
Symmetry, Integrability and Geometry: Methods and Applications Vol. 2 (2006), Paper 078, 12 pages

Integrable Hierarchy

of Higher Nonlinear Schrödinger Type Equations

Anjan KUNDU

Saha Institute of Nuclear Physics, Theory Group & Centre for Applied Mathematics
& Computational Science, 1/AF Bidhan Nagar, Calcutta 700 064, India
E-mail: anjan.kundu@saha.ac.in
URL: http://www.saha.ac.in/theory/anjan.kundu/

Received August 14, 2006, in final form October 17, 2006; Published online November 10, 2006
Original article is available at http://www.emis.de/journals/SIGMA/2006/Paper078/

Abstract. Addition of higher nonlinear terms to the well known integrable nonlinear
Schrödinger (NLS) equations, keeping the same linear dispersion (LD) usually makes the
system nonintegrable. We present a systematic method through a novel Eckhaus–Kundu
hierarchy, which can generate higher nonlinearities in the NLS and derivative NLS equa-
tions preserving their integrability. Moreover, similar nonlinear integrable extensions can be
made again in a hierarchical way for each of the equations in the known integrable NLS and
derivative NLS hierarchies with higher order LD, without changing their LD.
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1 Introduction

Nonlinear Schrödinger equation (NLSE):

iqt + qxx − 2σ|q|2q = 0 (1.1)

as well as derivative NLSE (DNLSE)

iqt + qxx − iα(|q|2q)x = 0 (1.2)

arising in different physical context [1], represent well known integrable systems. The integra-
bility of such systems as well as the stability of soliton solutions inherent to such equations are
believed to be due to a fine balance between their linear dispersive and nonlinear collapsing
terms. Therefore, in some physical situations, which demand addition of higher nonlinear terms
to (1.1) or (1.2) [2, 3, 4, 5, 6, 7], this balance apparently is lost and the system turns into a non-
integrable one, not allowing analytic solutions [8, 9, 10]. On the other hand, together with the
well known NLSE and DNLSE (1.1)–(1.2) there exists a tower of equations in their integrable
hierarchies corresponding to higher conserved charges, where increasingly higher nonlinear terms
do arise. However at the same time higher order linear dispersive terms also appear in these
integrable equations, apparently to compensate for the higher nonlinearities and for restoring
the balance. For example, the next equation in the NLSE hierarchy (evolving with time t3) has
the form

qt3 + qxxx + 6σ2|q|2qx = 0 (1.3)

with higher nonlinearity |q|2qx, which however has a compensating higher order linear dispersive
term: qxxx.
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Nevertheless, in physical systems quite often one needs to add higher nonlinear terms (inclu-
ding nonlinear derivative terms) without increasing the linear dispersion (LD) of the system. An
excellent example of such a system is the Johnson’s equation [2], which was derived to solve an
important hydrodynamic problem for analyzing Stokes instability in fluid flow near the critical
value of kh. This equation which is uniformly valid for any kh is given in the form:

At − a1Axx − a2|A|2A + a3|A|4A + ia4|A|2Ax − ia5(|A|2)xA− a6θtA = 0, (1.4)

where ai are real numbers and θx = δ|A|2. Evidently this physical system contains the same
linear dispersive (LD) term a1Axx as in the NLSE and DNLSE together with their associated
nonlinear terms, whereas it also has additional 5-th order nonlinearity along with nonlinear
terms containing derivatives (described by the terms with coefficients a3, a4 as well as a6). As
shown in [2], at criticality: kh = 1.363 and all ai have known values with a2 = 0.

Another example of such a physical system is the Benney’s hydrodynamic equation [3] descri-
bing long and short wave interaction. Therefore it is natural to ask whether one can add higher
nonlinearity to the original integrable NLS and DNLS equations (1.1)–(1.2) without changing
their LD, and at the same time preserving their integrability. Moreover, we may enquire whether
it is possible to do this in a systematic and hierarchical way.

We focus on these intriguing questions and find that there exists an integrable hierarchy of
Eckhaus–Kundu equations [11, 12], extending the NLS and DNLS equations to higher nonlin-
earities and thus it provides a conclusive answer to the above posed questions. Moreover, such
a hierarchy with the addition of nonlinear terms in a recursive way without changing their LD
and the integrability can also be constructed for each of the equations with higher order LD in
the known integrable NLSE and DNLSE hierarchies.

