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1 Introduction

The Kowalevski workshop on mathematical methods of regular dynamics was organized by
Professor Vadim Kuznetsov in April 2000 at the University of Leeds [1]. In his introductory talk
about the Kowalevski top, Professor Kuznetzov [2] had shown his strong interest on the subject
and motivated the authors to work on classical tops.

In our recent paper [3] we have studied the behaviour of periodic points of a rational map
and found that they form a variety for each period specified by invariants of the map if the map
is integrable, while they form a set of isolated points dependent on the invariants otherwise.
It is apparent that an application of our theorem to the problems of a classical top is quite
interesting and will be fruitful. We investigate the discrete Euler top, in this article, to see how
the invariant varieties of periodic points look like in this particular example. In conclusion we
will show that there is no periodic points of period 2 and 4 if the top is not axially symmetric.
In the case of period 3 we derive explicitly an algebraic variety of dimension two as an invariant
variety of periodic points. When the top is axially symmetric, the angular velocity of a periodic
map along the symmetry axis is quantized to some special values determined by the period
and the shape of the top. The other components of the angular velocity are free, thus form an
invariant variety of periodic points separately for each period.

To start with let us briefly review our theorem of [3]. We consider a rational map on Ĉd,
where Ĉ = {C,∞},

x = (x1, x2, . . . , xd) → X = (X1, X2, . . . , Xd) =: X(1). (1)

?This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”.
The full collection is available at http://www.emis.de/journals/SIGMA/kuznetsov.html

mailto:saito@phys.metro-u.ac.jp
mailto:nsaitoh@ynu.ac.jp
http://www.emis.de/journals/SIGMA/2006/Paper098/
http://www.emis.de/journals/SIGMA/kuznetsov.html


2 S. Saito and N. Saitoh

We are interested in the behaviour of the sequence: x → X(1) → X(2) → · · · . In particular we
pay attention to the behaviour of periodic points of rational maps. If the map is nonintegrable
we shall find a set of isolated points with fractal structure as a higher dimensional counterpart
of the Julia set. Our question in [3] was what object appears when the map is integrable.

We assume that the map has p (≥ 0) invariants H1(x),H2(x), . . . Hp(x). If h1, h2, . . . , hp

are the values of the invariants given by the initial values of the map, the orbit of the map
is constrained on the d − p dimensional variety determined by the conditions Hi(x) = hi,
i = 1, 2, . . . , p, which we denote by V (h). Now let us consider the periodicity conditions X(n) = x
of period n. We can eliminate p variables out of x and only d− p periodicity conditions remain.
If they are independent, we obtain a set of isolated periodic points on V (h) in general.

It may happen, however, that some of the d−p conditions impose some relations on h1, h2, . . . ,
hp instead of fixing all of the d−p variables. If m is the number of the conditions which determine
the values of the variables, d− p−m variables are left free and the periodic points of period n
form a subvariety of dimension d − p −m on V (h), instead of a set of isolated points. In this
case we say that the periodicity conditions are ‘correlated’. If l is the number of the periodicity
conditions which relate the invariants, p − l invariants remain undetermined. This means that
the periodic points of period n form a d− l−m dimensional subvariety in Ĉd. We have proven
in [3] the following lemma:

Lemma 1 ([3]). A set of correlated periodicity conditions satisfying min{p, d − p} ≥ l + m
and a set of uncorrelated periodicity conditions of a dif ferent period do not exist in one map
simultaneously.

When m = 0 the periodicity conditions determine none of the variables but impose l relations
among the invariants. In this particular case all points of V (h) are the points of period n,
while the variety V (h) itself is constrained by the relations among the invariants. We call the
periodicity conditions are ‘fully correlated’ in this case. The periodic points form a subvariety
of dimension d− l in the space Ĉd, which we call ‘an invariant variety of periodic points’. Every
point of this variety can be an initial point of the n period map, whose orbit stays on it. Since
the condition min{p, d − p} ≥ l + m is automatically satisfied, our theorem follows to the
Lemma 1 immediately:

Theorem 1 ([3]). If there is an invariant variety of periodic points of some period, there is no
set of isolated periodic points of other period in the map.

