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Abstract. We review some recent results on quasi-exactly solvable spin models presenting
near-neighbors interactions. These systems can be understood as cyclic generalizations of
the usual Calogero—Sutherland models. A nontrivial modification of the exchange operator
formalism is used to obtain several infinite families of eigenfunctions of these models in
closed form.
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1 Introduction

In the early 1970s, F. Calogero [6] and B. Sutherland [37] introduced the quantum integrable
systems that nowadays bear their names. Apart from their intrinsic mathematical interest [25,
21, 3], Calogero—Sutherland (CS) models have played a central role in Physics due to their
relevant applications to as diverse topics as soliton theory [23, 32], quantum field and string
theory [18, 9], quantum Hall effect [2], fractional statistics [28] and random matrix theory [36].
The first satisfactory explanation of the integrability of these models was given by Olshanetsky
and Perelomov [26], who connected these models with the radial Laplacian of symmetric spaces
associated to the root system Ap. This unified view enabled them to introduce important
generalizations, including different root systems and elliptic potentials.

During the last decade CS models have been extended to the case of particles with internal
degrees of freedom, which we shall henceforth call spin. There are two different approaches to
spin CS models, namely the supersymmetric [5] and Dunkl operator [10, 29] formalisms. These
methods have allowed to solve totally or partially several rational, trigonometric and elliptic
spin models, both in their Ay and BCy versions [8, 42, 16, 17]. The interest in spin CS models
also increased as a consequence of their direct connection with the Haldane—Shastry (HS) spin
chain [19, 34], which was laid bare by Polychronakos through the so called “freezing trick” [30].
This technique was also used in the construction of solvable spin chains associated to different
potentials and root systems [31, 12].

Auberson, Jain and Khare [22, 1] introduced partially solvable versions of the CS models
in which each particle only interacts with its nearest and next-to-nearest neighbors. Similar
scalar models were also studied by Ezung, Gurappa, Khare and Panigrahi [15]. There are two
reasons that make these kind of systems very promising from a physical point of view. First,
some of them are related to the short-range Dyson model in random matrix theory [4]. Second,
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the HS chains associated to these models would occupy an interesting intermediate position
between the Heisenberg chain (short-range, position-independent interactions) and the usual
HS chains (long-range, position-dependent interactions). A first step towards the construction
of these chains was Deguchi and Ghosh’s definition of spin 1/2 versions of the Jain and Khare
Hamiltonians [7] using the supersymmetric formalism. Unfortunately, all these authors solely
managed to construct a few exact solutions, and all of them with trivial spin dependence, and
the procedures developed to obtain exact solutions are by no means systematic.

In [13, 14] we introduced three new families of spin near-neighbors models and used a nontriv-
ial modification of the Dunkl operator method to obtain a wide range of fully explicit solutions.
In this article we aim to review the main ideas underlying our constructions and explain their
connection with the usual CS models. In Section 2 we define the Hamiltonians that we shall deal
with and state our main result, which is a description of the algebraic states of the models. In
Section 3 we review the philosophy underlying the calculation of exact solutions of Schrodinger’s
equation by algebraic methods. In Section 4 we sketch the main logical steps that the construc-
tion of the invariant flags rests upon. We finish the paper by showing in Section 5 how the
actual computation of the algebraic eigenfunctions can be carried out. For the sake of brevity,
complete proofs are not given in this review.

2 Main result

Let 3 be the Hilbert space of internal degrees of freedom of N particles of spin M € %N . Let
us fix a basis

B={|s1,....,sn):s; € {-M,-M +1,...,M}}
of ¥ and define the spin exchange operators S;; as
Sijls1, -y Sy s Sy s SN) = |81, 0,85,y Sy oo, SN
These operators can be expressed in terms of the (normalized) fundamental generators of

SU(2M +1) as S;j = 2M + 1)1 + >, JitJ¢, the index sum ranging from 1 to 4M (M + 1).
The Hamiltonians of the models we shall be concerned with are given by (cf. [14])