2 Higher nonlinear NLSE and DNLSE

It has been shown [11] that under a nonlinear transformation of the field q → Q = qe−iθ with
arbitrary gauge function θ the NLSE yields an integrable higher nonlinear equation

iQt + Qxx − 2σ|Q|2Q− (θt + θ2
x − iθxx)Q + 2iθxQx = 0. (2.1)

The DNLSE is extended similarly under the same field transformation to

iQt + Qxx − iα(|Q|2Q)x − (θt + θ2
x − iθxx)Q + θx(2iQx + α|Q|2Q) = 0. (2.2)

It is interesting to note that the generation of such new integrable equations can be linked to
the gauge transformation of the corresponding Lax equations: Φx = UΦ, Φt = V Φ, of the NLSE
and DNLSE to the new systems Φ̃x = Ũ Φ̃, Φ̃t = Ṽ Φ̃, with the gauge transformed Lax operators
Ũ = hUh−1 + hxh−1 and Ṽ = hV h−1 + hth

−1, where the gauge matrix h ∈ U(1) is given
by h = eiθσ3 , with arbitrary gauge field θ(x, t). Note that though both equations (2.1), (2.2)
have been studied quite extensively [13, 14, 15], the investigations were confined mostly to the
particular functional choice for θ as θ = δ

∫ x |Q(x′)|2dx′, with a real parameter δ. Under this
choice the NLSE (1.1) is extended to the Eckhaus–Kundu (EK) equation [11, 12, 16, 17, 18]

iQt + Qxx − 2σ|Q|2Q + δ2|Q|4Q + 2iδ(|Q|2)xQ = 0 (2.3)

while the DNLSE (1.2) turns into a similar equation

iQt + Qxx − iα(|Q|2Q)x +
δ

2
(2δ − α)|Q|4Q + 2iδ(|Q|2)xQ = 0 (2.4)
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Note that in both above equations higher nonlinear terms including derivative and 5-th power
nonlinearity are added to the NLSE and DNLSE, without changing the linear dispersive term
and without spoiling the integrability of the system. It was detected [11] that, for the parameter
choice α = 2δ and α = δ, (2.4) turns into two other well known equations, e.g. Chen–Lie–Liu [19]
and Gerdjikov–Ivanov equations [20].

We intend to generalize now this concept and find the general form for additional nonlinear
terms, for both NLSE and DNLSE, such that they can be included without altering the linear
dispersion and the integrability. We thus find a novel hierarchy of EK equations which provides
a systematic way for such construction. We observe first that in equation (2.1) the gauge
function θ should be chosen through its x and t derivatives as θx = δ|q|2, θt = iδ(q∗qx − qq∗x),
for obtaining higher nonlinear NLSE (2.3), while one should choose in (2.2), θx = δ|q|2, θt =
iδ(q∗qx− qq∗x)+ 3

2αδ|q|4, to get the extended DNLSE (2.4). It is important to note that, in both
these cases the necessary condition (θx)t = (θt)x must hold, which follows here from the validity
of the NLSE and DNLSE themselves for the field function q(t, x).

Our idea, therefore, is to widen this choice of θ for finding a hierarchical rule, by using the
conservation relation iρt + Ix = 0. Such integrable systems, as is well known, possess infinite
number of conserved quantities in involution, and we can make a systematic and recursive choice
for θ

(n)
x = ρ(n) and θ

(n)
t = iI(n), n = 0, 1, 2, . . . for constructing our hierarchy.

Interestingly, we can apply the idea of this construction to each of the higher equations in the
NLSE and DNLSE hierarchies with higher order LD to generate a new integrable EK hierarchy
with higher nonlinear terms, but with the same LD.

To remove any possible confusion, we should remark here that the integrable EK hierarchies
we discover here for the NLSE and DNLSE, together with the known equations (2.3), (2.4) as
well as the well known Chen–Lie–Liu and Gerdjikov–Ivanov equations etc. do not appear in the
celebrated classification list of Mikhailov et. al [21, 22], since it excludes equations which are
related to the enlisted equations through gauge or invertible nonlinear transformations.