The Theorem 1 doesn’t tell us directly whether the map is integrable or nonintegrable. There
is, however, some evidence to believe that the periodic points of a nonintegrable map, if they
exist, form a fractal set of isolated points. Therefore it is reasonable to adopt the following
proposition as our working hypothesis:

If a map is nonintegrable, there is a set of uncorrelated periodicity conditions of some period.
The Julia set, which is the source of chaotic orbits, is a subset of the closure of all isolated

periodic points. We emphasize that our hypothesis does not require that all of the periodicity
conditions of a nonintegrable map are uncorrelated but requires only one at least. On the other
hand our theorem shows that the existence of an invariant variety of periodic points excludes a set
of isolated periodic points in the map and vice versa. This means that if a set of periodic points
of some period forms an invariant variety there is no Julia set, thus suggesting the following
statement:

Conjecture ([3]). If there is an invariant variety of periodic points of some period, the map is
integrable.

Note that this does not exclude possibilities that some integrable maps do not have an
invariant variety of periodic points. For example an integrable map with no invariant does
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not have an invariant variety. On the other hand there are d dimensional maps which have
d − 1 invariants but reduce to the logistic map after elimination of d − 1 variables by using
the invariants. Therefore the situation is quite different from the continuous time Hamiltonian
flow, whose integrability is guaranteed by the Liouville theorem if there are sufficient number
of invariants.

In order to support our conjecture we have studied in [3] various maps, such as the QRT
maps, the Lotka–Volterra maps and the Toda maps, and found that all periodic points form
invariant varieties of periodic points if the map is integrable and periodic points exist, while
no such property has been found otherwise. We also studied the q-Painlevé maps which are
integrable but not volume preserving in general. We found invariant varieties only when the
parameters are restricted so that the maps have sufficient number of invariants.

We introduce the discrete Euler top in Section 2. To find an invariant variety of periodic
points for the Euler top the general scheme developed in [3] is applied in Sections 3 and 4. In
the final section we study explicitly the nature of the invariant surfaces of an axially symmetric
Euler top.

2 Discrete Euler top

When the time is continuous, the equation of motion for the Euler top is given by

I1
dω1

dt
= (I2 − I3)ω2ω3, I2

dω2

dt
= (I3 − I1)ω3ω1, I3

dω3

dt
= (I1 − I2)ω1ω2,

where (ω1, ω2, ω3) are the angular velocity in the body fixed frame and (I1, I2, I3) are the cor-
responding moments of inertia. The system has two invariants, 1

2(I1ω
2
1 + I2ω

2
2 + I3ω

2
3) and

I2
1ω2

1 + I2
2ω2

2 + I2
3ω2

3, corresponding to the total kinetic energy and the square of angular mo-
mentum, hence is integrable.

A discretization of the Euler equation, which preserves integrability, was first obtained by
Bobenko et al. in [4], and then discussed by other authors [5, 6, 7, 8]. We adopt here an explicit
version of the discretization proposed by Hirota et al. [5, 6]. After the discretization we write
the angular velocity as (x1, x2, x3) instead of (ω1, ω2, ω3) and consider the map (x1, x2, x3) →
(X1, X2, X3) defined by

I1(X1 − x1) =
δ

2
(I2 − I3)(X2x3 + x2X3),

I2(X2 − x2) =
δ

2
(I3 − I1)(X3x1 + x3X1), (2)

I3(X3 − x3) =
δ

2
(I1 − I2)(X1x2 + x1X2).

The continuous limit corresponds to δ → 0.
Solving the equation (2) for (X1, X2, X3) we find

X1 =
x1(1− α2α3x

2
1 + α3α1x

2
2 + α1α2x

2
3) + 2α1x2x3

1− 2α1α2α3x1x2x3 − α2α3x2
1 − α3α1x2

2 − α1α2x2
3

,

X2 =
x2(1 + α2α3x

2
1 − α3α1x

2
2 + α1α2x

2
3) + 2α2x3x1

1− 2α1α2α3x1x2x3 − α2α3x2
1 − α3α1x2

2 − α1α2x2
3

, (3)

X3 =
x3(1 + α2α3x

2
1 + α3α1x

2
2 − α1α2x

2
3) + 2α3x1x2

1− 2α1α2α3x1x2x3 − α2α3x2
1 − α3α1x2

2 − α1α2x2
3

,

where we used the notations

α1 = δ
I2 − I3

2I1
, α2 = δ

I3 − I1

2I2
, α3 = δ

I1 − I2

2I3
.
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We notice that, when the top is axially symmetric, the map (3) is nothing but a two dimen-
sional linear transformation. For example if we assume I2 = I3, the map becomes

X1 = x1,

X2 = x2 cos Ω + x3 sinΩ, (4)
X3 = x3 cos Ω− x2 sinΩ,

where

cos Ω =
4I2

2 − (I2 − I1)2x2
1

4I2
2 + (I2 − I1)2x2

1

.

