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Abstract. This paper presents recent results obtained by the authors (partly in collabo-
ration with A. Dabrowska) concerning expansions of zonal functions on Euclidean spheres
into spherical harmonics and some applications of such expansions for problems involving
Fourier transforms of functions with rotational symmetry. The method used to derive the
expansion formula is based entirely on differential methods and completely avoids the use
of various integral identities commonly used in this context. Some new identities for the
Fourier transform are derived and as a byproduct seemingly new recurrence relations for the
classical Bessel functions are obtained.
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1 Introduction and preliminaries on spherical harmonics

Many parts of analysis on Euclidean spaces and in particular the theory of spherical harmonics
provide an elegant and instructive application of group theoretical concepts to various questions
of classical function theory. It suffices to mention points like: coincidence of eigenspaces of
spherical Laplacian with irreducible components with respect to the natural action of the group
SO(d) within the L? space on the sphere; the role of classical orthogonal polynomials, i.e.
Gegenbauer polynomials, as reproducing kernels for the spaces of spherical harmonics of a given
degree, or more generally, as providing an explicit construction of symmetry adapted basis
functions for those spaces (cf. [12]), or the connection of the Fourier transform on the Euclidean
space to the Hankel transform obtained via restriction to SO(d)-finite functions and various
integral identities of the Hecke-Bochner type resulting there from.

The goal of the present paper is to present under one cover recent developments within
this circle of ideas, obtained in [11, 2, 3] by the present authors, partly in collaboration with
A. Dabrowska. The central point of this paper is a novel form of spherical expansion of zonal
functions on Euclidean spheres which we derive by purely differential methods. We show how it
implies certain general formulae for the Fourier transform of SO(d)-finite functions, including
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recent generalizations of the famous Bochner formula and also derive certain function theoretic
consequences.

1.1 Preliminaries and notations

We denote by (x|y) the standard (Euclidean) inner product of points z,y € R? and by r =
|z| = (x| x)'/? the corresponding length (or radius) function. The unit sphere in R? is denoted
by S41 and for = # 0 we shall often write x = ¢ with £ € S9!, We shall assume d > 3 and
frequently use a constant o defined by av = (d — 2)/2. The sphere is regarded as a homogeneous
space of the group K = SO(d) of (proper) rotations in R? and for a point n € S%~! its isotropy
group K, C K can be identified with the group SO(d — 1).

d
Let A = 0? /836? denote the Laplacian in R?. We let P! = P!(R?) denote the space
=1

J
consisting of homogeneous polynomials of degree I on R% and denote the kernel of A in P!

by H!. This latter space consists of harmonic and homogeneous polynomials of degree I and its
dimension is given by

24+ a)I'(2a + 1)

. '
A = ST (20 +1)

where I'(2) denotes the Euler gamma function. Both these spaces are invariant under the natural
action of the group K = SO(d) on functions on R¢ given by k - f(z) = f(k~'a) for k € K,
x € R?. It is known that this group acts irreducibly in H! for each I, and the representations so
obtained are inequivalent for [ # [’.

The surface spherical harmonics of order | are by definition the restrictions of elements
from H' to the unit sphere S%!, and since the restriction map commutes with the action of
rotations the spaces of surface spherical harmonics of any fixed order are invariant and irreducible
under K.

We endow P! = P/(R?) with an inner product defined by the formula

(P1Q)= [ PEQE (o). 1)

where do(-) is the Euclidean surface measure on the unit sphere S9! normalized so that the
total area of the sphere is 1. In fact, the integral on the right hand side extends to the natural
inner product on L?(S%!, do) and it is known that the spaces of spherical surface harmonics of
different orders are orthogonal to each other with respect to this inner product.

We recall that a function f, defined on the unit sphere S9!, is said to be a zonal function
(relative to a point n € S?~1) if it is invariant with respect to the isotropy group K, of n. Any
such function depends in fact on the inner product (£ |7) only, and so there exists a function ¢
defined on the closed unit interval [—1,1] C R so that

f&) = o((&lm),  forallge s (2)

We shall call ¢ the profile function of f.

