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Abstract. We review the concept of finite-temperature form factor that was introduced re-
cently by the author in the context of the Majorana theory. Finite-temperature form factors
can be used to obtain spectral decompositions of finite-temperature correlation functions
in a way that mimics the form-factor expansion of the zero temperature case. We develop
the concept in the general factorised scattering set-up of integrable quantum field theory,
list certain expected properties and present the full construction in the case of the massive
Majorana theory, including how it can be applied to the calculation of correlation functions
in the quantum Ising model. In particular, we include the “twisted construction”, which
was not developed before and which is essential for the application to the quantum Ising
model.
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1 Introduction

Relativistic quantum field theory (QFT) at finite temperature is a subject of great interest
which has been studied from many viewpoints (see, for instance, [1]). An important task when
studying a model of QFT is the calculation of correlation functions of local fields, which are
related to local observables of the underlying physical model. For instance, two-point correlation
functions are related to response functions, which can be measured and which provide precise
information about the dynamics of the physical system at thermodynamic equilibrium. Although
applications to particle physics often can be taken to be at zero temperature, many applications
to condensed matter require the knowledge of the effect of a non-zero temperature on correlation
functions.

In this article, we review and develop further the ideas of [2] for studying finite-temperature
correlation functions in integrable quantum field theory.

In recent years, thanks to advances in experimental techniques allowing the identification
and study of quasi-one-dimensional systems (see for instance [3, 4]), there has been an increased
interest in calculating correlation functions in 1+1-dimensional integrable models of QFT (for
applications of integrable models to condensed matter systems, see for instance the recent re-
view [5]). Integrable models are of particular interest, because in many cases, the spectrum of
the Hamiltonian in the quantization on the line is known exactly (that is, the set of particle
types and their masses), and most importantly, matrix elements of local fields in eigenstates of
the Hamiltonian, or form factors, can be evaluated exactly by solving an appropriate Riemann-
Hilbert problem in the rapidity space [6, 7, 8, 9, 10].
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At zero temperature, correlation functions are vacuum expectation values in the Hilbert space
of quantization on the line. The knowledge of the spectrum on the line and the matrix elements
of local fields then provides a useful expansion of two-point functions at space-like distances,
using the resolution of the identity in terms of a basis of common eigenstates of the momentum
operator and of the Hamiltonian. This is a useful representation because it is a large-distance
expansion, which is hardly accessible by perturbation theory, and which is often the region
of interest in condensed matter applications. Form factor expansions in integrable models at
zero temperature have proven to provide a good numerical accuracy for evaluating correlation
functions in a wide range of energies, and combined with conformal perturbation theory give
correlation functions at all energy scales (an early work on this is [11]).

One would like to have such an efficient method for correlation functions at finite (non-zero)
temperature as well. Two natural (mathematically sound) ways present themselves:

• “Form factor” expansion in the quantization on the circle. It is a general result of QFT
at finite temperature [12, 13, 14] that correlation functions, at space-like distances, can
be evaluated by calculating correlation functions of the same model in space-time with
Euclidean (flat) metric and with the geometry of a cylinder, the “imaginary time” wrap-
ping around the cylinder whose circumference is the inverse temperature. In this picture,
one can quantize on the circle (that is, taking space as being the circle, and Euclidean
time the line), and correlation functions become vacuum expectation values in the Hilbert
space of this quantization scheme. Then, one can insert a resolution of the identity in
terms of a complete set of states that diagonalise both the generator of time transla-
tions and of space translations, as before, and one obtains a large-distance expansion for
finite-temperature correlation functions.

Unfortunately, the two ingredients required (the energy levels in the quantization on the
circle and the matrix elements of local fields) are not known in general in integrable
quantum field theory. We should mention, though, that exact methods exist to obtain non-
linear integral equations that define the energy levels (from thermodynamic Bethe ansatz
techniques, from calculations à la Destri-de Vega and from the so-called BLZ program),
and that matrix elements of local fields were studied, for instance, in [15, 16, 17, 18].
Also, in the Majorana theory, the spectrum is known (since this is a free theory), and
matrix elements of the primary “interacting” twist fields were calculated in [19, 20] from
the lattice Ising model, and in a simpler way in [21] directly in the Majorana theory using
the free-fermion equations of motion and the “doubling trick”.

• Spectral decomposition on the space of “finite-temperature states”. The concept of finite-
temperature states, interpreted as particle and hole excitations above a “thermal vacuum”,
was initially proposed more than thirty years ago and developed into a mature theory under
the name of thermo-field dynamics [22, 23, 24] (for a review, see for instance [25]). Ideas
of 1+1-dimensional integrable quantum field theory were not applied to this theory until
recently. In [26], the concept of bosonization in thermo-field dynamics was studied, and, of
most interest to the present review, in [2] the concept of finite-temperature form factor was
developed – matrix elements of local fields on the finite-temperature Hilbert space. There,
it was studied in depth in the free Majorana theory, both for general free fields (finite
normal-ordered products of the free Majorana fermion fields – including the energy field)
and for twist fields. It was found that a Riemann–Hilbert problem again characterises
finite-temperature form factors of twist fields, but that this Riemann–Hilbert problem
presents important modifications with respect to the zero-temperature case. Solutions
were written explicitly for primary “order” and “disorder” twist fields, and the full finite-
temperature form factor expansions of two-point functions were written and interpreted
as Fredholm determinants.
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An interesting discovery of [2] is that these two methods are actually related: it is possible
to evaluate form factors on the circle from (analytical continuations of) the finite-temperature
form factors, and the analytical structure of finite-temperature form factors (and of the measure
involved in the expansion of correlation functions) is directly related to the spectrum in the
quantization on the circle. This provided a new way of evaluating form factors of twist fields
on the circle, and most importantly, gave a clear prescription for the integration contours in the
finite-temperature form factor expansion (naively plagued with singularities). The requirements
brought on finite-temperature form factors by this relation constitute, in a way, a generalisation
of the modularity requirements found in conformal field theory for constructing correlation
functions from conformal blocks.