Therefore we discuss the axially symmetric top separately from the generic case in Section 5.
The invariants of the map (3) are

H1 =
I1x

2
1 + I2x

2
2 + I3x

2
3

1− α2α3x2
1

, H2 =
I2
1x2

1 + I2
2x2

2 + I2
3x2

3

1− α2α3x2
1

, (5)

as it will be checked by a direct substitution of (3). They coincide with the invariants of the
continuous case in the limit δ → 0. We fix the value of δ at 1 hereafter, since it is irrelevant in
the following discussions.

If we denote by x one of the three variables (x1, x2, x3), the elimination of other two variables
from the map (2) yields

S(X, x;q) = 0 (6)

with

S(X, x;q) := aX2x2 + bXx(X + x) + c(X − x)2 + dXx + e(X + x) + f. (7)

The parameters q = (a,b, c,d, e, f) are given by

a1

b1

c1

d1

e1

f1

 =



−4α2α3(A0 −A2)(A0 + A3)
0
(A0 −A2 + A3)2

4
(
A2

1 −A2(A0 + A3) + A3(A0 −A2)
)

0
(4/α2α3)A2A3


,



a2

b2

c2

d2

e2

f2

 =



−4α3α1A0(A0 −A2)
0
(A0 −A2 −A3)2

4
(
A2

2 −A0(A2 + A3)−A3(A0 −A2)
)

0
(4/α3α1)A3A1


, (8)



a3

b3

c3

d3

e3

f3

 =



−4α1α2A0(A0 + A3)
0
(A0 + A2 + A3)2

4
(
A2

3 + A0(A2 + A3) + A2(A0 + A3)
)

0
(4/α1α2)A1A2
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corresponding, respectively, to x = x1, x2, x3. Here we introduced the notations

A0 = 4I1I2I3, A1 = (I2 − I3)(I1H1 −H2), A2 = (I3 − I1)(I2H1 −H2),
A3 = (I1 − I2)(I3H1 −H2),

(
A1 + A2 + A3 = 0

)
.

One might wonder that the map x → X defined by (6) does not determine an image of
the map uniquely. Since the function S(X, x;q) of (7) is symmetric under the exchange of
the variables x and X, we see that the two solutions of (6) correspond to the forward and the
backward maps, which we denote X(1) and X(−1). If we apply the map to X(1) we should get x
and X(2). In this way we shall obtain a chain of images of the map into two directions:

· · · ←− X(−2) ←− X(−1) ←− x −→ X(1) −→ X(2) −→ · · · .

The number of branches of the map does not increase, but remains two, at every step of the
map. Therefore a map of the form (6) is well defined in general.

3 Iteration of the map

We studied in [3] the map defined by (6) and called it a ‘biquadratic map’. An iteration of the
map yields the biquadratic map again but with new parameters q(2):

a(2) := (ae− cb)2 − (ad− 2ac− b2)(be− cd + 2c2),

b(2) := (ae− cb)(2af − be + cd− 4c2)− (ad− 2ac− b2)(bf − ce),

c(2) := (af − c2)2 − (ae− bc)(bf − ce),

d(2) := 4(af − c2)2 − 2(ae− bc)(bf − ce)− (be− cd + 2c2)2 (9)

− (ad− 2ac− b2)(df − 2cf − e2),

e(2) := (fb− ce)(2af − be + cd− 4c2)− (fd− 2fc− e2)(ea− cb),

f (2) := (fb− ce)2 − (fd− 2fc− e2)(be− cd + 2c2).