_Zagﬂuve, e=0,1,2, (1)
where
Vo = wr? + Z 2a” + Z 5(a—Siiv1), (2a)
(2 — mi1) (% — @iy1) — Tip1)? '
b(b— 1) 8(121'2
Vi =w?r? + +
S e
x +:1:
+ 4a Z S(a— Siiv1), (2b)
H—l)

Vs = 242 Zcot x; — wi—1) cot(x; — xiq1) + 2&2CSC2(1‘i —xiy1)(a — Siit1)s (2¢)

% )

with r? = 3", 22 and a,b > 1/2. Here and in what follows, all sums and products run from 1 to N
unless otherwise stated, with the identifications zg = xny and zx1 = x1. There is a hyperbolic
potential analogous to (2c) that is recovered substituting x; by —z; and V5 by —V;. The scalar
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reductions HZ® of these models are obtained from the above Hamiltonians by the substitution
Siit1 — 1.

A few remarks on the configuration spaces of these models are now in order. In all three
models the potential diverges as (z; —2;11) 2 on the hyperplanes x; = x;1, so that the particles i
and 7+ 1 cannot overtake one another. Since we are interested in models with nearest and next-
to-nearest neighbors interactions, we shall henceforth assume that x1 < --- < zy. For the
second potential (2b) we shall take in addition z; > 0, due to the double pole at z; = 0.

A first observation concerning the eigenstates of the models (1) is that if ¢ is an eigenfunction
of H with energy E, then the factorized state ¥ = 1|s) is an eigenfunction of H, with the same
energy for any spin state |s) symmetric under permutation of particles. A second observation
is that Hy commutes with the total momentum P = —i) . 0,,. Hence the movement of the
center of mass decouples, and only the eigenfunctions of Hy with zero total momentum need to
be considered.

The next theorem summarizes the main results presented in [13, 14], which yield a fully
explicit description of several families of algebraic eigenfunctions. It is not difficult to realize,
however, that these eigenfunctions do not exhaust the whole spectrum of the models. We
shall denote by A the projection operator on states totally symmetric under the simultaneous
permutation of both the spatial and spin coordinates. We define the spin vectors |s;), |s;;) as

A(zq]s) Z:Msl A(zy22|8) Za} xj|8i5)-

1<J

We shall consider the subspace ¥’ C X of spin vectors |s) such that >, |s;) is symmetric.
A thorough characterization of this space is given in [14].

Theorem 1. Let [, m be nonnegative integers and let |s) be an arbitrary spin vector, and denote
by T the center of mass coordinate % > zi. Then the following statements hold:

1. Let o« = N(a+3)— 32, 8=p8m) =1-m—N(a+3),t= ]%” — 1, and py, =

e_%TQme;B(wTQ) IL |z — zig1]|®. The Hamiltonian Hy possesses the following families of spin
eigenfunctions with eigenvalue Ej, = Ey + 2w(2l + m), where Ey = Nw(2a + 1) is the ground
state enerqgy:

U = P (OALs), m >0,

o) = [P;;jff’ (OA@ls) - TP >Ars>], m>1,
V2 = s P (O(AH) - 220 (0116)

_ (a+2,6) 20+1) (at1,8)
+ ,’I)Q (P[Zl]l (t) — mp[%]fl (t) A|S> s m 2 2,

v =m,m_3[3NP(ﬁ+§’]’ﬂ Zx +Zom }AI ), m=>3,

W0 = s [mwﬁfﬁ (DA(315)
4 (2T3¢m( ) 7P(a+4ﬂ)(t)z"p§)/\(l‘1|8>)

1_ (a
+ ( m+4’5 Za: + a; Xm( )>A|s)], m > 4.
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When |s) € X' there is an additional family of eigenfunctions given by

B = [P0 (Ae122ls) 2211 ]5)