3 Recursive formulas and general framework
for conservation law

We first present a general framework for deriving the required conservation rule for both NLSE
and DNLSE. We start with the linear set of Lax equations: Φx = UΦ, Φt = V Φ with Φ =
(Φ1,Φ2) and eliminate Φ2 from both these equations. That would yield from the first Lax
equation a second order linear equation for Φ1:

Φ1xx =
(

U12x

U12

)
Φ1x +

(
U11x + U2

11 + U12U21 −
U12x

U12
U11

)
Φ1, (3.1)

where Uij are matrix elements of the space-Lax operator U . Representing now Φ1 = eU11x+φ

the linear equation (3.1) turns into a Riccati equation for φx = ν(λ):

U12

(
ν

U12

)
x

+ 2U11ν + ν2 = U12U21, (3.2)

which by expanding ν(λ) in powers of λ−1 generates an infinite set of conserved densities cn,
n = 0, 1, 2, . . .. On the other hand from the time-Lax equation we derive φt = V11 +V12

Φ2
Φ1

, while
the space-Lax equation gives Φ2

Φ1
= φx

U12
, yielding φt = V11 + V12

U12
φx. After taking x-derivative this

gives the crucial relation

νt =
(

V11 +
V12

U12
ν

)
x

. (3.3)
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Note that we can derive now the conservation law and hence the hierarchical expressions for the
gauge field θ from (3.3) for concrete systems of NLSE and DNLSE by inserting the corresponding
expressions for the Lax matrix elements Uij , Vij .

4 Higher nonlinear hierarchy from NLSE

We concentrate first on the NLSE system for deriving its integrable hierarchy of higher nonlinear
equations with the same linear dispersive term. For NLSE the conservation relations were
established explicitly in [23]. Using the known form for the Lax matrices of the NLSE:

U11 = −iλ, U12 =
√

σq, U21 =
√

σq∗ and

V11 = −i(2λ2 + σ|q|2), V12 =
√

σ(2λq + iqx), (4.1)

we derive the corresponding Riccati equation from (3.2) as

2iλν = ν2 − σ|q|2 + q

(
ν

q

)
x

. (4.2)

Since ν vanishes at |λ| → ∞, expanding it in spectral parameter ν =
∑
n=0

cn
(2iλ)n+1 , we find

a recursion relation from (4.2) for the densities of the conserved quantities:

cn+1 = q

(
cn

q

)
x

+
n−1∑
k=0

ckcn−k−1, for n ≥ 1 (4.3)

with c0 = −σ|q|2, c1 = −σqq∗x, c2 = −σ(qq∗xx − σ|q|4), etc. This gives a methodical way for
evaluating the infinite set of conserved quantities Cn =

∫
cndx, n = 0, 1, 2, . . .. Since these

conserved quantities are related to the NLSE, which is an integrable system in the Liouville
sense, all of them must be in involution: {Cn, Cm}PB = 0 [23, 24]. This may be checked by
using the fundamental PB relation {q(x), q∗(y)}PB = δ(x − y) and the boundary condition
lim

x→±∞
|q| → 0. We focus now on crucial relation (3.3), which using the relevant Lax matrix

elements for the NLSE derives the conservation relation

νt = −i

(
σ|q|2 +

(
2iλ− qx

q

)
ν

)
x

. (4.4)

Expanding further ν(λ) in parameter λ, we get the hierarchy of relations for the densities of
conserved quantities

cnt = i

(
−cn+1 +

qx

q
cn

)
x

, n = 0, 1, 2, . . . , (4.5)

where all densities cn can be evaluated from the recurrence relation (4.3). Choosing therefore
ρ(n) = − 1

σ cn and I(n) = 1
σ

(
cn+1 − qx

q cn

)
we can derive finally the required conservation law

iρ
(n)
t + I(n)

x = 0, n = 0, 1, 2, . . . . (4.6)

Considering few starting values n = 0, 1, . . . we can easily evaluate their explicit forms as

ρ(0) = |q|2, I(0) = −(qq∗x − q∗qx), ρ(1) = qq∗x, I(1) = (|qx|2 − qq∗xx + σ|q|4), (4.7)
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etc. Therefore we conclude that we can have a series of choices for the gauge function θ given
by

θ(n)
x = δ[ρ(n)] = − δ

σ
[cn],

θ
(n)
t = δ[iI(n)] =

δ

σ

[
i

(
cn+1 −

qx

q
cn

)]
=

δ

σ

[
i

(
cn+1 −

Qx

Q
cn + i

δ

σ
c2
n

)]
, (4.8)

for each values of n = 0, 1, 2, . . ., where [x] = x+x∗ (or i(x−x∗)) indicates nontrivial real valued
combination of x together with convenient normalization by some constants. For example, one
should evaluate the term appearing in the above expression as[

i
Qx

Q
cn

]
= i

(
Qx

Q
cn −

Q∗
x

Q∗ c∗n

)
.