If we repeat the map further we obtain a series of biquadratic maps whose parameters can
be determined iteratively from the previous ones as follows:

a(n+1) =
1

a(n−1)

(
(a∧c)2n − (a∧b)n(b∧c)n

)
,

b(n+1) =
1

a(n−1)

(
b(n−1)

a(n−1)

(
(a∧b)n(b∧c)n − (a∧c)2n

)
+ (a∧c)n

(
(a∧e)n + 2(b∧c)n

)
− 1

2
(
(a∧b)n(b∧e)n − (a∧b)n(c∧d)n + (a∧d)n(b∧c)n

))
,

c(n+1) =
1

2c(n−1)

(
(ce(n) − bf (n))(ae(n) − bc(n)) + (cb(n) − ea(n))(fb(n) − ec(n))

+ (af (n) − cc(n))2 + (fa(n) − cc(n))2
)
, (10)

d(n+1) =
1

d(n−1)

(
− f (n−1)a(n+1) − a(n−1)f (n+1) − 4b(n−1)e(n+1) − 4e(n−1)b(n+1) + (a∧f)2n

+ (c∧d)2n − (a∧b)n(e∧f)n − (b∧c)n(c∧e)n + (a∧d)n(d∧f)n + 2(b∧e)n(a∧f)n

−
(
3(c∧e)n − (b∧f)n − (d∧e)n

)(
3(b∧c)n − (a∧e)n − (b∧d)n

)
+ 2
(
(a∧d)n − (a∧c)n

)(
(c∧f)n − (d∧f)n

)
+ 2
(
(b∧c)n + (a∧e)n

)(
(b∧f)n + (c∧e)n

))
,
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e(n+1) =
1

f (n−1)

(
e(n−1)

f (n−1)

(
(f∧e)n(e∧c)n − (f∧c)2n

)
+ (f∧c)n

(
(f∧b)n + 2(e∧c)n

)
− 1

2
(
(f∧e)n(e∧b)n − (f∧e)n(c∧d)n + (f∧d)n(e∧c)n

))
,

f (n+1) =
1

f (n−1)

(
(f∧c)2n − (f∧e)n(e∧c)n

)
,

where we used the notation (g∧g′)n = gg′(n) − g′g(n).
Despite the complicated expression of the relation (10), we observe a special dependence on

the nth parameters q(n). Besides c(n+1), the dependence of the (n+1)th parameters on the nth
ones is always in the form (g∧g′)n = gg′(n) − g′g(n). They all vanish simultaneously when the
parameters q(n) are ‘fully correlated’, that is, if there exists a function γ(n+1)(q) such that

q(n) = εq + γ(n+1)(q)q̂(n), (11)

where ε is an arbitrary constant. In fact we obtain, after some manipulation,

(a∧b)2 = (af − eb− 3c2 + cd)(2a2e− abd + b3),

(a∧c)2 = (af − eb− 3c2 + cd)(a2f + ac2 − acd + b2c),

(b∧c)2 = (af − eb− 3c2 + cd)(2ace− abf − bc2),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(e∧f)2 = (af − eb− 3c2 + cd)(edf − e3 − 2bf2),

from which we find γ(3)(q):

γ(3)(q) = af − be− 3c2 + cd. (12)

The formula (10) enables us to find a series of γ(n)(q) iteratively, as follows:

γ(4)(q) = 2acf − adf + b2f + ae2 − 2c3 + c2d− 2bce, (13)

γ(5)(q) = a3f3 +
(
− cf2d + 2cfe2 + fde2 − 3ebf2 − e4 − c2f2

)
a2

+
(
− 13c4f + 18c3fd + de3b + 2cf2b2 + 7dc2e2 − ce2d2 − 2ce3b

+ 2c2feb− 7fd2c2 − 14c3e2 + cd3f + fb2e2 + f2db2 − ebd2f
)
a (14)

− cd2b2f − b3e3 − 4c3deb + cdb2e2 + 13ec4b− f2b4 + 7fb2c2d

+ c4d2 − 5c5d + 5c6 − 2fb3ec− e2c2b2 + eb3df − 14fb2c3,

and so on.
When (11) holds, the equation S(Q, x;qn+1) = 0 can be written as

c(n+1)(Q− x)2 + (γ(n+1)(q))2Kn+1(Q, x) = 0, n = 2, 3, 4, . . . . (15)

Here

Kn+1(Q, x) = â(n+1)Q2x2 + b̂(n+1)(Q + x)Qx + d̂(n+1)Qx + ê(n+1)(Q + x) + f̂ (n+1),

and â(n+1), for instance, is obtained from a(n+1) simply replacing (g∧g′)n by (ĝ∧ĝ′)n. If Q is
a point of period n + 1, the first term of (15) vanishes. Hence the periodicity condition requires
for the second term to vanish. This is certainly satisfied for arbitrary x if γ(n+1)(q) = 0, namely
when the periodicity conditions for the parameters q(n) are fully correlated. The other possible
solutions obtained by solving Kn+1(x, x) = 0 do not correspond to the points of period n + 1,
but represent the fixed points or the points of periods which divide n + 1.
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4 Invariant varieties of periodic points
for the discrete Euler top