1.2 The canonical decomposition of homogeneous polynomials

It is well known that every homogeneous polynomial of degree [ can be represented as a sum of
products of harmonic homogeneous polynomials with even powers of the radius, cf. equation (3)
below, and this decomposition is usually called the canonical decomposition of homogeneous
polynomials. While the general form of the canonical decomposition, i.e. equation (3), is stated
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in all sources concerned with this matter, the explicit formula for harmonic components of
a given homogeneous polynomial is seldom quoted. The only source known to us, where the
formula can be found, is the paper [7] of Lucquiaud. We record it here since it is essential for
considerations to follow, in particular, in establishing formula (6) giving expansion of elementary
zonal polynomials of the form (z |n)!, where € S9! is an arbitrary unit vector.

Theorem 1 (The canonical decomposition). The space Pl decomposes orthogonally as the
sum P! = @ngr%?{l_% and the decomposition is invariant with respect to the action of the

group SO(d). Explicitly, every polynomial P € P! may be written as

[1/2]
P= Z r2khl_2k(P), where  hy_op(P) € -2k 5
k=0

are called the harmonic components of P and are given by

[L/2]—k
hi—o(P)= > (k) Aktip (4)
j=0

with the coefficients elj(kz) determined by

(a+1—2K)D(a+1—2k—j
¢jth) = (= ! 4k+jk!j!F)(oE+l+1—k)j)' (5)

The maps P +— 1r2*h;_op(P) € P! are projections onto SO(d)-irreducible subspaces of P' com-
muting with the action of the group SO(d).

2 Expansions of zonal functions

2.1 Elementary zonal functions and reproducing kernels
To proceed, we need to recall an explicit formula for the Gegenbauer polynomial C7* of degree I

and index «, given for example in [8, Section 5.3.2] or [13, Chapter 9.2], which reads as follows:

arn j MNa+1-3j) Y
crit) = Z(_l) (o)L + DO+ 1 — 27) (20)7.

Applying the formulae for the canonical decomposition given in (4) and (5) to elementary
zonal polynomials (x| 7)!, where n € S~ and [ is a nonnegative integer, we obtain

(/2]

e (o +1—2k)
(@|n)! = 27T ()Tl + )]z ’;0 T

(a+14+1—-k)

Clo((€lm),  x=lals. (6)

In particular, the spherical harmonic obtained by restricting to the unit sphere the harmonic
component hy(P,) of the highest degree of P, (z) = (z|n)!, which is given by the formula

m(P© =2 T+ D U cr el ),

plays an important role in the group representation theoretic interpretation of the decomposi-
tion (1). With normalization given by

ZL(&) = [CR ()] CR((E )
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it satisfies
dimH’/ Z,(€)P(§) do(§) = P(n).
Sdfl

Because of this property, Zé(f ) is called the reproducing kernel for the space H'. Moreover, it
is uniquely (up to a scalar multiple) determined by the property of being invariant under the
action of the isotropy subgroup K, of the point n € ga-1,

2.2 A differential formula for expansions of smooth zonal functions

Now recall [9, 12] that every square integrable function on the sphere can be written as a series
of spherical harmonics (the Fourier-Laplace expansion). For zonal functions this expansion,
thanks to an easy group representation theoretic argument, reduces to

= Z fmZy(€), where  f, = dim H™ f(8) 2, (§) do(§).
m=0

Sd—1

By taking into account the invariance under K, of the integrand and equation (2), the coefficients
may be expressed as integrals

(a4 m) o _ya-1/2
Jm = \Fra+1/2/¢’ BCn 2)

what reduces the problem of spherical expansion of zonal functions to the expansion of profile
functions ¢ with respect to the (orthogonal) system of Gegenbauer polynomials. The following
result shows that the coefficients f,, of the expansion can also be expressed in terms of the
coefficients of the Taylor expansion of the profile function ¢, provided the latter satisfies suitable
regularity assumptions.