Note that by inserting this choice for θ(n) in higher order equation (2.1) one can generate
a novel hierarchy of EK equations for n = 0, 1, 2, . . .. At the bottom of this hierarchy, as we
see from (4.7), lies the simplest equation (2.3). However it is important to note that since the
gauge field θ in our construction should be a real function, when it is chosen through conserved
densities cn, which in general can be complex valued as evident from (4.3), real combination of
its expression must be taken with proper care, along with any convenient normalization. Such
a manipulation with cn obviously does not affect the conservation law (4.5), since it is a linear
equation in cn. For example, for n = 0 when c0 is real we can take θ

(0)
x = δ|q|2, however for

n = 1, when c1 is complex valued, we must have

θ(1)
x (q) = − δ

σ
[c1] = −iδ(q∗qx − qq∗x)

to make it real. Similarly we get for n = 2,

θ(2)
x (q) = − δ

σ
[c2] = δ

(
q∗qxx + qq∗xx − 2σ|q|4

)
.

The simplest and the lowest in the EK hierarchy with n = 0 is given explicitly by (2.3).
We therefore present the details for the next higher nonlinear equation with n = 1 in the EK
hierarchy using (4.7), while the other equations with n ≥ 2 can be derived in a similar way.
Following the above formulation we get for n = 1:

θ(1)
x (q) = iδT (q), θ

(1)
t (q) = −δ

(
E(q) + 2σ|q|4

)
, (4.9)

where

T (q) ≡ (q∗qx − qq∗x), E(q) ≡ 2q∗xqx − (qq∗xx + q∗qxx). (4.10)

The consistency of (4.9) can also be checked independently by using the NLSE for the field q.
However, since the equation for the transformed field q → Q with q = Qeiθ(Q) is of our interest,
we have to rewrite all the above expressions completely in terms of the new field, by expressing
the functions θx(q), θt(q) through Q. For this purpose we derive

q∗qx = (Q∗e−iθ(Q))
(
(Qx + iθx(Q)Q)eiθ(Q)

)
= (Q∗Qx) + iθx(Q)|Q|2,

which evaluates

T (q) = T (Q) + 2iθ(1)
x (Q)|Q|2,

E(q) = E(Q) + 4
(
− iθ(1)

x (Q)T (Q) + θ(1)
x (Q)2|Q|2

)
, (4.11)
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where

T (Q) ≡ (Q∗Qx −QQ∗
x), E(Q) = 2|Qx|2 − (Q∗Qxx + QQ∗

xx). (4.12)

Resulting

θ(1)
x (Q) = iδ(Q∗Qx −QQ∗

x)− 2δθ(1)
x (Q)|Q|2

which gives

θ(1)
x (Q) = i

δ

M(Q)
T (Q), M(Q) ≡ 1 + 2δ|Q|2 (4.13)

and similarly

θ
(1)
t (Q) = δ

(
E(Q) + 2σ|Q|4 + 4

(
− iθ(1)

x (Q)T (Q) + θ(1)
x (Q)2|Q|2

))
, (4.14)

where T (Q), E(Q) are as defined in (4.12).
As a result we derive the next higher nonlinear equation with n = 1 in the EK hierarchy from

the NLSE as

iQt + Qxx − 2σ|Q|2Q − δ

((
E(Q) + 2σ|Q|4 +

1
M(Q)

Tx(Q)
)

Q + 2
1

M(Q)
T (Q)Qx

)
+

δ2

M(Q)
T (Q)

(
1

M(Q)
(
4δT (Q) + (|Q|2)x

)
− 3T (Q)

)
Q = 0 (4.15)

with E(Q), M(Q), T (Q) as defined above. Note that this is an integrable equation with higher
nonlinearities, but with the same second order LD as in the NLSE. Note that (4.15) contains
an additional coupling constant δ entering in different powers. Therefore we may simplify this
equation by considering δ to be small and ignoring all terms with higher powers in δ, which
yields

iQt + Qxx − 2σ|Q|2Q + 2δ
(
− σ|Q|4Q−Q∗(Qx)2 + Q∗

xxQ2
)

= 0. (4.16)

However it should be noted that though the simpler equation (4.16) as such is a nonintegrable
system, it might be meaningful for physical applications and useful information can be extracted
for it from its integrable variant (4.15) through limiting procedure.