It is important to realise, though, that both expansions for correlation functions are not
equivalent. The first one gives an expansion at large (space-like) distances, whereas the sec-
ond can be used to obtain both large-distance and, expectedly with more work, large-time
expansions. Indeed, the finite-temperature form factor expansion can naturally be deformed
into an expansion in the quantization on the circle through the relation mentioned above [2].
It is expected that it can also be manipulated to obtain large-time behaviours. A manipu-
lation of this type was done in [27]. There, going in reverse direction as what is described
in [2], the expansion on the circle in the quantum Ising model was first deformed into a kind
of finite-temperature form factor expansion (without being recognised as such), which was then
used to obtain large-time dynamical correlation functions in a certain “semi-classical” regime
(partly reproducing earlier results of [28] and [29]). This manipulation, however, neglected
contributions that may change the asymptotic behaviour, and a more complete derivation of
the large-time behaviours from finite-temperature form factor expansions is still missing. In
particular, for the quantum Ising model, the Fredholm determinant representation of [2] and
those obtained in the present paper may be of use, following the technology reviewed in [30]
(work is in progress [31]).

It is worth noting that the method we review here is not adapted to providing information
about one-point functions at finite-temperature. Various works exist concerning such objects
[32, 33, 34]. Work [32] is interesting in that it uses the knowledge of the zero-temperature form
factors in order to deduce the finite-temperature one-point function of the energy field. The idea
is to “perform” directly the finite-temperature trace from the known matrix elements. A regu-
larisation is necessary, but the finite-volume one seems impossible to tackle. A certain convenient
regularisation was proposed there and shown to reproduce the known finite-temperature average
energy. The idea of using this regularisation for multi-point correlation functions has been
suggested and we are aware of results in this direction [35], but it is not yet understood why in
general this should work.

Let us also mention that correlation functions of twist fields in the Majorana theory can
be obtained as appropriate solutions to non-linear differential equations [36]. But at finite
temperature, or on the geometry of the cylinder, these equations are partial differential equations
in the coordinates on the cylinder [37, 38, 39], and do not immediately offer a very useful tool
for numerically evaluating correlation functions, neither for analyzing their large-distance and
large-time behaviours.

The theory developed in [2] for the Majorana case is still incomplete. Twist fields present
certain complexifications at finite temperature that are not present at zero temperature, and, in
order to describe all correlation functions, one also needs a “twisting” of the construction of [2],
as it was mentioned there. In addition, certain exponential pre-factors were omitted in [2].
These two aspects are in fact essential for applications of the results in the Majorana theory to
correlation functions in the quantum Ising model.

In this article we will review the ideas of [2], by developing them in the general factorised
scattering context of integrable quantum field theory, and complete the work for the Majorana
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theory. We will deduce many of the immediate properties that arise in the general context
for finite-temperature form factors, drawing on the ideas of [2], and we will present both the
untwisted and the twisted constructions. We will recall the results for the Majorana theory,
and extend them to the twisted case, finally giving the explicit representation for correlation
functions in the quantum Ising model.

The article is organised as follows. In Section 2 we review the form factor program at zero
temperature, and in Section 3 we recall basic results about finite-temperature correlation func-
tions. Then, in Section 4, we describe the concept of finite-temperature states using the language
of factorised scattering in integrable QFT, we introduce the concept of finite-temperature form
factor and we describe the resulting expansion of correlation function. We also present the
ideas underlying the relation between finite-temperature form factors and matrix elements in
the quantization on the circle, still in the general context. In Section 5, we develop the basics
of the twisted construction. In Section 6, we present certain formal results about the space of
finite-temperature states, and in particular, we deduce a generalisation of the idea of “mapping
to the cylinder” that one uses in conformal field theory in order to study correlation functions
at finite temperature (again, this is a generalisation of ideas of [2]). Finally, in Section 7, we
recall and extend the results of [2] for the Majorana theory and its connection to the quantum
Ising model.

2 Review of the zero-temperature form factor program
in integrable quantum field theory

The Hilbert space of massive relativistic quantum field theory is completely specified by fixing
the set E of particle types of the model. In 1+1 dimensions, every Hamiltonian eigenstate is
then described by choosing k ∈ N particle types and by associating to them k real numbers, the
rapidities:

|θ1, . . . , θk〉a1,...,ak

with ai ∈ E and θi ∈ R (and the order of the rapidities/particle types is irrelevant – hence a basis
is obtained by fixing an ordering of the rapidities). The Hamiltonian H and the momentum P
act diagonally on these states. In order to fix their eigenvalues, one only has to fix the masses
ma ∈ R+ for every particle type a ∈ E. The eigenvalues are then

H : Ek =
k∑

i=1

mai cosh θi, P : pk =
k∑

i=1

mai sinh θi.

Other symmetries of the model also act diagonally, and their eigenvalues are fixed by choosing
charges associated to the various particle types.

There are many possible bases of the Hilbert space, all described as above. Two are of
particular importance: the in basis and the out basis. They describe, respectively, particles of
the given types and rapidities far in the past, and far in the future (in non-integrable models, one
should really include the additional dependence on the impact parameters). The far past and
the far future are regions in time where all particles are so far apart that they do not interact,
and can be described as freely propagating. The overlap between the in basis and the out basis
gives the scattering matrix:

|θ1, θ2, . . .〉(in)
a1,a2,... =

∑
a′1,a′2,...

∫
dθ′1dθ

′
2 · · ·S

a′1,a′2,...
a1,a2,...(θ1, θ2, . . . ; θ′1, θ

′
2, . . .)|θ′1, θ′2, . . .〉

(out)
a′1,a′2,...