=2 pla+2,p) 2(a+1) (a+1,8)
o <P[ZLH Wt Gy E ()>A| >] me

The functions @, ¢m and xm are polynomials given explicitly by

oy = M 20H 2 pas2p-2)  platsg-n A HT pasagon L passs)

m—-1 % 71 m—1" %1 3722
b = P(a+4ﬁ ) _gplatss-t) __m+ 200+ 3 plat2,6-1)
m g1 (m—1)(m—3) -1
L oata,8)  m+20—1 (a+3,)
B SP%_2 + m—3 P%—2 ’
3m + 2« (a+2,6-1) |, 2m — T _(a+3,3-1) (a+4,6-1)
- Pm ’ 7P'm ’ - Pm ’
Xm = o ) (m=3) 21 m—3 %1 o
__mA2042 a2 MA20 0436 Pgna+4,ﬁ>
(m—1)(m—-3)" 272 m—3 27?2 3 2

for even m, and

Om = 2P(04+2 B-1) P(04+3ﬁ— ) + P(@+3ﬁ) + m+ 2a + 2P(a+1,ﬁ)

mol m2—1 3 m 3 m(m 2) S
_mt2a+2 20
- 5 1t m-3 9
-2 =
by, = ptti=) _2M =0 passp) 1 pata | mA 20 1 patss)
mzd m — 2 2 3 7 m — 2 5
om = 2 =3 _plat2-n) | 2(m —3) platd-1) _ plactd5-1)
m(m 2) 2 -2 2 2
m + 2a0 + 1P(a+2 B m + 2 anajég’ﬁ) + P(a+4 /3)
m(m — 2) -2 Tz 3
for odd m.

2. The Hamiltonian Hy possesses the following families of spin eigenfunctions with eigenvalue
Ey = Ey + 4kw, where Ey = Nw(4a + 2b+ 1) is the ground state energy:

o0 = pro Y wrd)Als), k>0,
U = pLgt (@) [NA(R]s) — 2A]s)], k> 1,
U = Lt wr?) [N+ 1) > ad - 8t [Als), k22,

with o= N(2a+b+3), B=N(da+b+3) and p= e " [L; |27 — 22 4|"2?
3. The Hamiltonian Hy possesses the following spin eigenfunctions with zero momentum

Vo=, =3 { e,
W, = [QH e S eos(2le ) lsp| = sin(@ - )l

i#] i#]

where p = [, sin® |x; — zi11|. Their energies are respectively given by

1
Eo,  Eio=FEo+ 4<2a F1- N)’ B34 = Eo+8(2a+1),

where Eg = 2Na? is the ground state energy.
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3 Calogero models and Dunkl operators

Let us consider a self-adjoint operator H acting on a given Hilbert space H. The idea underlying
the construction of algebraic eigenfunctions of H (see, e.g., [40]) is that the explicit knowledge
of a finite-dimensional subspace H; C ‘H which is invariant under the operator H allow ones to
compute dim H; eigenfunctions and eigenvalues of H by algebraic methods, i.e., diagonalizing
the matrix H|s,. In this case the operator is said to be quasi-exactly solvable (QES). In fact,
the Hamiltonians of the models (2a) and (2b) possess an infinite flag Hy C He C -+ of known
finite-dimensional invariant subspaces, which yield an arbitrary large number of eigenvalues and
eigenfunctions. Although such models are sometimes termed “exactly solvable” [39], we will not
use this terminology since the algebraic eigenfunctions of the models (2a) and (2b) are not an
orthonormal basis of the Hilbert space.

A particularly convenient method of carrying out this program [38, 35] is through a Lie
algebra g of first-order differential operators J = Y. £%(2)0,, + n%(z) (a = 1,...,r) acting on

a finite-dimensional module M C C°°(M), with M a domain in R". Let us assume that there
7

~ T
exists a second-order differential operator H = > cgJ*J by > cqJ* + co that is equivalent,
a,b=1 a=1

up to gauge transformation H — pHp ™! (u € C°(M,RT)) and global change of variables z €
M — x € RN, to a Schrodinger operator H = —Ay,+V, Ay standing for the Laplace-Beltrami
operator in (RY, g). If uM|, . C L*(RY, /gdx), then one can obtain dim M eigenfunctions
of H by algebraic methods. The Schrédinger operators amenable to this treatment are termed
Lie-algebraic. It should be observed that the operators J* are not symmetries of H: g is an
algebra of hidden symmetries of H.