We are ready to study the periodicity conditions for the discrete Euler top. Throughout this
section we will not consider axially symmetric cases, which we discuss in the next section. The
direct calculation of the periodicity conditions X

(n)
j = xj is not easy to carry out by a small

computer. Therefore we use the method we developed in the previous section. Before starting,
however, let us first search the fixed points of the map. If we remember that the variables
(x1, x2, x3) are the discrete analog of the angular velocity (ω1, ω2, ω3), a fixed point of the map
corresponds to the motion of the top which does not change the angular velocity in all directions
of the body fixed frame.

Needless to say the fixed points are nothing to do with the invariants of the map. To find
them we go back to the map (2) and see immediately that they are

fixed points : {x | x2 = x3 = 0 ∪ x3 = x1 = 0 ∪ x1 = x2 = 0}.

This result shows that a fixed point is realized as a steady rotation along one of the three axes.
The value of the angular velocity along the direction is arbitrary, while the angular velocities
are zero along the other two directions.

The method we developed in the previous section enables us to get information of the period-
icity conditions of period greater than three. The case of period 2 must be considered separately.
From the general expression (9) the parameters in S(X(2), x;q2) are not proportional to a com-
mon factor. But if we substitute (8) into (9), we find that they have the following form

a(2) = (γ(2)(q))2â(2), b(2) = 0, d(2) = (γ(2)(q))2d̂(2),

e(2) = 0, f (2) = (γ(2)(q))2f̂ (2)

with

γ
(2)
1 (q) = A0 −A2 + A3, γ

(2)
2 (q) = A0 −A2 −A3, γ

(2)
3 (q) = A0 + A2 + A3, (16)

corresponding to x = x1, x2, x3, respectively. For the higher periods we can apply the formu-
lae (12) and (13) to obtain

γ
(3)
1 =

(
A2

1 + 2A0(A2 −A3)− 3A2
0

)(
(A1 + A0)2 + 4A0A3

)
,

γ
(3)
2 =

(
A2

1 + 2A0(A2 −A3)− 3A2
0

)(
(A1 + A0)2 + 4A3A1

)
, (17)

γ
(3)
3 =

(
A2

1 + 2A0(A2 −A3)− 3A2
0

)(
(A1 −A0)2 + 4A1A2

)
,

γ
(4)
1 = 2(A1 −A0)(A0 −A2 −A3)

(
(A1 −A0)4 − 8A2(A0 + A3)(A2

1 + A2
0)
)
,

γ
(4)
2 = 2(A0 −A1)(A0 −A2 + A3)

(
(A1 + A0)4 + 16A0A1A3(A0 −A2)

)
, (18)

γ
(4)
3 = 2(A0 + A1)(A0 −A2 + A3)

(
(A1 −A0)4 + 16A0A1A2(A0 + A3)

)
,

...

From the expressions (16), (17), (18) it is clear that the periodicity conditions do not deter-
mine points but impose relations among the invariants of the map. This owes to the fact that
the initial parameters q are dependent on the invariants of the map, as we see in (8). After
iteration of the map n times the new parameters q(n) are also dependent on the invariants.
Therefore the periodicity condition γ(n)(q) = 0 imposes relations among the invariants.
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The periodicity conditions of period n are satisfied when γ
(n)
1 = 0, γ

(n)
2 = 0, γ

(n)
3 = 0 are

satisfied simultaneously. By an inspection of (16), (17), (18) we notice that the conditions are
satisfied by the single condition

A2
1 + 2A0(A2 −A3)− 3A2

0 = 0 (19)

in the case of n = 3. All other cases impose further relations among the invariants.
In order to find where the periodic points are in the (x1, x2, x3) space, we simply substitute

the formulae (5) into the conditions γ(n)(q) = 0. In the case of (19) we obtain

v(3) =
{
x
∣∣ (1 + ξ1 + ξ2 + ξ3)2 − 4(1 + ξ1ξ2 + ξ2ξ3 + ξ3ξ1) = 0

}
, (20)

in terms of the new variables

ξ1 =
(I3 − I1)(I1 − I2)

4I2I3
x2

1, ξ2 =
(I1 − I2)(I2 − I3)

4I3I1
x2

2, ξ3 =
(I2 − I3)(I3 − I1)

4I1I2
x2

3.