,
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where the number of particles in the in state and in the out states is generically different. The
structure of the Hilbert space and the Hamiltonian describe the particles and their propagation,
but it is the scattering matrix that encodes the interaction, and in particular, the locality of
relativistic quantum field theory.

In integrable quantum field theory, the scattering matrix can be determined from the physical
requirements of unitarity and crossing symmetry, from the integrability requirement of factori-
sation and the lack of particle production, and from minimality assumptions and the “nuclear
democracy” (every pole has a physical explanation through resonances from particles already
in the spectrum). All scattering processes can then be described using only the two-particle
scattering matrix Sb1,b2

a1,a2(θ1 − θ2), θ1 > θ2:

|θ1, θ2〉(in)
a1,a2

=
∑
b1,b2

Sb1,b2
a1,a2

(θ1 − θ2)|θ1, θ2〉(out)
b1,b2

.

It is convenient for this purpose to introduce the Zamolodchikov–Faddeev algebra (from now on
in this section, summation over repeated indices will be implied)

Za1(θ1)Za2(θ2)− Sa1,a2

b1,b2
(θ1 − θ2)Zb2(θ2)Zb1(θ1) = 0,

Z̄a1(θ1)Z̄a2(θ2)− Sb1,b2
a1,a2

(θ1 − θ2)Z̄b2(θ2)Z̄b1(θ1) = 0, (2.1)

Za1(θ1)Z̄a2(θ2)− Sb2,a1

a2,b1
(θ2 − θ1)Z̄b2(θ2)Z

b1(θ1) = δa1
a2
δ(θ1 − θ2).

The in basis and the out basis are then two bases for the same Fock space (actually, a general-
isation of the concept of Fock space) over this algebra, defined simply by different ordering of
the rapidities:

Za(θ)|vac〉 = 0,

|θ1, . . . , θk〉(in)
a1,...,ak

= Z̄a1(θ1) · · · Z̄ak
(θk)|vac〉 (θ1 > · · · > θk),

|θ1, . . . , θk〉(out)
a1,...,ak

= Z̄a1(θ1) · · · Z̄ak
(θk)|vac〉 (θ1 < · · · < θk).

The natural Hermitian structure on this space gives (Za(θ))† = Z̄a(θ).
Once the Hilbert space has been identified with the Fock space over the Zamolodchikov–

Faddeev algebra, the algebra elements Za(θ) and Z̄a(θ) become operators with an action on the
Hilbert space. It turns out, from expected properties of quantum field theory, that they induce
very nice properties on the objects (form factors)

FOa1,...,ak
(θ1, . . . , θk) ≡ 〈vac|O(0, 0)Z̄a1(θ1) · · · Z̄ak

(θk)|vac〉,

where O(x, t) is a local field of the model. Indeed, these objects, defined here for real rapidities,
actually are (by analytical continuation) meromorphic functions of the rapidities. They can be
determined through a set of analyticity requirements and through the recursive determination
of the residues at the poles (form factor equations) [8, 10]:

1. Meromorphicity: as functions of the variable θi − θj , for any i, j ∈ {1, . . . , k}, they are
analytic inside 0 < Im(θi − θj) < 2π except for simple poles;

2. Relativistic invariance:

FOa1,...,ak
(θ1 + β, . . . , θk + β) = es(O)βFOa1,...,ak

(θ1, . . . , θk),

where s(O) is the spin of O;
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3. Generalized Watson’s theorem:

FOa1,...,aj ,aj+1,...,ak
(θ1, . . . , θj , θj+1, . . . , θk)

= S
bj ,bj+1
aj ,aj+1(θj − θj+1)FOa1,...,bj+1,bj ,...,ak

(θ1, . . . , θj+1, θj , . . . , θk);

4. Locality:

FOa1,...,ak−1,ak
(θ1, . . . , θk−1, θk +2πi) = (−1)fOfΨe2πiω(O,Ψ)FOak,a1,...,ak−1

(θk, θ1, . . . , θk−1),

where fO is 1 if O is fermionic, 0 if it is bosonic, Ψ is the fundamental field associated to
the particle ak, and ω(O,Ψ) is the semi-locality index (or mutual locality index) of O with
respect to Ψ (it will be defined in Subsection 3.3);

5. Kinematic pole: as function of the variable θn, there are poles at θj+iπ for j∈{1, . . . , k−1},
with residue

iFOa1,...,ak
(θ1, . . . , θk) ∼ Cak,bj

Fa1,...,âj ,...,ak−1
(θ1, . . . , θ̂j , . . . , θk−1)

θk − θj − iπ

×
(
δb1
a1
· · · δbj−1

aj−1S
bj+1,cj
aj+1,aj (θj+1 − θj)S

bj+2,cj+1
aj+2,cj (θj+2 − θj) · · ·S

bk−1,bj
ak−1,ck−3(θk−1 − θj)

− (−1)fOfΨe2πiω(O,Ψ)δ
bk−1
ak−1 · · · δ

bj+1
aj+1S

cj ,bj−1
aj ,aj−1(θj − θj−1)S

cj−1,bj−2
cj ,aj−2

× (θj − θj−2) · · ·S
bj ,b1
c3,a1(θj − θ1)

)
,

where a hat means omission of the argument, and Cak,bj
is the conjugation matrix.

6. Bound-state poles: there are additional poles in the strip 0 < Im(θi − θj) < π if bound
states are present, and these are the only poles in that strip.

Form factors can in turn be used to obtain a large-distance expansion of two-point correlation
functions of local fields:

〈vac|O1(x, t)O2(0, 0)|vac〉 =
∞∑

k=0

∑
a1,...,ak

∫
dθ1 · · · dθk

k!
e−it

∑
j Ej+ix

∑
j pj

× 〈vac|O(0, 0)|θ1, . . . , θk〉a1,...,ak a1,...,ak
〈θ1, . . . , θk|O(0, 0)|vac〉.

