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Abstract. We study a way of q-deformation of the bi-local system, the two particle system
bounded by a relativistic harmonic oscillator type of potential, from both points of view of
mass spectra and the behavior of scattering amplitudes. In our formulation, the deformation
is done so that P 2, the square of center of mass momentum, enters into the deformation
parameters of relative coordinates. As a result, the wave equation of the bi-local system
becomes nonlinear with respect to P 2; then, the propagator of the bi-local system suffers
significant change so as to get a convergent self energy to the second order. The study is
also made on the covariant q-deformation in four dimensional spacetime.
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1 Introduction

The aim of studying non-local field theories proposed by Yukawa [1] was originally twofold:
firstly, to derive characteristic properties of elementary particles such as the mass spectrum of
hadrons, from their extended structure; secondly, to deal with the divergence difficulty, which
is inherent in local field theories with local interactions. The bi-local field theory [2] was the
first attempt by Yukawa following this line of thought. For such fields, the first aim has been
addressed in many works in the context of effective relativistic two-particle systems of quark
and anti-quark bound systems. In particular, two-particle systems bounded by a relativistic
harmonic oscillator potential were useful in deriving the linear mass-square spectrum associated
with the Regge behavior in their scattering amplitude [3, 4]. Contrastingly, there has been
little success in the pursuit of the second aim, mainly because the bi-local fields are reduced to
a superposition of an infinite number of local fields with different masses, although some people
have claimed that the second order self-energy becomes convergent associated with the direction
of the center-of-mass momentum. In addition, the problems of the unitarity of the scattering
matrix and causality are also serious for those fields, because a bi-local system in general allows
time-like relative motion. Usually, such a degree of freedom is frozen by an additional subsidiary
condition [5]. However, this is not always successful for interacting cases. This situation may be
different from that of string models that are characterized by the Virasoro condition associated
with the parameterization invariance in such an extended model; nevertheless the study of bi-
local field theories does not come to end, since a small change in models, sometimes, will cause
a significant change in their physical properties.
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Given the situation described above, the purpose of this paper is to study the q-deformation [6,
7, 8, 9] of a bi-local system characterized by a relativistic harmonic oscillator potential, because
the q-deformation is well-defined for harmonic oscillator systems. In a previous paper [10], we
studied a q-deformed 5-dimensional spacetime such that the extra dimension generates a har-
monic oscillator type of potential for particles embedded in that spacetime. Then, the propagator
of the particles in that spacetime acquires a significant convergent property by requiring that
the 4-dimensional spacetime variables and the extra dimensional spacetime variable are mixed
by the deformation. It then happens that the 4-dimensional spacetime variables do not com-
mute with the fifth space variables. We can expect that the same situation arises in the bi-local
system, if we carry out the deformation of the relative variables in this system along the line
of the q-deformed 5-dimensional spacetime. This extension of the bi-local systems was done
in [11]; and, we could show that the bi-local system was free from the divergence in one-loop
level. In this stage, however, we could not find the way of q-deformation being consistent with
the Lorentz covariance. In this paper, thus, we intend adding a new sight for the covariant
deformation, in addition to the review of the q-deformed bi-local fields.

In the next section, we formulate the bi-local system. In Section 3 we construct the q-de-
formed bi-local system with the q-deformed relative coordinates. In this case, we define the
deformation so as to get a Lorentz invariant resultant wave equation. In Section 4, the inter-
action of the bi-local field is discussed in the context of calculating Feynman diagrams. Some
scattering amplitudes between the bi-local system and external scalar fields are also studied by
considering their Regge behavior. A second order self-energy diagram is also calculated to study
the convergence of the model. Section 5 is devoted to summary and discussion. In Appendix A,
several ways of q-deformation in N -dimensional oscillator variables are discussed to find a pos-
sible way to the covariant deformation. In Appendix B, we add a new attempt to construct
a phase space action of the q-deformed bi-local system. Appendix C is devoted to giving of the
outline for calculating of a one-loop diagram corresponding to the self-energy of the q-deformed
bi-local field.