The set of points satisfying (20) form a variety of periodic points of period 3 in the space of
(x1, x2, x3). Every point on this variety is a point of period 3. We called this type of variety
‘an invariant variety of periodic points’, because it is determined uniquely by the invariants of
the map alone. The dimension of the variety is two, which is the number of the invariants. In
the case of (20) the invariant variety is an algebraic variety of degree 4, symmetric in the three
variables x1, x2, x3.

Now let us pause a while. The discrete Euler top (2) has been known being satisfied by elliptic
functions as special solutions. The map generates an elliptic curve. This curve, however, is not
the invariant variety of periodic points in our consideration, since the map is not controlled, in
general, by the periodicity conditions of some fixed period. In fact the invariant variety of (20)
is not a curve but a surface. Once an initial point is chosen on the surface, the orbit stays on
it before it returns to the initial point. The invariant variety (20) tells us where the map of
period 3 should start. Every point on (20) is a candidate of the period 3 map. The elliptic curve
is embedded in this invariant variety as a set of 3 points, if the initial point is on it. We can
view this variety as a subspace of the set of all elliptic curves, which are restricted to 3 periodic
motion. It is a highly nontrivial observation that the intersections form a surface characterized
by certain specific relations among the invariants of the map alone. The existence of such an
variety in any integrable map has not been known, to our knowledge, in the literature. The
claim of our conjecture is that if there exists an invariant variety of some period, the map is
guaranteed being integrable. Therefore the existence of the surface (20) of period 3 is sufficient
to guarantee the integrability of the discrete Euler top. This is true irrespective whether some
solutions are known or not known explicitly.

To see other conditions, let us present all expressions of (16), (17), (18) after the substitution
of (5):

γ
(2)
1 = (1 + ξ1 − ξ2 − ξ3), γ

(2)
2 = (1− ξ1 + ξ2 − ξ3), γ

(2)
3 = (1− ξ1 − ξ2 + ξ3), (21)

γ
(3)
1 =

(
(1 + ξ1 + ξ2 + ξ3)2 − 4(1 + ξ1ξ2 + ξ2ξ3 + ξ3ξ1)

)
×
(
(1 + ξ1 − ξ2 − ξ3)2 − 4(ξ2

1 − ξ1ξ2 + ξ2ξ3 − ξ3ξ1)
)
,

γ
(3)
2 =

(
(1 + ξ1 + ξ2 + ξ3)2 − 4(1 + ξ1ξ2 + ξ2ξ3 + ξ3ξ1)

)
(22)

×
(
(1− ξ1 + ξ2 − ξ3)2 − 4(ξ2

2 − ξ1ξ2 − ξ2ξ3 + ξ3ξ1)
)
,

γ
(3)
3 =

(
(1 + ξ1 + ξ2 + ξ3)2 − 4(1 + ξ1ξ2 + ξ2ξ3 + ξ3ξ1)

)
×
(
(1− ξ1 − ξ2 + ξ3)2 − 4(ξ2

3 + ξ1ξ2 − ξ2ξ3 − ξ3ξ1)
)
,
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γ
(4)
1 =

(
(1− ξ1)2 − (ξ2 − ξ3)2

)(
(ξ1 − 1)2

(
2(1 + ξ1 − ξ2 − ξ3)2 − (ξ1 − 1)2

)
+ (ξ2 − ξ3)2

(
(2 + 2ξ1 − ξ2 − ξ3)2 + 4ξ3ξ2 − 8ξ1

))
,

γ
(4)
2 =

(
(1− ξ2)2 − (ξ3 − ξ1)2

)(
(ξ2 − 1)2

(
2(1− ξ1 + ξ2 − ξ3)2 − (ξ2 − 1)2

)
(23)

+ (ξ3 − ξ1)2
(
(2 + 2ξ2 − ξ3 − ξ1)2 + 4ξ1ξ3 − 8ξ2

))
,

γ
(4)
3 =

(
(1− ξ3)2 − (ξ1 − ξ2)2

)(
(ξ3 − 1)2

(
2(1− ξ1 − ξ2 + ξ3)2 − (ξ3 − 1)2

)
+ (ξ1 − ξ2)2

(
(2 + 2ξ3 − ξ1 − ξ2)2 + 4ξ1ξ2 − 8ξ3

))
.