Dunkl operators [20] were originally introduced to study spherical harmonics associated to
measures invariant under a Coxeter group [10]. Actually, let v,z € RV and define the reflection
opz = z — 2v|7%(z - v)v. Let 20 be a Coxeter group, which can be assumed to be the Weyl
group of a (possibly nonreduced) root system R, and let v, = >, vie; (a =1,...,7) be a basis
of positive roots. Define an action of 20 on C[z]| as K,f = f o gy,. Dunkl operators were
originally defined as

Ji=0,+Y P k), (3)

where the real parameters g2 are chosen so that they are constant on each orbit of 2J. The
operators J; can be understood as deformations of the partial derivatives 0,, that commute
with the deformed Laplacian, i.e., Y., J2J; = J; 3. J2. It can be verified that {J;, K,} span a
degenerate Hecke algebra [24]. Currently, the definition of Dunkl operators has been generalized
to mean a set {J;}&; C End C|2] of first order differential operators which leave invariant finite-
dimensional polynomial subspaces and such that {J;, K,} span a Hecke algebra.

In their original form, Dunkl operators are directly connected with the rational Calogero
model of type R [11]. In the simplest case (R = Ay_1, 20 = Sy ) and writing « instead of z,
the Dunkl operators (3) read

1
Ji =0 +9") (1 - Ky),

FET

where

(Kijf)(@1,...,zi. .z, 2n) = f(@n, 00,25, .0, @iy .., TN) (4)

denotes the reflection operator associated to the root e; — e;. Actually, let us consider the
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Calogero ground state function u(z) = ¢~ [lic; [zi — 2;|* and the auxiliary operator
i

A straightforward calculation shows that one can use the ground state function p to gauge
transform the deformed Laplacian so that

pHop™t = 232 —l—az - — K;j) +wr?, (6)
Z#J i 3)

with g2 = a(a — 1) and

Ho =) J} +2wJ°+ Ky,

yields the Calogero model of Ax_; type when acting on symmetric functions ¢ € AL?(RY).
Since J;, JO preserve the space of polynomials

={f €Clx] : deg f < n} (7)

for any n = 0,1,..., the Dunkl operators provide a very convenient fashion of exploring the
solvability properties of Calogero—Sutherland models. It should be remarked, however, that for
an arbitrary Coxeter group 20 the Dunkl operators (3) do not form a Lie algebra; nevertheless,
this technique captures most of the relevant features of the Lie-algebraic method.

As we shall now outline, Dunkl operators can also be used to introduce internal degrees of
freedom in the picture without breaking the solvability properties of the models. Given a scalar
differential-difference operator D linear in Kjj, let us denote by D* the differential operator
acting on C°° ® ¥ obtained from D by the replacement K;; — S;;. It is clear that the actions
of D and D* coincide on the (bosonic) Hilbert space

H=AL*RY)® ). (8)
Therefore the scalar operator (6) coincides with that of the spin Calogero model

HCENH*C/L 1 — 282 +CLZ iy CL—SZ']')
Z#J i 3)

when acting on symmetric states ¥ € H.

4 Invariant subspaces

The proof of the main theorem rests on the construction of appropriate invariant flags for the

Hamiltonians (1) using a modification of the Dunkl operator formalism. This modification turns

out to be rather nontrivial, ultimately due to the fact the cyclic group is not of Coxeter type.
As the first step, we consider the second-order differential-difference operators T given by

T, = 22682+2a22
i (A

where 0; = 0,,, zn+1 = 71, and

Zi, 2
O — 21 0s1) zazzzmu—mm (9)
. (2

- ZH—l - Zz+1)2

1
190(‘%'73/) =1, ﬁl(x7y) = 5(1" +y)7 ﬂg(l‘,y) =2y.
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Each Hamiltonian H, is related to a linear combination

H =cT.+c_J +cJ°+ Ey (10)
of its corresponding operator T, and the auxiliary first-order differential operators J= = )", 0;
and JO = >, 2i0; via a change of variables, a gauge transformation, and the star mapping

defined in the previous section, that is,

H. :,U"?Ie* - (11)

zi=C(ai) H

The constants ¢, c_, cg, Ey, the gauge factor p, and the change of variables ¢ for each model
are listed in Table 1. Hence the construction of the models (1) is analogous to that of the usual
Calogero—Sutherland models, with the operators (9) being a cyclic analog of the sum of the
squares of the Dunkl operators.