2 Bi-local field theories

The bi-local theory obtains a potential approach to the bound state of relativistic two particle
system. Then the classical action of an equal mass two-particle system that leads to the standard
bi-local field equations is given by [2]

S =
∫

dτ
1
2

2∑
i=1

{
ẋ(i)2

ei
+ ei(m2 + V (x̄))

}
,

where x̄ = x(1) − x(2) is the relative coordinators of the system. Here ei’s are einbein that
guarantee the invariance of S under the reparametrization of τ . By taking the variation of S
with respect to ei, we obtain the equal-mass constraints

δS

δei
= −

{
p(i)2 − (m2 + V (x̄))

}
= 0, i = 1, 2,

where p
(i)
µ = δS

δx(i)µ are the momenta conjugate to x(i)µ. These constraints can be rewritten as

1
2
P 2 + 2

(
p̄2 −m2

)
− 2V (x̄) = 0, (1)

P · p = 0, (2)

where P = p(1)+p(2) and p̄ = 1
2

(
p(1)−p(2)

)
are the total momentum and the relative momentum

of the bi-local system, respectively. The variables Xµ satisfying the canonical commutation
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relations [Pµ, Xν ] = igµν , [p̄µ, Xν ] = 0 are determined uniquely to be Xµ = 1
2

(
x

(1)
µ +x

(2)
µ

)
, which

are nothing but the center of mass coordinates of the equal-mass bi-local system1.
Now, one can verify that these constraints are compatible for the covariant harmonic oscillator

potential V (x̄) = −k2x̄2 in the following sense: In q-number theory, we can introduce the
oscillator variables defined by

x̄ =

√
1
2k

(a† + a), p̄ = i

√
k

2
(a† − a).

Then reading equation (2) in the sense of expectation 〈φ|P · p|φ〉 = 0 as in the Gupta–Bleuler
formalism in QED, equations (1) and (2) can be understood respectively as the master wave
equation of the bi-local system and the physical state condition; that is, we can put(

α′P 2 +
1
2
{a†µ, aµ} − ω

)
|φ〉 = 0, (3)

Pµaµ|φ〉 = 0, (4)

where α′ = 1
8κ and ω = m2

2k . In this stage, the compatibility between equations (3) and (4)
becomes clear. After the second quantization of physical states {|φ〉}, those become the q-
number fields, so called ‘the bi-local field’.

We also note that subsidiary condition (2) defines the bi-local field associated with the
indefinite metric formalism of the Lorentz group. If we read equation (2) as Pµaµ†|φ〉 = 0
instead of (4), then we have a definite metric formalism of bi-local field theories. The former
has a similarity to the string models and the latter shows an interesting form factor as meson-like
bound states [5].

3 q-deformed bi-local system

The q-deformed one-dimensional harmonic oscillator is defined by the oscillators and the number
operator satisfying

aqa
†
q − qa†qaq = q−N , [N, a†q] = a†q,

The oscillator (aq, a
†
q) can be realized from the standard harmonic oscillator (a, a†), the (aq, a

†
q)

with q = 1, through the mapping

aq = a

√
[N ]q
N

, N = a†a, [N ]q =
sinh(N log q)
sinh(log q)

, (5)

There are several ways of q-deformation in four-dimensional harmonic oscillators; and, the fol-
lowing is a similar way to (5) in constructing q-deformed oscillators:

aqµ = aµ

√
[N ]q
Nµ

, [N ]q =
sinh{(N + β + 1

2) log q}
sinh(1

2 log q)
,

N = −a†µaµ, N0 = −a†0a
0, Ni = a†ia

i.

Here, the β may be an operator commuting with (aµ, a†µ); and so, it may contain the center of
mass momentum Pµ. Interesting result is obtained by putting β = β0 − 3

4α′P 2 by considering
the covariance of a resultant wave equation. Then, the master wave equation becomes(

α′P 2 +
1
2
{aqµ, aµ†

q }(P 2, N)− ω

)
|Φ〉. = 0, (6)

1diag (gµν) = (+−−−).
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from which we can obtain the mass-square like operator

m2 = − 1
2α′

{
aqµ, aµ†

q

}
(P 2) +

ω

α′ = − 2
α′

sinh[(N + β + 1
2) log q]

sinh[12 log q]
+

ω

α′ .