The general form of the EK hierarchy can be generated similarly in the same form (2.1) where
the series of gauge functions θ

(n)
t , θ

(n)
x , n = 0, 1, 2, . . . are chosen as (4.8). This would construct

finally a new hierarchy of integrable EK equations emerging from the NLSE in the form

iQt + Qxx − 2σ|Q|2Q +
δ

σ

(([
i

(
−cn+1 +

Qx

Q
cn

)]
− i[cnx]

)
Q− 2i[cn]Qx

)
= 0, (4.17)

where the real-value sign [·] should be properly evaluated in explicit calculations. The conserved
densities cn = c(Q)n, n = 0, 1, 2, appearing in equations (4.17) are to be obtained systematically
from (4.3) and then expressed consistently in terms of the field Q, as we have demonstrated in
the case n = 1. We stress again that the integrable hierarchy of EK equations (4.17), contains
higher and higher nonlinearities (including nonlinear dispersive terms), but has the same second
order LD as in the original NLSE. Note that the density of the conserved quantities, as evident
from (4.3), introduces an additional derivative resulting the appearance of higher nonlinear
dispersive terms at each higher step. However this should not be confused with the linear
dispersive term Qxx, which remains the same for the whole EK hierarchy, which in fact is our
aim.
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4.1 LD preserving EK hierarchy from NLSE hierarchy

Recall that the well known integrable NLSE hierarchy is generated by the Lax pair (U, V (k))NLSE,
k = 1, 2, 3, . . . by the flatness condition Utk − V

(k)
x + [U, V (k)] = 0, with the kth equation having

the kth order LD. k = 2 corresponds to the NLSE (1.1), while k = 3 yields the integrable
equation (1.3). It should be noted also that while the space-Lax operator U is the same as
that of the NLSE, the time-Lax operator V (k), k = 1, 2, 3, . . . is different for different equa-
tions in this hierarchy with higher time tk. Nevertheless, it is interesting that, the idea we have
developed above for generating nonlinear EK hierarchy from the NLSE preserving its LD, can
be successfully implemented to each of the k equations in the known NLSE hierarchy. More-
over, since the Riccati equation (4.2) and consequently the recurrence relation (4.3) yielding
the conserved quantities depend only on the Lax operator U , they should be the same for all
equations in the hierarchy with any k. Therefore one can make the same choice (4.8) for the
gauge function θ

(n)
x , n = 0, 1, . . .. However since the time evolution (4.4) with respect to higher

time tk would depend explicitly on the matrix elements V
(k)
11 , V

(k)
12 , k = 1, 2, 3, . . . as evident

from (3.3), this would be different for different k, leading to new choices for the θ
(n)
tk

, obeying

the consistency (θ(n)
x )tk = (θ(n)

tk
)x. Thus the kth equation in the NLSE hierarchy (with kth order

LD) would generate EK type nonlinear hierarchy with n = 0, 1, . . . , preserving its linear (kth
order) dispersive term and the integrability.

Since we have presented above in detail the k = 2 case, i.e the NLSE, we give here in brief
the construction of the EK hierarchy for the next equation (1.3) with 3rd-order LD. It is easy
to check that (1.3) can be extended through gauge transformation to the hierarchical form:

Qt3 + Qxxx + 6σ2|Q|2Qx + 3iθ(n)
x Qxx + 3

(
iθ(n)

xx − (θ(n)
x )2

)
Qx

−
(
− iθ

(n)
t3

+ 3θ(n)
x θ(n)

xx − iθ(n)
xxx + i

(
θ(n)
x

)3 + 6iσ2θ(n)
x |Q|2

)
Q = 0. (4.18)

For deriving now ν(λ)t3 and consequently θ
(n)
t3

we have to use, as mentioned above, the relevant
elements of the corresponding time-Lax operator V (3) given by [24]:

V
(3)
11 = 4iλ3 +

(
2iλ|q|2 − (qq∗x − q∗qx)

)
σ,

V
(3)
12 =

(
− 4λ2q + 2iλqx − 2σ|q|2q

)√
σ. (4.19)

Inserting consistent θ
(n)
t3

, θ
(n)
x , in (4.18) we can generate another new EK type integrable higher

nonlinear hierarchy for n = 0, 1, . . . with the same linear dispersive term Qxxx.
We however will not derive here the general form of this hierarchy; instead present the simplest

and the lowest equation with n = 0. We find that the corresponding gauge function θ(0) in this
case can be chosen as