The conditions (21) for the period 2 impose

ξ1 = ξ2 = ξ3 = 1. (24)

The second factors of γ
(3)
1 , γ

(3)
2 , γ

(3)
3 vanish simultaneously only when the point (x1, x2, x3) is

on the lines defined by

{x | ξ1 = 1 ∩ ξ2 = ξ3} ∪ {x | ξ2 = 1 ∩ ξ3 = ξ1} ∪ {x | ξ3 = 1 ∩ ξ1 = ξ2}. (25)

After some manipulation we find that γ
(4)
1 , γ

(4)
2 , γ

(4)
3 also vanish simultaneously iff the point is

on these lines. Therefore every periodic point of period 2, 3 and 4 are on the lines of (25), if it is
not on the invariant variety (20) of period 3. We now notice that the points on these lines (25)
vanish the denominator of the map (3), or equivalently the function (1− ξ1− ξ2− ξ3)2−4ξ1ξ2ξ3.

From this observation we are convinced that the Euler top has no periodic point of period 2
and 4 as long as the top is not axially symmetric, whereas the periodic points of period 3 form
the invariant variety v(3) of (20).

5 Axially symmetric top

By studying the discrete Euler top we have found an invariant variety of periodic points in
the case of period 3. If we adopt our conjecture in Section 1, this means that the system is
integrable. We also found that there is no periodic point of period 2 and 4 if the top is not
axially symmetric. Our method enables us to search the periodic points of larger period. Instead
of carrying out further the cumbersome algebraic analysis, however, we conclude this paper by
studying the cases of symmetric top.

If the top is totally symmetric, i.e., I1 = I2 = I3, the equations (3) show that (x1, x2, x3)
remain constants. This is a top which never changes its angular velocity in all directions. When
the top is axially symmetric, such as I2 = I3, the motion is governed by (4). As we repeat the
map n times we get

X
(n)
1 = x1,

X
(n)
2 = x2 cos(nΩ) + x3 sin(nΩ), (26)

X
(n)
3 = x3 cos(nΩ)− x2 sin(nΩ).

The periodicity condition of period n in this map can be read off directly from (26) as
cos(nΩ) = 1, or Ω = 2π

n . This condition fixes the values of x1 for each period, according to the
rule

x1 = ±µn
2I2

I2 − I1
, µn =

√
1− cos(2π/n)
1 + cos(2π/n)

, n = 1, 2, 3, . . . . (27)
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For small n’s we have

µ1 = 0, µ3 =
√

3, µ4 = 1, µ5 =
√

5− 2
√

5, µ6 = 2−
√

3, . . . .

The conditions determine planes which are orthogonal to the axis of symmetry and intersect
the axis at certain points defined by (27), different for each period. These planes

v
(n)
axial symm =

{
x
∣∣x2

1 = µ2
n

4I2
2

(I1 − I2)2

}
, n = 2, 3, 4, . . . (28)

are the invariant varieties of periodic points characterized by the relations among the invariants:

I2H1 −H2 =
µ2

n

1 + µ2
n

4I1I
2
2

I2 − I1
.

In terms of the variables (ξ1, ξ2, ξ3), the conditions I2 = I3 and (27) are equivalent to
(ξ1, ξ2, ξ3) = (−µ2

n, 0, 0). We notice that v
(3)
axial symm is a special case of v(3) in (20). When

n = 4 there is no invariant variety for generic values of (I1, I2, I3), hence we are not able to de-
rive v

(4)
axial symm as a special case. We notice that the periodicity conditions (ξ1, ξ2, ξ3) = (−1, 0, 0)

in the case of period 4 are compatible with the conditions γ
(4)
2 = γ

(4)
3 = 0 of (23).

The meaning of the planes presented in (28) is quite interesting. Because of the symmetry the
angular velocity along the symmetry axis is constant as it is expected naturally. An interesting
feature is that the value of this angular velocity x1 is ‘quantized’ to some specific values deter-
mined by the shape of the top and different for each period, such that the ‘angular velocity’ Ω
is quantized to 2π/n to generate the periodic maps. This is true irrespective to the values of
other angular velocities x2 and x3. The generation of the invariant varieties v

(n)
axial symm follows

to this fact.
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