It should be noticed that the m2 operator is a Lorentz scalar in spite of that the mapping
breaks the Lorentz covariance. However, if we do not worry about the complexity of [N ], we can
adopt a covariant mapping, which yields the same master wave equation as (6). We will discuss
separately this problem in Appendix A, since such a mapping is important from the viewpoint
of the Lorentz covariance.

Figure 1. The line y = x vs y = − 1
2α′ {aq, a

†
q} + ω

α′ with n = 0, 1, 2, . . .. The mass-square eigenvalues
are represented by the x coordinates of the intersection.

Now, the mass square eigenvalues {m2
n} are obtained by solving the non-linear equation (6)

with respect to P 2 for each eigenvalue n (= 0, 1, 2, . . .) of N ; that is, those are solutions of
m2

n = − 1
α′ {aq, a

†
q}(m2

n) + ω
α′ . It should be noted that the q-deformed bi-local field is free from

space-like solutions for α > 0 as can be seen from Fig. 1.
The above discussion implies that the free bi-local field is similar to local free fields in the sense

that its spacetime development can be determined by the Cauchy data without contradicting
causality. Also, the Feynman propagator

G(P 2, N) =
(

P 2 +
1

2α′ {aqµ, aµ†
q } −

ω

α′ + iε

)−1

decreases exponentially as N , |P 2| → ∞. As shown in the next section, this enables us to obtain
a finite-vacuum-loop amplitude, in contrast to the usual local field theories. This property was
observed firstly in [10].

4 Interaction of the bi-local field

We here discuss, shortly, on the interaction caused by the three vertex of bi-local fields. The
symmetric three vertex in Fig. 2 can be naturally defined by [12, 13][

x
(1)
µ (b)− x

(2)
µ (a)

]
|V 〉 = 0[

p
(1)
µ (b) + p

(2)
µ (a)

]
|V 〉 = 0

}
(a, b, c cyclic). (7)

The vertex function |V 〉 determined by these equations, however, does not satisfy the physical
state condition P ·a(k)|V 〉 = 0, (k = a, b, c); in order to get a physical vertex, thus, we have to put
|Vphys〉 = ΛaΛbΛc|V 〉 with projection operators defined by P · a(k)Λk = 0,Λ2

k = Λk, (k = a, b.c).
Using the vertex function, we can calculate the second order scattering amplitudes in Fig. 4 ∼

Fig. 7. In the vertices of those amplitudes, it is sufficient to put one of bi-local fields in Fig. 2,
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say the particle ‘b’, in the ground state, which can be identified with an external scalar field as
in Fig. 3. Then the vertex conditions (7) become

[x(1)(a)− x(2)(c)]|V 〉 = [x(2)(a)− x(1)(c)]|V 〉 = 0,

[p(1)(a) + p(2)(c)]|V 〉 = [p(2)(a) + p(1)(c)]|V 〉 = 0.

a b

c

1

1

12

2

2

Figure 2. The a, b, c designate three bi-local
systems; and 1, 2 are constituents in each bi-local
system.

a
b

c

1

1

2

2

Figure 3. The dashed line denotes the local sca-
lar field corresponding to the ground state of b.

These equations with additional physical state conditions can be solved easily to give

|V 〉 = gδ(4)(P (a) + P (b) + P (c))

× exp

[
− i

2

√
1
2k

(a(a)† − a(c)†)⊥ · P (b) + a(a)†⊥ · a(c)†⊥

]
|0〉.

where a⊥µ = Oµνa
ν with Oµν = ηµν − pµ·pν

p2 . With aid of this vertex function, one can calculate
the second order scattering amplitudes of bi-local fields. In particular, for a simpler case with
ground states a, a′, it is found that the s-channel scattering amplitude decreases rapidly for
s →∞ with t fixed and the t-channel scattering amplitude shows the Regge behavior for t →∞
with s fixed. This means that the t-channel amplitude in Fig. 5 obtained by interchanging s
and t from the second-order scattering amplitude exhibits Regge behavior for large s, with t
fixed [11].

a

a'

b

b'

s

t

Figure 4. A second-order scattering amplitude
of a bi-local system by two external fields with
s = (P (a) + P (b))2 and t = (P (a)− P (a′))2.

s

t

a k

k'a'

Figure 5. The t-channel amplitude obtained
through interchange s ↔ t from Fig. 4.

