    Veneziano G., U(1) without instantons, Nucl. Phys. B, 1979, V.159, 213-224.
  30. Diakonov D., Chiral symmetry breaking by instantons, Lectures at the Enrico Fermi school in Physics (June 27 - July 7, 1995, Varenna), hep-ph/9602375.
    Diakonov D., Chiral quark-soliton model, Lectures at the Advanced Summer School on Non-Perturbative Field Theory (June 2-6, 1997, Peniscola, Spain), hep-ph/9802298.
  31. Dorokhov A.E., Zubov Y.A., Kochelev N.I., Manifestations of QCD vacuum structure in composite quark models, Sov. J. Part. Nucl., 1992, V.23, 522-531.
    Shuryak E.V., Correlation fuctions in the QCD vacuum, Rev. Mod. Phys., 1993, V.65, 1-46.
  32. Diakonov D., Petrov V., A theory of light quarks in the instanton vacuum, Nucl. Phys. B, 1986, V.272, 457-489.
    Diakonov D., Petrov V., Spontaneous breaking of chiral symmetry in the instanton vacuum, in Hadron Matter under Extreme Conditions, Editors G. Zinoviev and V. Shelest, Kiev, Naukova Dumka, 1986, 192-225.
    Diakonov D., Petrov V., Pobylitsa P., A chiral theory of nucleons, Nucl. Phys. B, 1988, V.306, 809-848.
    Diakonov D., Petrov V. Diquarks in the instanton picture, in Quark Cluster Dynamics, Editors K. Goeke, P. Kroll and H.-R. Petry, Lecture Notes in Physics, Vol. 417, Springer-Verlag, 1992, 288-297.
  33. Kerbikov B.O., Simonov Yu.A., Path integral bosonization of three flavor quark dynamics, hep-th/9503146.
  34. Osipov A.A., Hiller B., Path integral bosonization of the 't Hooft determinant: fluctuations and multiple vacua, Phys. Lett. B, 2002, V.539, 76-84, hep-ph/0204182.
  35. Osipov A.A., Hiller B., Effective chiral meson Lagrangian for the extended Nambu-Jona-Lasinio model, Phys. Rev. D, 2000, V.62, 114013, 10 pages, hep-ph/0007102.
    Osipov A.A., Hansen H., Hiller B., Long distance expansion for the NJL model with SU(3) and UA(1) breaking, Nucl. Phys. A, 2004, V.745, 81-103, hep-ph/0406112.
  36. Weinberg S., Effective theories in the large N limit, Phys. Rev. D, 1997, V.56, 2303-2316, hep-th/9706042.
  37. Bjorken J., Drell S., Relativistic quantum mechanics, New York, McGraw-Hill, 1964 (see in Chapter VIII, Section 8.2).
  38. Weinberg S., The quantum theory of fields, Vol. 1, Cambridge University Press, 1995 (see in Chapter IX, in the end of § 9.3).
  39. Abers E.S., Lee B.W., Gauge theories, Phys. Rep., 1973, V.9, 1-141 (see equation (11.20) there).
  40. Wolfram S., "The Mathematica Book", 5th ed., Wolfram Media, 2003.
  41. Osipov A.A., Hiller B., Moreira J., Blin A.H., Stationary phase corrections in the process of bosonization of multi-quark interactions, Europ. Phys. J. C, 2006, to appear, hep-ph/0601074.

Previous article   Next article   Contents of Volume 2 (2006)