A large-distance expansion is effectively obtained by shifting all rapidity variables by π/2 in
the positive imaginary direction, and by using relativistic invariance. This gives a formula
which looks as above, but with the replacement e−it

∑
j Ej+ix

∑
j pj 7→ e−r

∑
j maj cosh(θj) where

r =
√
x2 − t2. It turns out that this is numerically extremely efficient in most integrable models

that were studied.

3 Finite temperature correlation functions

3.1 Traces

Physical correlation functions at finite temperature are obtained by taking a statistical average
of quantum averages, with Boltzmann weights e−βE where E is the energy of the quantum state
and β is the inverse temperature. They are then represented by traces over the Hilbert space:

〈〈O(x, t) · · ·〉〉β =
Tr

[
e−βHO(x, t) · · ·

]
Tr [e−βH ]

. (3.1)
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Since all matrix elements of local fields are known in many integrable models, it would seem
appropriate to write the trace as an explicit sum over all states of the Hilbert space, and to
introduce resolutions of the identity between operators inside the trace, in order to evaluate
finite-temperature correlation functions. However, this method does not account correctly for
the fact that at finite temperature, states that contribute to the trace are very far from the
vacuum. Yet, it turned out to give good results in the case of correlation functions with only
one operator [33, 34, 32].

3.2 Quantization on the circle

On the other hand, traces as above can be represented by vacuum expectation values on the
Hilbert space Hβ of quantization on the circle of circumference β. Indeed, a consequence of the
imaginary-time formalism [12] is the Kubo–Martin–Schwinger (KMS) identity [13, 14],

〈〈O(x, t) · · ·〉〉β = (−1)fO〈〈O(x, t− iβ) · · ·〉〉β, (3.2)

where (−1)fO is a sign accounting for the statistics of O (it is negative for fermionic operators
and positive for bosinic operators), and where the dots (· · · ) represent local fields (that are also
local with respect to O) at time t and at positions different from x. Then, finite-temperature
correlation functions can be written as

〈〈O(τ, ix) · · ·〉〉β =
(
eiπs/2 · · ·

)
β〈vac|Ô(x, τ) · · · |vac〉β, (3.3)

where s is the spin of O, and there are factors e−iπs/2 for all operators in the correlation
function. The operator Ô(x, τ) is the corresponding operator acting on the Hilbert space Hβ of
quantization on the circle, with space variable x (parameterizing the circle of circumference β)
and Euclidean time variable τ (on the line). The vector |vac〉β is the vacuum in this Hilbert space.
Below, we will mostly be interested in fermionic models, that is, models with a “fundamental”
fermion field (which creates from the vacuum single-particle states). For such models, one
can think of at least two sectors in the quantization on the circle: Neveu–Schwartz (NS) and
Ramond (R), where the fundamental fermion fields are anti-periodic and periodic, respectively,
around the circle. The trace (3.1) with insertion of operators that are local with respect to the
fermion fields naturally corresponds to the NS sector due to the KMS identity. This is the sector
with the lowest vacuum energy.

The representation (3.3) immediately leads to a large-distance expansion of finite-temperature
correlation functions, through insertion of the resolution of the identity on the Hilbert space Hβ:

β〈vac1|Ô(x, τ)Ô(0, 0)|vac2〉β =
∞∑

k=0

∑
n1,...,nk

e
∑

j nj
2πix

β
+(∆E−En1,...,nk

)τ

k!
(3.4)

× β〈vac1|Ô(0, 0)|n1, . . . , nk〉β β〈n1, . . . , nk|Ô(0, 0)|vac2〉β ,

where the eigenstates of the momentum operator and of the Hamiltonian on the circle are
parametrized by discrete variables nj ’s. The vacua |vac1〉β and |vac2〉β may be in different sec-
tors, and these sectors may be different than the sector where the excited states |n1, . . . , nk〉β
lie (this situation occurs when considering semi-local operators as is recalled in the Subsec-
tion 3.3 below). The quantity ∆E is the difference between the vacuum energies of the vacuum
state |vac1〉β and of the vacuum above which the states |n1, . . . , nk〉β are constructed. The
states |n1, . . . , nk〉β and the excitation energies En1,...,nk

may also depend on additional discrete
parameters (quantum numbers, particle types), on which one has to sum as well.

This form is valid for any integrable model on the circle. However, this Hilbert space has
a very complicated structure, even in integrable quantum field theory; for instance the energy
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levels En1,...,nk
are not known in closed form. Also, there is yet no known procedure in general

integrable quantum field theory for evaluating form factors on this Hilbert space. Moreover,
this representation does not provide large-time (real time) expansions, since it inherently gives
finite-temperature correlation functions in Euclidean time.

3.3 Semi-locality: U(1) twist fields

If the model we are considering has internal global symmetries, then there are local twist fields
associated to them. Twist fields are of interest, because they usually correspond to some order
parameter. We will clarify the correspondence between order/disorder parameters in the quan-
tum Ising chain and twist fields in the Section 7.6. The first appearances of certain twist fields
in the context of the Ising statistical model can be found in [40, 41], but we are going to describe
twist fields here in more general terms (see, for instance, the lecture notes [42]).

Twist fields are not local with respect to the fundamental fields associated to a given particle
(but are with respect to the energy density). If the symmetry to which they are associated is
U(1) or a subgroup of it (and if the fundamental field transform by multiplication by a phase),
then the twist fields are said to be semi-local with respect to the fundamental field. In the
quantization scheme on the line, a twist field, which we will generically denote by σ, gives rise
to a pair of operators, which we will denote by σ+(x, t) and σ−(x, t), having a cut towards
the right (positive x direction) and towards the left (negative x direction), respectively. These
operators lead to the same correlation functions at zero temperature.