A more remarkable fact in this model is that the loop diagram in Fig. 7 corresponding to
the self energy of the ground state of the bi-local system is found to be convergent [11]. Indeed,
according to the magnitude of momenta in the internal line, the self energy can be written as

δm2 ∼ δm2(|p|〈|k|) + δm2(|p| � |k|). (8)
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s

t

a k

k'a'

c

Figure 6. The s-channel scattering amplitude
for four grand states.

kk

p

p - k

Figure 7. The self-energy for the grand state.

The first term of equations (8) is finite obviously, and the second term can be evaluated as

δm2(|p| � |k|) ∼ i

(
gπα sinh(1

2 log q)
2α′

0 log q
e(β0+ 1

2
) log q

)2

,

Therefore, the self-energy in our model is found to be convergent by virtue of the factor sinh(·)
in the propagator with the deformation parameter q 6= 1.

5 Summary and discussion

The relativistic two-particle system, the bi-local system, bounded by a 4-dimensional harmonic
oscillator potential yields a successful description of two-body meson-like states. The mass-
square spectrum, then, arises from the excitation of relative variables, which are independent of
the center-of-mass variables.

In this work, we have constructed a q-deformed bi-local system with harmonic oscillator type
bound potential. The deformation (aqµ(P 2), a†qµ(P 2)) is carried out so as to include the center-
of mass momentum in the deformation parameters. Then q-deformed relative coordinates are
non-commutative with each other, while the center-of-mass coordinates remain as commutative
variables. The formal mass square operator is Lorentz invariant, though the mapping (aµ, a†µ) →
(aqµ, a†qµ) spoils the covariance. However, the way of mapping giving the same mass square
operator is not unique; and there is a covariant mapping in compensation of simple commutation
relations of the oscillator variables.

In the q-deformed bi-local system, the mass eigenvalues are real simple zeros of master wave
equation; then, the propagator becomes free from multi-pole ghosts. Further, the wave function
of system acquires new properties such that the propagator of system damped rapidly as |P 2|
tends to infinity. We have also studied the interaction of the bi-local system with external
scalar field, which are identified with the ground state of the system. Then, we could verify the
following: First, the second-order t-channel scattering amplitude exhibits Regge behavior in the
limit t → ∞ with s fixed. Secondly, a second-order loop diagram, which corresponds to a self-
energy of the system, shows convergent property providing q 6= 1. This is due to a characteristic
property of the propagator.

To complete the q-deformed bi-local theory within the framework of field theories, it is neces-
sary to study the higher-order diagrams in addition to the analysis on the causality. Those are
interesting future problems.
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A Representation of a q-oscillator

We here discuss the representation of the q-oscillator variables defined by

[A,A†]q ≡ AA† − qαA†A = q−α(N+β), (9)

where α, β and q (≥ 1) are real parameters, and N = a†a is the number operator for the ordinary
oscillator variables satisfying [a, a†] = 1. There is a mapping between (a, a†) and (A,A†) such
as

A = a

√
[N ]q
N

, A† =

√
[N ]q
N

a†,

where N = a†a. To determine [N ]q, let us recall Na = a(N − 1) and Na† = a†(N + 1); then,
we can verify

AA† = [N + 1]q, A†A = [N ]q,

from which equation (9) can be reduced to

[N + 1]q − qα[N ]q = q−α(N+β).

This recurrence equation can be solved easily; and we have

[N ]q =
qα(N+β) − q−α(N+β)

qα − q−α
. (10)

with the condition [0] = 0.
Under this q-deformation, the Hamiltonian for ordinary oscillator 1

2{a
†, a}+β will be replaced

by 1
2{A

†, A}, which can be rewritten as

1
2
{A†, A} =

1
2

([N ]q + [N + 1]q) =
1
2

sinh
[
α(N + β + 1

2) log q
]

sinh(1
2α log q)

.