Table 1. Parameters, gauge factor and change of variable in equations (10) and (11).

e=0 e=1 e=2

c -1 —4

c_ 0 —2(2b+1) 0

o 2w dw 4(1 — 2a)

Ey Nw(2a+1) Nw(4a+2b+1) 2Na?

p) e [ lri—zial® e 3 [[la2 — a2, "a? []sin®|a; — @i
i i i

C(z) " 72 ot2iz

It is obvious that the operators (10) preserve the polynomial space (7) for any n € N, so
one may be tempted to believe that the usual arguments for spin CS models should yield an
invariant flag for the Hamiltonians (1). Nevertheless, this is not the case. In fact, the standard
construction [16, 17] is based on the fact that the actions of He and pHcp~! on symmetric
states coincide and these operators commute with the Sy symmetrizer A. Unfortunately, H.
(or H¢) do not commute with A and cyclic symmetry does not suffice to exchange H, and
pwH =1, so this procedure does not grant the existence of any nontrivial invariant subspaces,
not even of direct products M ® A (M C C=(RM)).

We shall now review the actual construction of the invariant spaces, which is considerably
more involved. We shall not provide complete proofs, but merely a sketch of the main logical
steps the construction rests upon.

Classical results on the theory of invariants [41] are responsible for the success of studying
CS models through symmetric polynomials [27, 33]. We shall extend this approach to deal with
the Hamiltonians (1). Let us first introduce two bases {0} and {74} of the space of symmetric
polynomials in z:

k § { . —
ak:Zzi, Tk — iyttt R k‘—l,...,N.
7

i1 <<y

The operators T, consist of three summands which are of second, first and zeroth order in
the derivatives. Let us denote each summand by L., 2aX. and —2aA, respectively. It is not
difficult to realize that {L.} span a Lie algebra isomorphic to s((2), as in the CS case. It turns
out that the first-order differential operators X, leave invariant a flag of symmetric polynomials,
as stated in the following easy lemma.
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Lemma 1. For eachn =0,1,..., the operator X, leaves invariant the linear space X, where
XéIZ(C[Ul,UQ,Jg]ﬂ’Pn, X{L:C[Jl,ag,TN]ﬂ’Pn, XQTL:(C[Jl,TN_l,TN]ﬂ’Pn.

Remark 1. It should be noted that these flags cannot be trivially enlarged, since, e.g.,

1

ZX00'4 =209 + Z ZiZit1,
KA

1

3X103 =202+ Y zzi,  Xitnoi=1n Y (zizi41)

1 _
§X202 =209 + Zzizi+1a XoTn_—2=NTN_2 —TN Z(Zizi—l-l) !

7 7

i i
are not symmetric polynomials.
In the next proposition we characterize subspaces of the flags described in Lemma 1 that

are preserved by the whole operator T,. If f € Cloy, 02,03, Tn_1,7n], we adopt the convenient
notation

f _ 80'kf7 k:17273)
"7 lo.f, k=N-1,N.

Proposition 1. For each n = 0,1,..., the operator T, leaves invariant the linear space S,
where

Sy ={f €Ay | f33 =0},
St ={f el | fa2 = fnn =0},
Sy ={feA| fii=fy-1n-1=0}
Proposition 1 implies that each operator T¢ preserves product symmetric subspaces S ® AX

spanned by factorized states. The main result on invariant subspaces shows that in fact the latter
operator leaves invariant a richer flag of nontrivial finite-dimensional subspaces of A(P" ® X).

Theorem 2. Let

= (f(o1,09,03)Als), g(01,09,03)A(21]s)), h(o1, 02) A(27]s)),
h(o1,02)A(z122]")) | f33 = g33 = 0),

= (f(o1,02,7n)Als), g(o1, Tn)A(21]8)) | foz = fnn = g = 0),
= (f(o1,7v—1,78)Als), g(Tn—1, T5)A(z1]8)), T a(on, Tn ) A(27 1 s))
| fi1 = fN-1,N—1 = gN-1,N—1 = q11 = 0),

where |s) € 2, |') € ¥/, deg f <n, degg <n—1, degh <n—2, degh < n—2, degq < n—N+1,
and deg is the total degree in z. Then 1" is invariant under T, for alln =0,1,....