When considering correlation functions at finite temperature, things are more subtle. The
exact shape of the cuts are unimportant, but it is important if the cut is towards the right or
towards the left. This is because the insertion of an operator σ±(x, t) that is semi-local with
respect to the fundamental field Ψ(x, t) may affect the vacuum sector in the correspondence to
expectation values in the quantization on the circle. Semi-locality can be expressed through the
exchange relations

Ψ(x, t)σ+(x′, t) = (−1)fΨfσe−2πiωΘ(x−x′)σ+(x′, t)Ψ(x, t) (x 6= x′) (3.5)

and

Ψ(x, t)σ−(x′, t) = (−1)fΨfσe2πiωΘ(x′−x)σ−(x′, t)Ψ(x, t) (x 6= x′), (3.6)

where Θ(x) is Heaviside’s step function and ω is the semi-locality index associated to the pair
(Ψ, σ). Taking here the fundamental field to be fermionic (because this is what will be of interest
in the following – the case of bosonic fundamental fields is straightforward to work out), it is
a simple matter to generalise the KMS identity to (using fΨ = 1)

〈〈Ψ(x, t)σ+(x′, t) · · ·〉〉β =

{
−e−2πiω〈〈Ψ(x, t− iβ)σ+(x′, t) · · ·〉〉β (x→∞),
−〈〈Ψ(x, t− iβ)σ+(x′, t) · · ·〉〉β (x→ −∞),

〈〈Ψ(x, t)σ−(x′, t) · · ·〉〉β =

{
−〈〈Ψ(x, t− iβ)σ−(x′, t) · · ·〉〉β (x→∞),
−e2πiω〈〈Ψ(x, t− iβ)σ−(x′, t) · · ·〉〉β (x→ −∞),

where the dots (· · · ) represent fields that are local with respect to the fermion field Ψ, at time t
and at positions different from x. Then, in the correspondence of the trace with a vacuum
expectation value in the quantization on the circle, one of the vacua will be in a different sector,
in accordance with these quasi-periodicity relations. Denoting by |vacν〉β the vacuum in the
quantization on the circle with quasi-periodicity condition Ψ 7→ e−2πiνΨ around the circle in the
positive space (x) direction, we have

〈〈σ+(τ, ix) · · ·〉〉β =
(
eiπs/2 · · ·

)
β〈vac 1

2
+ω|σ̂(x, τ) · · · |vacNS〉β (3.7)
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and

〈〈σ−(τ, ix) · · ·〉〉β =
(
eiπs/2 · · ·

)
β〈vacNS|σ̂(x, τ) · · · |vac 1

2
−ω〉β , (3.8)

where |vacNS〉β = |vac 1
2
〉β is the NS vacuum, and where the dots (· · · ) represent operators that

are local with respect to the fundamental fermion fields.
With many insertions of semi-local operators, similar phenomena arise. This change of the

vacuum sector has an important effect: under translation in the x direction, the insertion of
an operator σ±(x, t) inside a trace produces an additional real exponential factor, due to the
difference between the vacuum energies of the different sectors; that is, the trace is not trans-
lation invariant. It is convenient to represent this lack of translation invariance of traces, in the
case where many semi-local operators are multiplied, by considering “modified” transformation
properties of this product of semi-local operators. Consider the product σω1

η1
(x1, t1) · · ·σωk

ηk
(xk, tk)

where ηi = ± and we have indicated explicitly the semi-locality indices ωi. Then, inside traces
at temperature β with insertion of operators that are local with respect to the fundamental
fermion field, we have

e−iPδσω1
η1

(x1, t1) · · ·σωk
ηk

(xk, tk)eiPδ = e−∆E δ σω1
η1

(x1 + δ, t1) · · ·σωk
ηk

(xk + δ, tk),

∆E = E

1
2

+
k∑

i=1
ηi=+

ωi

− E
1

2
−

k∑
i=1

ηi=−

ωi

 , (3.9)

where E [ν] is the energy of the vacuum |vacν〉β .

4 A space of “finite-temperature states”
in integrable quantum field theory

In [2], it was suggested that the difficulties in obtaining large-distance or large-time expansions of
finite-temperature correlation functions can be overcome by constructing a finite-temperature
Hilbert space in terms of objects with nice analytic structure, in analogy with the zero-tem-
perature case. The program was carried out explicitly in the free massive Majorana theory
(considering, in particular, “interacting” twist fields). As we said in the introduction, the idea
of a finite-temperature Hilbert space is far from new, but it is in [2] that it was first developed
in the context of an integrable quantum field theory.

4.1 General idea

The idea of the construction is simply to consider the space L of endomorphisms ofH as a Hilbert
space with inner product structure

(A,B) =
Tr

(
e−βHA†B

)
Tr (e−βH)

.

This Hilbert space is known as the Liouville space [43]. Note that

(A,B)∗ = (B,A).

There is then a (generically) one-to-two mapping from End(H) to End(L): to each operator C
acting on H, there are two operators, φL(C) and φR(C), acting on L, defined respectively by
left action and by right action of C as follows:

(A,φL(C)B) =
Tr

(
e−βHA†CB

)
Tr (e−βH)

, (A,φR(C)B) =
Tr

(
e−βHA†BC

)
Tr (e−βH)

.
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In particular, if Q is a generator of a symmetry transformation on H, then φL(Q) − φR(Q) is
the generator on L. The set of all operators on L that are in the image of at least one of φL

or φR will be denoted EndLR(L).
The main power of this construction, from our viewpoint, is the possibility to obtain large-

distance or large-time expansions at finite temperature, in analogy with the zero-temperature
case, using a resolution of the identity on the space L. Indeed, suppose we have a complete set
of orthonormal operators D(θ1, . . . , θk), θ1 > · · · > θk ∈ R, k ∈ N:

(D(θ1, . . . , θk), D(θ′1, . . . , θ
′
l)) = δk,l δ(θ1 − θ′1) · · · δ(θk − θ′k).