Indeed, one can verify that 1
2{A,A†} → 1

2{a
†, a} + β according as as q → 1. This implies that

β plays the role of an additional term in the zero-point energy; and, the α can be absorbed into
the definition of q by the substitution qα → q.

The q-deformation can be extended to D-dimensional oscillator variables defined by [ai, a
†
j ] =

δij , [ai, aj ] = [a†i , a
†
j ] = 0 (i, j = 1, 2, . . . , D). We note that there is no mapping Ai(a, a†)

satisfying

[Ai, A
†
j ]q = δijf(N) and [Ai, Aj ]q = [A†

i , A
†
j ]q = 0,

where N =
∑

i a
†
iai. Indeed, since Aj [Ai, A

†
j ]q = q2α[Ai, A

†
j ]qAj +qα[Ai, f(N)] for i 6= j, we have

[Ai, f(N)] = 0, which holds only when Ai is a function of N , that is, a function without vector
indices {i}. The mappings listed below, however, may be useful for the model building.

Case (i): Ai = ai

√
[Ni]q
Ni

. The {Ai} satisfy the simple algebra

[Ai, A
†
j ]q = δijq

−α(Ni+β).

However, the mapping does not preserve U(D) symmetry, even for
∑

i{Ai, A
†
i}.
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Case (ii): Ai = ai

√
[N ]q
N . This mapping preserves the U(D) vector property of Ai, while the

algebra of {Ai} is modified so that

AiA
†
j −

(
[N + 1]q

[N ]q
N

N + 1

)
A†

jAi =
[N + 1]q
N + 1

δij .

Further, with [N ] in equation (10), the Hamiltonian becomes a summed form:

1
2

∑
i

{A†
i , Ai} =

1
2

sinh
[
α(N + β + 1

2) log q
]

sinh(1
2α log q)

+
1
2

D + 1
N + 1

sinh [α(N + β + 1) log q]
sinh(α log q)

.

We shall bring up this case later, again, since this case is interesting in the viewpoint of the
covariant formulation of a q-deformed bi-local model.

Case (iii): Ai = ai

√
[N ]q
Ni

. We can then verify that the {Ai} satisfy a U(D) covariant algebra
such as

[Ai, A
†
j ]q = q−α(N+β)Ai[N ]−1

q A†
j ,

although the mapping spoils that symmetry; and the Hamiltonian becomes an invariant form,
which is used in Section 3:

1
2

∑
i

{A†
i , Ai} =

D

2
sinh

[
α(N + β + 1

2) log q
]

sinh(1
2α log q)

. (11)

We now turn to the covariant mapping (ii) to note that there is a function [N ] related with a
given Hamiltonian H(N) in principle. In order to show this, we first write 1

2

∑
i{A

†
i , Ai} = H(N)

as

[N + 1] +
N + 1
N + D

[N ] =
2(N + 1)
N + D

H(N),

in which N may be read as an integer. Then using the function ϕ(N) defined by

ϕ(N) =
N∏

k=0

k + 1
k + D

= (D − 1)B(D − 1, N + 2),

with the convention ϕ(0) = 1, we can get the recurrence relation

[N + 1]
ϕ(N)

+
[N ]

ϕ(N − 1)
= 2

H(N)
ϕ(N − 1)

≡ g(N).

This equation can be solved by the standard manner; and we obtain

[N ] = (−1)N−1ϕ(N − 1)

{
[1] +

N−1∑
k=1

(−1)kg(k)

}

The right-hand side of this equation is determined by H(N) only. Therefore, if it is necessary,
we can arrive at the expression (11) starting from the covariant mapping (ii), though the [N ]
becomes complex one.
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B The phase-space action for a q-deformed bi-local model

It is well known that the phase-space action for the one-dimensional harmonic oscillator has
a simple form