From this theorem one easily obtains the following corollary, which is crucial for the compu-
tation of the algebraic eigenfunctions of the models (1).

Corollary 1. For each € = 0,1,2, the gauge Hamiltonian H, leaves invariant the space ﬁ?
defined by

ﬁg =1y, Hy =1" o =75 (12)
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5 Spectrum and eigenfunctions

As happens with the usual CS models, the algebraic eigenvalues of the Hamiltonians (1) can
be easily obtained by choosing a basis of the invariant spaces uﬁ? in which the action of H. is
triangular. In all three cases, the algebraic eigenvalue Ej is the ground state energy, since the
corresponding eigenfunctions do not vanish in the configuration space C..

Now we shall outline how the algebraic eigenfunctions in Theorem 1 were calculated. The
easiest case is € = 2, since states related by a multiplicative factor T]’{, only differ by the movement
of the center of mass, which is conserved. Hence the invariant subspaces ﬂg solely allow one
to compute five eigenfunctions of zero total momentum, which are the ones listed in the main
theorem.

In the case € = 1 the eigenvalue equation reads

(Hl — EO — 4wn)¢ = 0,

where ® is a symmetric vector-valued polynomial in ﬂ? of degree n. Setting ¢ = wo; and
O = [p(t) + o2q(t)|Als) + g(t)A(z1]s)), this equation can be written as

_ « 203
Lptlg=Let5q=0, Ly 'p=———g

- —t 1
Nw N2 & (13)

with the Laguerre operator £} defined as

(LA = tf"(t) + A+ 1= ) f () + v f(t).

With some effort one can obtain all the solutions of these equations, as shown in the following
proposition.

Proposition 2. The polynomial solutions of the system of ODE’s (13) are spanned by

3 = L2 ()Als),  n >0,

oY) = Lo (1) [NwA(21]s)) — tA(z1]s)],  n>1,
o) = L) [Nw?(a + 1)os — BE|AJs), 0 >2.

n

These solutions are characterized by the conditions ¢ = g = 0, ¢ = 0 and g = 0 respectively
and correspond to the algebraic eigenfunctions of H; presented in Theorem 1.

The case € = 0 is similar, but the computations become more involved due to the rich
structure of the invariant flag. Writing

© = (p+ 039)Als) + (u+ 030)A(z1|s) + hA(2F]s)) + hA(z122]3)),

where deg® = k and h = 0 if |s) & X', the equation (Hy — Ey — 2wk)® = 0 reduces to the
systems of PDE’s

[Lo — 2w(k — 2)]h — 8ha = 0, (14a)

[Lo — 2w(k — 2)] h — 8hy = 6v, (14b)

[Lo — 2w(k — 1)]u — 4ug = 4hy + 4hy + 609v;1 + 6(2a + 1)oyv, (14c¢)

[Lo — 2w(k — 4)]v — 16v, = 0, (14d)
4 ~

(Lo — 2wk)p = 2us + 2(2a + 1)h — Niflh + 602q1 + 6(2a + 1)1, (14e)

[Lo — 2w(k — 3)]q — 12g2 = 2uy, (14f)



10

A. Enciso, F. Finkel, A. Gonzélez-Lépez and M.A. Rodriguez

with

Lo = —(NOZ 4 40105,00, + 40202, + 2(2a + 1) N9y, ) + 2w(0105, + 2020s,).

One can check by inspection that the system (14) possesses six families of polynomial solutions,
as collected in Table 2. These correspond to the six families of algebraic eigenfunctions listed in
Theorem 1.

Table 2. The six types of polynomial solutions of the system (14) and their corresponding eigenfunctions.

Conditions Corresponding eigenfunction
g=u=v=h=h=0, p#0 \Ill(gz
u=v=h=h=0, ¢#0 \Ill(frz
q:v:h:iz:O, u#0 \I/l(iz
g=v=h=0, h#0 w2
g=v=h=0, E#O \I’l(frz
h=0, v#0 v
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