Then, we can decompose any inner product as a sum of products of inner products:

(A,B) =
∞∑

k=0

∫
θ1>···>θk

dθ1 · · · dθk (A,D(θ1, . . . , θk)) (D(θ1, . . . , θk), B).

This is a non-trivial relation equating a trace on the left-hand side to a sum of products of traces
on the right-hand side.

4.2 A natural basis

A natural complete set of operators in integrable quantum field theory can be obtained as follows
(more precisely, one should consider an appropriate completion of the set below). First, define
a larger set of particle types EL = E ⊕ E, the elements being the couples α = (a, ε) for a ∈ E
and ε = ±. For notational convenience, define Z̄α = Z̄a if ε = + and Z̄α = Za if ε = −. Then,
we have a complete set with

Dα1,...,αk
(θ1, . . . , θk) = Z̄α1(θ1) · · · Z̄αk

(θk)

for

αi ∈ EL, θ1 > · · · > θk ∈ R, k ∈ N. (4.1)

In fact, it will be convenient to define the operators Dα1,...,αk
(θ1, . . . , θk) for any ordering of the

rapidities, and to define them as being exactly zero when two rapidities collide (in order to avoid
overlap with operators with smaller k):

Dα1,...,αk
(θ1, . . . , θk) =

{
Z̄α1(θ1) · · · Z̄αk

(θk), θi 6= θj ∀ i 6= j,

0, θi = θj for some i 6= j.
(4.2)

These operators will form a very useful set if the matrix elements (withO(x, t) a local operator
and O†(x, t) its Hermitian conjugate on H)

(O†(x, t), Dα1,...,αk
(θ1, . . . , θk))

have simple analytical properties; for instance, if the value of this function for a certain ordering
of the rapidities is the one obtained by analytical continuation from that for a different ordering.
Then, it may be possible to write down equations similar to the zero-temperature form factor
equations (what we will call the “finite-temperature form factor equations”) and to solve them.
Two clues suggest that this may be so, at least for models with diagonal scattering (see below):
first, these objects specialise to the zero-temperature form factors when the temperature is sent
to zero and all signs εi’s are set to +, and second, in [2] the finite-temperature form factor
equations were indeed written and solved in the free massive Majorana theory (this will be
recalled in Section 7).
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Although the operators (4.2) form a complete set, they are not orthonormal. In the case of
diagonal scattering (and this is the only case we will consider from now on)

Sb1,b2
a1,a2

(θ) = δb1
a1
δb2
a2
Sa1,a2(θ)

(without summation over repeated indices), it is possible to write down all inner products in a
simple way, using the Zamolodchikov–Faddeev algebra (2.1) and the cyclic property of the trace:

(Dα1,...,αk
(θ1, . . . , θk), Dα′1,...,α′l

(θ′1, . . . , θ
′
l)) = δk,l

k∏
i=1

ε
1−fai
i δai,a′i

δ(θi − θ′i)

1− (−1)fai e−εiβmai cosh θi
, (4.3)

where from unitarity, (−1)fa ≡ Sa,a(0) = ±1 (this corresponds to the statistics of the particle of
type a, as an asymptotically free particle). Here, we have assumed the ordering (4.1) for both
members of the inner product.

Note that simple “crossing” relations hold for operators in EndRL(L):

(Dα1,...,αk
(θ1, . . . , θk) , φL(A)Dα′1,...,α′l

(θ′1, . . . , θ
′
l)) (4.4)

= e
ε′lβma′

l
cosh θ′l(Dα1,...,αk,ᾱ′l

(θ1, . . . , θk, θ
′
l) , φL(A)Dα′1,...,α′l−1

(θ′1, . . . , θ
′
l−1)) (θ′l 6= θi ∀ i)

and

(Dα1,...,αk
(θ1, . . . , θk), φR(A)Dα′1,...,α′l

(θ′1, . . . , θ
′
l)) (4.5)

= (Dᾱ′1,α1,...,αk
(θ′1, θ1, . . . , θk), φR(A)Dα′2,...,α′l

(θ′2, . . . , θ
′
l)) (θ′1 6= θi ∀ i),

where (a, ε) = (a,−ε).

4.3 Finite-temperature form factor expansion

Inverting (4.3), and using the fact that the operators (4.2) are eigenoperators of both the Hamil-
tonian and the momentum operator, we get a spectral decomposition for two-point functions
〈〈O1(x, t)O2(0, 0)〉〉β (finite-temperature form factor expansion). In order to simplify the dis-
cussion, we assume that x > 0. This can always be achieved by taking complex conjugation if
necessary: 〈〈O1(x, t)O2(0, 0)〉〉∗β = 〈〈O†

2(0, 0)O†
1(x, t)〉〉β (a slightly different formulation holds

with x < 0). We have

〈〈O1(x, t)O2(0, 0)〉〉β (4.6)

= e∆E x
∞∑

k=0

∑
α1,...,αk

∫
{Im(θj)=εj0+}

dθ1 · · · dθk

k∏
j=1

ε
1−faj

j e
∑k

j=1 εj(imaj x sinh θj−imaj t cosh θj)

k!
k∏

j=1

(
1− (−1)faj e−εjβmaj cosh θj

)
× FO1

α1,...,αk
(θ1, . . . , θk;β)FO2

−αk,...,−α1
(θk, . . . , θ1;β),

where we have defined finite-temperature form factors as the normalised matrix elements1:

FOα1,...,αk
(θ1, . . . , θk;β) (4.7)

=
n∏

i=1

[
ε
1−fai
i

(
1− (−1)fai e−εiβmai cosh θi

)]
(O†(0, 0) , Dα1,...,αk

(θ1, . . . , θk)).