L(z, ż) =
i

2
z∗

↔
∂t z − 〈z|H|z〉, H =

~ω

2
{a†, a}, (12)

where |z〉 = e−|z|
2/2+za†|0〉 is coherent with 〈z|z〉 = 1. Indeed, if we substitute z =

√
mω
2 x +

i√
2mω

p for (12), then the L will be reduced to the standard action of the harmonic oscillator
after eliminating p. In a similar sense, for the q = 1 bi-local model, the action can be written as

L = −P · Ẋ +
i

2
z∗µ

↔
∂τ zµ − eH(P, z, z∗),

where

H(P, z, z∗) = α′P 2 + 〈z̄|1
2
{a†µ, aµ}|z〉 − ω, (13)

and e(τ) is the einbein, which guarantees the τ reparametrization invariance of the action. The
total momentum Pµ can be eliminated from L obviously by using the constraint ∂

∂P µ L = 0.
The H in the q-deformed case is simply obtained by the substitution 1

2{a
†
µ, aµ} → 1

2{A
†
µ, Aµ} in

equation (13).
Let us show that even in this q-deformed case, we can eliminate Pµ from L by using the

constraint

∂L

∂Pµ
= −Ẋµ + e∂P µH = 0.

If we notice here that (∂P H)2 ≡ f(P 2) is a function of P 2 only, the c onstraint allow us to
solve P 2 in terms of (e−1Ẋ)2; then, we have

P 2 = f−1

[(
e−1Ẋ

)2
]

and P · Ẋ =

√
f−1

[(
e−1Ẋ

)2
]

Ẋ2.

Substituting this expression for L, we finally obtain

L = −

√
f−1

[(
e−1Ẋ

)2
]

Ẋ2 + +
i

2
z∗µ

↔
∂τ zµ + eH

(
f−1

[(
e−1Ẋ

)2
]

, z, ż

)
.

One can verify that the constraint corresponding to the master wave equation is obtained by
taking the derivative of L with respect to e.

C Loop amplitude

We here show the outline calculation of the loop diagram corresponding to the self-energy δm2

for the ground state, which can be written as

δm2 ∼ g2

∫
d4p Tr

[
G((p− k)2, N⊥(p− k)) : e−

i
2
x̄·O(p−k)·k : G(p2, N⊥(p)) : e

i
2
x̄·O(p)·k :

]
= δm2(|p| � |k|) + δm2(|p| � |k|). (14)
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The first term of the r.h.s. in equation (14) will be finite, and second term can be roughly
evaluated as

δm2(|p| � |k|) ∼ g2

∫
d4p

∫
C

dζ

2πiζ

∫
C

dζ ′

2πiζ ′

∞∑
n=0

∞∑
n′=0

× Trphys

[
ζN⊥(p) : e−

i
2
x̄·O(p)·k : ζ ′N⊥(p) : e

i
2
x̄·O(p)·k :

]
ζ−nG(p2, n)ζ ′−n′G(p2, n′), (15)

where Trphys means the ‘trace’ in the physical subspace. The trace can be calculated by using
the coherent state |z〉 = e−z·a† |0〉 as follows

Trphys[·] =
∫  3∏

µ=0

d2zµ

π

 ez̄∗·z〈z̄| · · · |z〉|z‖=0

=
1

(1− ζζ ′)4
exp

[
−m2

0

2p2

2ζζ ′ − (ζ + ζ ′)
1− ζζ ′

]
' 1

(1− ζζ ′)4
, (16)

where z̄ = (−z0, z1, z2, z3) and z‖ = P (P ·z)
P 2 . The last form of equation (16) seems to be singular

at ζ = ζ ′−1 (ζ ′ = ζ−1), which is, however, located in outside of the counter C. Further, since
G(p2, n) has no poles of imaginary p0 [11], we can evaluate the integral with respect to p in
equation (15) by means of analytic continuation p = (ip̄0, p̄i).

Then, approximating the lower bound of the integration with respect to p̄ to 0, we can carried
out the p̄ integration in equation (15) explicitly; and, we obtain

δm2(|p| � |k|) ∼ i

(
gπα′ sinh(1

2 log q)
2α′

0 log q
e−(β0+ 1

2
) log q

)2

.
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