θ(0)
x = δ|Q|2,

θ
(0)
t3

= δ
(
Q∗Qxx + QQ∗

xx −Q∗
xQx − 3σ2|Q|4 − 3δ2|Q|6 + 3iδ|Q|2(Q∗Qx −QQ∗

x)
)
. (4.20)

Inserting (4.20) in hierarchy (4.18) we reduce it to its lowest order equation

Qt3 + Qxxx + 6σ2|Q|2Qx + δ
{

3i|Q|2Qxx + 3
(
i(|Q|2)x − δ|Q|4

)
Qx

+
(
i(|Q|2)xx − 3

2δ(|Q|4)x

)
Q + i

(
Q∗Qxx + QQ∗

xx −Q∗
xQx + 3σ2|Q|4

− 4δ2|Q|6 + 3iδ|Q|2(Q∗Qx −QQ∗
x)

)
Q

}
= 0. (4.21)

Note that this is an integrable equation with higher nonlinearities up to 7-th power in the field
as well as with nonlinear dispersive terms, but having the same LD term Qxxx as in (1.3).
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5 Higher nonlinear hierarchy from DNLSE

The steps formulated above may be applied now for finding the nonlinear integrable hierarchy
from the DNLSE with the same 2nd-order LD as in the original equation. For this purpose we
shall use the general form of the conservation relation presented in (3.2)–(3.3), but customize
them for this particular case by considering Lax operators [25] associated with the DNLSE:

U = −i
λ2

4
σ3 +

i

2
λ
√

α

(
0 q∗

q 0

)
,

V = i

(
λ4

8
− α

4
λ2|q|2

)
σ3 + i

(
0 g∗

g 0

)
, g =

1
4
λ
√

α
(
− λ2q + 2iqx + 2α|q|2q

)
. (5.1)

Note however that unlike the NLSE the required conservation relations for the DNLSE are not
readily available in the literature in explicit form and have to be derived carefully by inserting
relevant expressions from (5.1). This gives from (3.1) the linear equation for Φ1 as

Φ1xx =
(

q∗x
q∗

)
Φ1x +

(
−µ2

16
− µ

α

4
|q|2 + i

µ

4
q∗x
q∗

)
Φ1, µ ≡ λ2 (5.2)

yielding in turn the Riccati equation for the DNLS system:

q∗
(

ν

q∗

)
x

+ ν2 − i

2
µν + µ

α

4
|q|2 = 0. (5.3)

Using now the consistent expansion in the spectral parameter: ν = i
∑
n=0

cn
µn , we get the recursion

relation

i

2
cn+1 = q∗

(
cn

q∗

)
x

+ i
n∑

k=0

ckcn−k, for n ≥ 0, c0 = −1
2
α|q|2, (5.4)

which systematically generates all higher conserved densities starting from

c1 = α

(
iq∗qx +

1
2
α|q|4

)
, c2 = 2α

(
q∗qxx − 2iα|q|2

(
q∗qx +

1
4
qq∗x

)
− α2

2
|q|6

)
, etc.

The infinite set of conserved quantities Cn =
∫

cndx, n = 0, 1, . . . for the DNLSE, which is
a completely integrable system, must be in involution. This can be checked directly by using its
fundamental PB structure: {q(x), q∗(y)} = δx(x− y) and the vanishing boundary condition for
the field: |q| → 0, at x → ±∞. Using further the Lax matrix elements (5.1) we derive from (3.3)
the crucial conservation law

νt =
(
−iµ

α

4
|q|2 +

(
−µ

2
− i

q∗x
q∗

+ α|q|2
)

ν

)
x

. (5.5)

Expanding ν(µ) through spectral parameter µ yields the important relation

cnt =
(
−1

2
cn+1 +

(
−i

q∗x
q∗

+ α|q|2
)

cn

)
x

, n = 0, 1, . . . , c0 = −1
2
α|q|2. (5.6)

For deriving therefore the higher nonlinear hierarchy from the DNLSE we can use the general
form (2.2) with the choice for the gauge function

θ(n)
x = δ[ρ(n)] =

δ

α
[cn],

θ
(n)
t = [iI(n)] =

δ

α

[
−1

2
cn+1 +

(
−i

q∗x
q∗

+ α|q|2
)

cn

]
=

δ

α

[
−1

2
cn+1 +

(
−i

Q∗
x

Q∗ + α|Q|2
)

cn −
δ

α
c2
n

]
, n = 0, 1, 2, . . . , (5.7)
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where the real-value sign [·] has the same meaning as explained above. For example, for n = 0
with real c0 we have θ

(0)
x = δ|q|2, while for n = 1 with complex valued c1 we must take

θ(1)
x = δ

(
i(q∗qx − qq∗x) + α|q|4

)
, etc.

with the similar reason holding also for the choice of θ
(n)
t .