1Note that by definition of the basis of states in L, the function FO
α1,...,αn

(θ1, . . . , θn; β) has no delta-function
contributions at colliding rapidities.
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This normalisation is for later convenience (one may call it the “free field” normalisation). It
leads in particular to the following identity, which we have used to write the expansion:(

F
O†2
α1,...,αk(θ∗1, . . . , θ

∗
k;β)

)∗ = FO2
−αk,...,−α1

(θk, . . . , θ1;β)

which essentially follows from (6.2) below. In the expansion (4.6), we have symmetrised over
the orderings of rapidities. The quantity ∆E is non-zero whenever O1 is a twist field σω1

η1
, and

is given by

∆E =


E

[
1
2

+ ω1

]
− E

[
1
2

]
(η1 = +),

E
[
1
2

]
− E

[
1
2
− ω1

]
(η1 = −),

where E [ν] is the energy of the vacuum |vacν〉β (see the discussion around (3.9)).
Some comments are due:

• As we said, the factor e∆E x is present whenever the operator O1 is semi-local, O1 = σω
η ,

with respect to the fundamental fermion field. It is as in (3.9) with k = 1, and with ω1 = ω
and η1 = η the semi-locality index and cut direction, respectively, of O1. It occurs because
the operators Z̄α(θ) can be expressed through integrals of the fundamental fermion field.
To be more precise, in order to deduce it from the discussion around (3.9), one has to
assume that although these integrals extend to ±∞ in the x direction, they only produce
excited states, without changing the sector. The presence of this exponential factor can in

fact be shown for the finite-temperature form factors of the order field σ
1
2
± in the Majorana

theory. Indeed, as we said, in the Majorana theory the traces F
σ

1
2
±

α1,...,αn(θ1, . . . , θn;β) were
shown in [2] to satisfy a set of recursive relations which ultimately relate them to the
one-point function (in the case of the order field). Slightly generalising the derivation
to include an x and t dependence, this accounts for the phase factors above. On the
other hand, the one-point function of a twist field is not translation invariant, as is clear
from (3.7) and (3.8), the transformation property being as in (3.9). This is what accounts
for the real exponential factor (this factor was missing in [2], because the one-point function
was considered translation invariant).

• When both O1 and O2 are semi-local with respect to the fundamental fermion fields, the
finite-temperature form factor expansion (4.6) is valid only when the cut of O1 extends
towards the right (positive x direction) and that of O2 extends towards the left (negative
x direction). This will be justified in the Subsection 4.4. Note that with this prescription
on the directions of the cuts, one produces the correlation functions

β〈vac 1
2
+ω1

|Ô1(x, τ)Ô2(0, 0)|vac 1
2
−ω2

〉β

when written in the quantization on the circle, with x = τ and t = ix. This is a restriction,
as not all vacua onHβ can be obtained. For instance, one would like to evaluate correlation
functions of twist fields with the NS vacuum. This restriction will be lifted in Section 5.

• Had we not put a small imaginary part to the rapidities in the integrals, the expansion (4.6)
would have been plagued by singularities: as the rapidity associated to a particle of type
(a, ε) becomes equal to that associated to a particle of type (a,−ε), poles are expected to
appear in the finite-temperature form factors (kinematic poles). This expectation comes
from the intuition from zero-temperature form factors, and from the fact that these singu-
larities indeed occur in the finite-temperature form factors of twist fields in the Majorana
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theory, as was calculated in [2]. There it was shown that a proper solution is obtained by
slightly deforming the integration contours as indicated above:

Im(θj) = εj0+. (4.8)

That this is the right prescription still in the interacting case will be argued in Subsec-
tion 4.4.

• It is important to realise that the expansion (4.6) is not directly a large-distance or a large-
time expansion. But it can be made so as follows (for large-time expansions, this requires
some work). First, with further displacement of the integration contours in the directions
of (4.8), more precisely with Im(θj) = εj π/2, the expansion (4.6) becomes an expansion at
large x2−t2 (recall that we consider x > 0 for simplicity). In order to perform this contour
displacement, one needs to know about the analytical structure of the integrands; this will
be briefly discussed in Subsection 4.4. Second, the integrals involved in (4.6) can be made
convergent in time-like regions t2−x2 > 0 by deforming the contours in the following way:

|t| > |x|, t > 0 : Im(θj) = −sgn(Re(θj)) εj0+,

|t| > |x|, t < 0 : Im(θj) = sgn(Re(θj)) εj0+.

These deformations necessitate the addition of residues coming from the kinematic poles.
These residues will lead to powers of the time variable, which will need to be re-summed.
Note that it was assumed in [27] that considering the contributions near the singularities
at colliding rapidities, the expansion gives the leading in some semi-classical region, which
should include a large-time limit t2 − x2 → ∞. The full contour deformation should give
a definite answer as to the large-time dynamics (work is in progress [31]).

• When calculating the spectral density (from the Fourier transform of the two-point func-
tion), the expansion (4.6) does produce an expansion with terms of lesser and lesser impor-
tance as the particle number is increased, at least for large enough energies. However, one
does not have the situation where the spectral density is known exactly up to a certain
energy depending on the number of particles considered, as happens at zero tempera-
ture. It would be very interesting to have a full analysis of the spectral density at finite
temperature.

4.4 From finite-temperature states to the quantization on the circle

A great part of the structure of the finite-temperature form factor expansion can be understood
according to the following idea.

Suppose that we have a model of quantum field theory; more precisely, let us consider a statis-
tical field theory, on a space with Euclidean signature. Let us quantize it with a certain choice
of space x of infinite extent, and Euclidean time tE . If we were starting from a Lorentzian
quantum field theory, with real time t, we would just be considering the Wick rotated variable
t = −itE . Then, the Hilbert space is the space of field configurations on x, with appropriate
asymptotic conditions. On this space, we choose a vacuum |vac〉 such that correlation functions
are vacuum expectation values. Now suppose that a basis of states is chosen such that the
generator of x translations is diagonalised. The operator producing x translations is unitary, of
the form e−iPx, where P is the Hermitian generator. Suppose that the states are parametrised
by the real eigenvalues p of the operator P . Since space is of infinite extent, then p takes all
real values.