Theorem 2. Assume ¢ : [—1,1] — C has the Taylor expansion ¢(t) = z i )( SO ym yhat is
=0

absolutely convergent on the closed interval [—1,1], and let f(§) = ¢((£|n)) be the zonal function
on the sphere St corresponding to ¢. Then the spherical Fourier expansion of f(&) is given by

FE) =T(a+1) Y fudimH"Z(€), (7)
m=0
where the coefficients of the expansion can be expressed as

i L oM TREI (o +m+k+ 1)

A detailed proof of this result is contained in the forthcoming paper [3] of the authors, and
here we shall present its main line only. It consists in substituting the expansion formula (6) into
the Taylor series of ¢ and rearanging terms so that to group together the terms corresponding
to the Gegenbauer polynomials of a given degree. This procedure requires some estimates on
the coefficients which assure the absolute convergence of the double series, which are presented
in detail in [3].

Below we briefly present two applications of this expansion for obtaining new derivations of
some classical results.
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2.3 The plane wave expansion

A well known and very useful instance of the expansion (7) is the so called plane wave expan-
sion, giving a representation of the exponential function ¢l as a series of zonal harmonic
polynomials. The expansion involves the Bessel functions of the first kind of order v € C with
Rev > —1, which are given as

s () Sty () e

k=0

For some purposes the results are better expressed with the aid of the so called spherical Bessel
functions, which are given as

i =t () no.

We point out that all classical proofs of this formula known to us are obtained by applying
certain integral identities of the Hecke—Bochner type, as in [5, 9]. With the use of (7) we get it
by direct differentiation of the exponential e’"* and comparison with the power series expansion
of the Bessel function (8).

Corollary 1. For an arbitrary unit vector n € S C R and z € R%, the plane wave €'*!")
admits the following expansion

o0

) _ = g am Dlat1) g7 . ) B
) mZ::oZ o 1) (2) Jaym(r)Zy(6),  w=r§ LS

The series converges absolutely on each sphere of radius r and uniformly with respect to £,n €

i1,

2.4 The generating function of Gegenbauer polynomials

Take a fixed element z # 0 from the unit ball in R? and write = = rn, n € S¢1. The function

STl g —a P = (1—2r(¢|n) +0°) "

is clearly a zonal function with pole at 7 corresponding to the profile function (1 — 2rt +r2)~<.

The expansion resulting from (7) has the form

(1= 20(Elm) + ) = 3 ppr s 2

m=0
and can be reduced to the familiar formula for the generating function of Gegenbauer polynomials
oo
(1=2rt 7)) "% = 1O (),

m=0

as given e.g. in [1, 5, §].
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3 The Fourier transforms of SO(d)-finite functions

In this section we shall present some applications of the plane wave expansion given in Corollary 1
to problems of Fourier analysis in Euclidean space. The subject is related to the well known
Bochner formula (c.f. e.g. [1, 9]), which describes the restriction of the Fourier transform to the
space of functions of the form f(r)P(z), where f is a radial function and P € H! a homogeneous
harmonic polynomial. The result is again a product of the same harmonic polynomial P with
a radial function, which is expressed as the so called Hankel transform of the original radial
factor and is given by the formula (12) below. The result we present in Corollary 4 generalizes
that relation for the case of arbitrary homogeneous polynomials and is a combination of results
obtained by the authors in [11, 2] and by F.J. Gonzalez-Vieli in [6].

3.1 The case of SO(d)-finite functions on the sphere

We take the Fourier transform of suitable regular (e.g. L'(R?)) functions on R? as defined by

d

Fflx) = (27r)—z/Rd @) £ (y) dy, z € R%

Observe that the above definition of the Fourier transform also makes sense in the case when
f is a function defined on the unit sphere — in this case it can be regarded as the Fourier
transform of a measure supported on the sphere. Especially interesting is the case, when the
measure on the sphere comes from restricting a homogeneous polynomial to the sphere, since
this way we obtain a so-called SO(d)-finite measure (since its SO(d)-translates span a finite
dimensional subspace).