This derives finally the new hierarchy of integrable higher nonlinear equations from the
DNLSE as

iQt + Qxx − iα(|Q|2Q)x

− δ

α

(([
−1

2
cn+1 − i

Q∗
x

Q∗ cn

]
− i[cnx]

)
Q− 2i[cn]Qx

)
= 0, (5.8)

where again all real-valued expressions should be evaluated carefully and cn = c(Q)n are to
be obtained recursively from (5.4), expressed explicitly through transformed field Q. Thus the
tower of equations (5.8) with n = 0, 1, 2, . . . would represent a novel EK hierarchy, at the bottom
of which with n = 0 giving

θ(0)
x = δ|q|2, θ

(0)
t = δ

(
i(q∗qx − qq∗x) + 3

2α|q|4
)
,

lies equation (2.4).
It is worth noting that in analogy with the known reductions [11], the parameter choice

α = 2δ in (5.8) would yield a new Chen–Lie–Liu type hierarchy, while α = δ would generate
another Gerdjikov–Ivanov type hierarchy. All these equations however have the same LD given
by Qxx.

For demonstrating the novelty of hierarchy (5.8), we take up n = 1, giving the next new
equation with

θ(1)
x (q) = δ

(
iT (q) + α|q|4

)
, θ

(1)
t (q) = δ

(
E(q) + 3iαT (q)|q|2 + 2α2|q|6

)
, (5.9)

where

T (q) = q∗qx − qq∗x, E(q) = 2|qx|2 − (q∗qxx + qq∗xx).

For further application, as was performed also in the NLSE case, we have to express the
gauge fields θ

(1)
x (q), θ

(1)
t (q) given by (5.9) in terms of the transformed field Q and rewrite

T (q) = T (Q) + 2iθ(1)
x |Q|2 and E(q) = E(Q) + 4

(
− iθ(1)

x (Q)T (Q) + θ(1)
x (Q)2|Q|2

)
.

Note that though the expressions for θ
(1)
x (q) and θ

(1)
t (q) differ for the cases of NLSE and DNLSE,

the entries T (q) and E(q) appearing in them have the same form for both these cases. Using
the above result after some algebra we arrive at the required expressions

θ(1)
x (Q) =

δ

M(Q)
(
iT (Q) + α|Q|4

)
,

θ
(1)
t (Q) = δ

(
E(Q) + 3iαT (Q)|Q|2 − 6αθ(1)

x (Q)|Q|4 + 2α2|Q|6

+ 4
(
− iθ(1)

x (Q)T (Q) + θ(1)
x (Q)2|Q|2

))
, (5.10)

where

M(Q) = 1− 2δ|Q|2, T (Q) = Q∗Qx −QQ∗
x and

E(Q) = 2|Qx|2 − (Q∗Qxx + QQ∗
xx). (5.11)
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By inserting (5.10) with (5.11) in the general form (2.2) we derive finally for n = 1 the next
higher nonlinear equation in the EK hierarchy linked to the DNLSE as

iQt + Qxx − iα(|Q|2Q)x −
(
θ
(1)
t + (θ(1)

x )2 − iθ(1)
xx

)
Q + θ(1)

x

(
2iQx + α|Q|2Q

)
= 0, (5.12)

where expressions for θ
(1)
t (Q) and θ

(1)
x (Q) expressed through T (Q), E(Q) as in (5.10)–(5.11),

together with θ
(1)
xx (Q) by extracting the x-derivative, are to be inserted in equation (5.12) to get

its explicit higher nonlinear form. As we see this integrable equation contains additional higher
nonlinear terms up to 7th power nonlinearity together with many nonlinear dispersive terms,
though with the same second-order LD: Qxx, as in the original DNLSE.

