|  | SIGMA 2 (2006), 078, 12 pages      nlin.SI/0512016v2     
https://doi.org/10.3842/SIGMA.2006.078 Integrable Hierarchy of Higher Nonlinear Schrödinger Type Equations
Anjan Kundu
Saha Institute of Nuclear Physics, Theory Group &
 Centre for Applied Mathematics & Computational Science, 1/AF Bidhan Nagar, Calcutta 700 064, India
 Received August 14, 2006, in final form October 17, 2006; Published online November 10, 2006 Abstract
Addition of higher   nonlinear terms to the well known
integrable   nonlinear Schrödinger  (NLS)  equations, keeping the same linear dispersion (LD)
usually makes the system nonintegrable. We present a systematic method through a novel
Eckhaus-Kundu hierarchy, which  can  generate  higher
nonlinearities  in  the NLS and derivative NLS equations
preserving their integrability. Moreover,
similar nonlinear integrable extensions can be made again in a
hierarchical way for each of the equations in the known integrable
NLS and derivative NLS hierarchies with higher order LD,
 without changing their LD.
 Key words:
NLSE & DNLSE; higher nonlinearity;  linear dispersion preservation;  integrable Eckhaus-Kundu hierarchy. 
pdf (224 kb)  
ps (155 kb)  
tex (17 kb)
 
 References
 
Agarwal G., Nonlinear fiber optics,  Elsevier, 2001, p. 50.Johnson R.S., On the modulation of water waves in the neighbourhood of kh » 1.363,
Proc. Roy. Soc. London Ser. A, 1977, V.357, 131-141.Benney  D.J., A general theory for interactions between short and long waves,
 Studies in Appl. Math.,  1976/77,  V.57, 81-94.
Kakutani T., Michihiro K., Marginal state of modulational
instability-mode of Benjamin Feir instability, J. Phys. Soc. Japan, 1983,
V.52, 4129-4137.Parkes E.J., The modulation of weakly non-linear dispersive
waves near the marginal state of instability, J. Phys. A:
Math. Gen.,  1987,  V.20, 2025-2036.Ndohi R.,  Kofane T.C., Solitary waves in ferromagnetic chains near the
marginal state of instabilit, Phys. Lett. A,  1991, V.154, 377-380.Pelap F.B., Faye  M.M., Solitonlike excitations in a one-dimensional electrical
transmission line, J. Math. Phys.,  2005, V.46,  033502, 10
pages.Sakovich S.Yu., Integrability of the higher order NLS
revisited,
nlin.SI/9906012.Kindyak A.S., Scott M.M., Patton C.E., Theoretical analysis of
nonlinear pulse propagation in ferrite-dielectric-metal structures based on
the nonlinear Schrödinger equation with higher order terms,  J. Appl. Phys., 2003, V.93, 4739-4745.
Zarmi Y., Perturbed NLS and asymptotic integrability,
nlin.SI/0511057.Kundu A., Landau-Lifshitz and higher-order
nonlinear systems gauge generated from nonlinear
Schrödinger-type equations, J. Math. Phys., 1984, V.25,
3433-3438.Calogero F.,  Eckhaus W., Nonlinear evolution equations, rescalings, model PDEs and their
integrability. I, Inverse Problems, 1987, V.3, 229-262.Clarkson P.A.,  Cosgrove C.M., Painlevé analysis of the nonlinear Schrödinger family
of equations, J. Phys. A: Math. Gen.,  1987, V.20,
2003-2024.Kakei S., Sasa N.  Satsuma J., Bilinearization of a generalized derivative nonlinear Schrödinger
 equation, J. Phys. Soc. Japan, 1995, V.64, 1519-1523,
solv-int/9501005.Feng  Z.,  Wang X., Explicit exact solitary wave solutions for
 the Kundu equation and the derivative Schrödinger equation, Phys. Scripta, 2001, V.64, 7-14.
Shen  L.Y., Some algebraic properties of c-integrable
nonlinear equation II-Eckhaus-Kundu equation and Thomas equation,
Preprint, Univ. Sc. Tech.  China, Hefei, China, 1989.Shen L.Y., Symmetries and constants of motion of integrable systems,
 in Symmetries & Singularity Structures, Spinger,
1990, 27-41.Conte  R., Musette M.,  The Painlevé methods, in Classical and Quantum
Nonlinear Integrable Systems, Bristol, IOP
Publ., 2003, 39-63.Chen H.H.,  Lee Y.C.,  Liu C.S., Integrability of nonlinear
 Hamiltonian systems by inverse scattering method,  Phys. Scripta,
1979, V.20, 490-492.Gerdjikov V.S.,  Ivanov M.I., The quadratic bundle of general form
and the nonlinear evolution equations: hierarchies of Hamiltonian
structures, JINP Preprint E2-82-595,
Dubna, 1982, 16 pages.Mikhailov A.V.,  Shabat A.B.,  Yamilov  R.I., Extension of the module of invertible transformations.
Classification of integrable systems, Comm. Math. Phys.,
1988, V.115, 1-19.Mikhailov A.V.,  Shabat A.B.,  Yamilov  R.I., A symmetric approach to
the classification of nonlinear equations. Complete lists of
integrable systems, Uspekhi Mat. Nauk, 1987, V.42, 3-53.Ablowitz M.,  Segur H.,  Solitons and the inverse
scattering transform,  Philadelphia, SIAM, 1981, p. 54.Novikov S.P. (Editor), Theory of solitons,  Moscow, Nauka,
1980, p. 76 (in Russian).Kaup D.J., Newell  A.C., An exact solution for a derivative nonlinear Schrödinger equation,
J. Math. Phys.,  1978, V.19, 798-801. |  |