Theorem 3. If P € P, then the Fourier transform of the measure P(&)do (&) with support on
the unit sphere S is given by the following equivalent formulae

FP) = [ P dot

NG k92K D (g,
- <2> kzo(r(i)fz Ii __;;;errl ok (|]) hi—2k (P) () )

1[/2] DT (o + 1)
< > Z El(a+14+1- k)ja+l—k(|x’)(AkP)(m) (10)

with hi—ok(P) denoting the harmonic components of P as in equation (3).

The formula (10) has been derived by F.J. Gonzalez [6] and the equivalence of those two
forms was observed by the present authors and A. Dabrowska in [2].

Theorem 3 implies the following interesting function theoretical corollary. By comparing
the two expressions (9) and (10) from this theorem one may derive the following multi-step
recurrence relation for spherical Bessel functions.

Corollary 2. If a > 0 is a half odd integer (or an integer) then for any l € Zy the following
relations hold

S

S'Fa+l+1—s) (a+1—k—3s) 7\ 2(s—Fk)
Jarti=s( Z k(s — k) D+ 1+ 1 — k)L(o+ [ — 2k) (2) Jacti-2k(r)

fors=1,...,[1/2].
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In terms of the Bessel functions of the first kind, this is expressed by

L(2Y', a+l—k—® (o +1+1—2k)
st\r ot a-+l— . 11
s! (T) +l- Zk' k)T a+l+1*k)1“(a+lf2k)‘] t1—2k(T) (11)

It is interesting to note that these latter relations unify several classical relations satisfied by
Bessel functions like [1, equation (4.6.11)] or [8, Chapter 3.2.2]. In fact, taking into account the
relation

1 o\-/2
J_1/5(t) = (27rt> cost,

which follows directly from the expansion (8), and the familiar recurrence relations satisfied
by J,(t), namely

l
<1 i) (I (1) = (=D (D)

one can derive from (11) the following relations.

Corollary 3 (Finite expansions of Bessel functions). The Bessel functions of integer order
satisfy the relation

nv<t> J"(t)_kzzoek(nw)!(n—k)!‘]?’“(t)’ where 6‘“_{ 2, k=123...,

while those of half odd integer order satisfy

2 ). (1) + 2k)
St = e = 2 T~ PR

k=
[(n—1)/2]

(—D)k(n + 2k + 1)!
+ cos(t —nm/2) ;: (2k + 1)l(n — 2k — 1)1(26)7F51

)
=0

3.2 The generalized Bochner formula and the Hankel transform

For our last topic recall that for suitable functions on the nonnegative real axis R, say, with ¢
belonging to the Schwartz space S(R), one defines the Hankel transform by the formula

B0 = gy | 000 as. (12)

Theorem 3 above now immediately implies that the generalized Bochner formula which was
previously obtained in [11] can also be expressed by a pair of equivalent formulae.

Corollary 4 (Generalized Bochner identity). If P € P!, then the Fourier transform of the
function f(|x|)P(x) is given by the following expressions:

. [1/2]
4 [ fa)p e 0 e =i 3 (1) Hasa-an (5™ 1)l P))

[l/ 2] 1)k

ZZ O Hot () () A P(y)
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This implies in turn the following:

Corollary 5 (Periodicity relation for the Hankel transform). For any ¢ € S(R) with «
and | satisfying conditions of Corollary 2 above, the Hankel transform satisfies the following
relation

Hot(9)(t) = 2( + 1 — 1) Hoqy—1(9)(t) — Hoyi—2 (5°9) (1).

4 Conclusion

In this paper we have demonstrated that differential identities for homogeneous polynomials
like those implied by equations (3)—(5) can be effectively used for solving problems in harmonic
analysis, which so far have been approached by means of integral identities of the type of Hecke—-
Bochner formula. In our opinion other possibilities of using that approach should certainly be
further explored.
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