5.1 LD preserving EK hierarchy from DNLSE hierarchy

The integrable hierarchy of the DNLSE is generated similarly to the NLSE by the associated
Lax pair (U, V (k))DNLSE, k = 1, 2, 3, . . .. The space-Lax operator U corresponds to the DNLSE
(5.1), while the time-Lax operator V (k), k = 1, 2, 3, . . . is different for different higher time tk,
yielding through the flatness condition the kth equation in this hierarchy with kth order LD.
k = 2 corresponds to the DNLSE (1.2), while k = 3 yields the next integrable equation [25]

qt3 − qxxx + 3iσ
(
|q|2qx

)
x

+ 3
2σ2

(
|q|4q

)
x

= 0. (5.13)

The above scheme we have implemented to the DNLSE (with k = 2) can also be applied to each
of the k > 2 equations for generating integrable EK type hierarchy preserving its kth order LD.
Moreover, the Riccati equation (5.3), the determining relation (5.4) for the conserved quantities
and consequently the choice for the gauge function θ

(n)
x , n = 0, 1, . . . as given in (5.7), would be

the same for all equations in this hierarchy, since they all depend on the space-Lax operator U

only. However the relations like (5.5), (5.6) and consequently the consistent expression for θ
(n)
tk

,
which are linked to the time evolution should be calculated using the matrix elements of the
time-Lax operator V (k), k = 1, 2, 3, . . ..

Thus we can construct in principle higher nonlinear hierarchy with n = 0, 1, . . ., from any of
the kth equation in the DNLSE hierarchy, preserving its kth order LD and the integrability. In
practice however each case with higher k would be more complicated due to more complicated
structure of its time-Lax operator V (k). Since we have presented in detail the DNLSE case given
by k = 2, we report here in brief the construction from the next equation (5.13) obtained for
k = 3, which yields

Qt3 −Qxxx + 3iσ
(
|Q|2Qx

)
x

+ 3
2σ2

((
|Q|4Q

)
x

+ iθ(n)
x |Q|4Q

)
− 3iθ(n)

x Qxx − 3
(
iθ(n)

xx −
(
θ(n)
x

)2)
Qx − 3σ

((
|Q|2θ(n)

x Q
)
x

+ θ(n)
x |Q|2

(
Qx − iθ(n)

x Q
))

+
(
iθ

(n)
t3

+ 3θ(n)
x θ(n)

xx − iθ(n)
xxx + i

(
θ(n)
x

)3)
Q = 0. (5.14)

By inserting θ
(n)
x from (5.7) and deriving the consistent θ

(n)
t3

we can generate from (5.14) the EK
type integrable hierarchy with n = 0, 1, . . . , preserving its 3rd-order LD.

The simplest and the lowest equation of this hierarchy with n = 0 may be given explicitly by
the choice of the gauge function:

θ(0)
x = δ|Q|2,

θ
(0)
t3

= δ
(
Q∗Qxx + QQ∗

xx −Q∗
xQx + 3i(α + δ)|Q|2(Q∗Qx −QQ∗

x)

− 3
(
2δα + δ2 − 1

2α2
)
|Q|6

)
, (5.15)

consistency of which can be checked by using the originating equation (5.13). Inserting (5.15)
in (5.14) one would clearly get an integrable equation having nonlinearity up to 7-th order in
the field including its derivatives, but with the linear dispersive term Qxxx as in (5.13).
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6 Concluding remarks

Our construction of new EK type hierarchies of integrable equations with higher and higher
nonlinearities, extending the NLSE and the DNLSE demonstrates clearly that suitable combi-
nations of nonlinear terms may be added to the original integrable equations without changing
their linear dispersion relation, and at the same time preserving their integrability.

Moreover, one can apply the whole procedure to each of the k = 3, 4, . . . equations in the
known integrable NLSE and DNLSE hierarchies, containing kth order linear dispersion. Each of
such equations therefore would generate its new integrable EK hierarchy with higher nonlinear
terms, but with the same linear dispersive term.

It may be recalled that the generalized higher NLSE appearing in many physical problems [2,
3, 4, 5, 6, 7], which contains higher nonlinear terms together with the same second-order linear
dispersive term, can be reduced for particular parameter choices to integrable equations (2.3)
or (2.4). Therefore we may hope that equations with hopelessly complicated nonlinear terms,
arising in many other physical situations, could also be reducible to some of the higher nonlinear
equations in the rich integrable EK hierarchies found here and hence could be exactly solved,
at least for certain parameter choice or for some limiting values. The method presented here
for constructing new integrable nonlinear hierarchies with unchanged linear dispersion is general
enough to be applicable to other integrable PDEs with complex fields, e.g. mixed DNLS, complex
mKdV etc. and even to vector models like Manakov model.
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