Then, formally, if we were to “analytically continue the theory” towards positive imaginary
eigenvalues p = iE, the operator producing x translations would have the form eHx for some
Hermitian H with eigenvalues E. The claim is that the operator H is still the generator of x
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translation, but now in a different quantization scheme (that is, on a different Hilbert space),
where x = τ is the Euclidean time and tE = −x is the space variable. Indeed, in that quantization
scheme, the operator producing Euclidean time translations is eHτ with H the Hamiltonian
(generator of time translations).

This formal analytical continuation has to be made more precise. Consider matrix elements
of local operators 〈vac|O(x, tE)|p〉 with states |p〉 of P -eigenvalue p. Then, this matrix element
has singularities as function of p on the positive imaginary axis, and the positions of these
singularities exactly coincide with the eigenvalues of the Hamiltonian H in the quantization
scheme where x is Euclidean time. Moreover, the analytical continuation of the matrix element
towards these singularities gives the matrix element of the same operator in the quantization
scheme where x is Euclidean time. In relativistic quantum field theory, the singularities are

branch cuts coming from the measure
∏

i

√
p2

i +m2
i (with p =

∑
i pi), and the statement about

analytical continuation is just crossing symmetry. This claim was also verified to be true in the
free Dirac theory on the Poincaré disk [44], where the singularities are poles and the residues
must be taken.

In the case of present interest, our claim is that the “analytical continuation” of the Hilbert
space L is nothing else than the Hilbert space Hβ of quantization on the circle. This was verified
explicitly in [2] in the free Majorana theory.

This claim is made relatively clear by comparing the finite-temperature form factor expan-
sion (4.6) and the expansion in the quantization scheme on the circle (3.4), which must agree.
The analytical continuation we talked about is obtained by shifting the contours of the rapidi-
ties θj by the amount εj iπ/2: then the exponential factors of (4.6) and of (3.4) indeed agree,
under the identification x = τ , t = ix. This displacement of the contours can be performed
while keeping all integrals convergent: we impose x > 0, |x| > |t| (space-like region) keeping x
and t fixed, and make only at the end the analytical continuation t = ix. Hence, we see that
keeping the integrals convergent leads to keeping the operators time-ordered in the quantization
on the circle. Note that it is here that the condition x > 0 becomes important: the analytical
conditions that define the finite-temperature form factors will be seen below as consequence of
this analytical continuation, and depend, at least for twist fields, on our choice of sign of x.
A different choice of sign would have required a shift in a different direction, and would have
imposed different conditions on the finite-temperature form factors.

Of course, the series themselves must agree, but it is natural to assume that they agree
individually for each term with a fixed number of excitations (at least this can be expected for
integrable models, where there is no particle production – see section 6 for a discussion). Then,
these terms will agree for all local fields if the following conditions are satisfied:

• The factor

FO1
α1,...,αk

(θ1, . . . , θk;β)FO2
−αk,...,−α1

(θk, . . . , θ1;β)∏k
j=1

(
1− (−1)faj e−εjβmaj cosh θj

)
can be written as

ρα1,...,αk
(θ1, . . . , θk) F̃O1

α1,...,αk
(θ1, . . . , θk;β)F̃O2

−αk,...,−α1
(θk, . . . , θ1;β),

where F̃Oα1,...,αk
(θ1, . . . , θk;β) does not have a pole in the strip Im(θj) ∈ [0, εjπ/2] for all

local fields O, and the measure ρα1,...,αk
(θ1, . . . , θk) has poles at θj = qj +εj iπ/2 for various

real qj (more precisely, there are sets s(k)
l = {q1, . . . , qk} for which the measure ρ has poles

at such positions, choosing an order: for instance, the pole as function of θ1, whose residue
has a pole as function of θ2, etc.).
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• We have

k∑
j=1

maj cosh qj = En1,...,nk
,

k∑
j=1

maj sinh qj =
k∑

j=1

2πnj

β
,

where the sets {qj} are the sets s(k)
l for the choice ε1 = · · · = εk = +, and are are in one-to-

one correspondence with the possible configurations of numbers {n1, . . . , nk} (there may

be ambiguities in this correspondence). The values
k∑

j=1

2πnj

β must be in Z or in Z + 1
2 (or,

in general, Z + ω), in order to implement the correct quasi-periodicity conditions; this is
where our finite-temperature form factor expansion (4.6) is made to agree with the KMS
identity.

• The quantities F̃O1
α1,...,αk

(θ1, . . . , θk;β) for θj = qj + iπ/2 and for ε1 = · · · = εk = +, times
the square root of the residue of ρα1,...,αk

(θ1, . . . , θk) at these same values, are proportional
to the matrix elements β〈vac|O|n1, . . . , nk〉β.

Note that for the case of one particle, one should recover the energy spectrum En,a =
ma cosh qn with ma sinh qn = 2πn

β and n ∈ Z if fa = 0, n ∈ Z + 1
2 if fa = 1. This indicates that

ρα(θ) =
1

1− (−1)fae−εβma cosh θ

and that F̃α(θ) = Fα(θ).
Note also that in the free Majorana theory, one simply has

ρα1,...,αk
(θ1, . . . , θk) =

1
k∏

j=1

(
1 + e−εjβm cosh θj

)
with F̃ = F for all excitation numbers, and this indeed reproduces the right energy levels in the
quantization on the circle as well as the correct matrix elements [2]. In fact, for any free theory
we have F̃ = F .

It is now possible to understand the prescription (4.8) for deforming the integration contours
in order to avoid possible kinematic poles in the finite-temperature form factors. Indeed, by the
principles above, the finite-temperature form factor expansion is really an analytical continuation
of the sum representation of two-point functions coming from the quantization on the circle.
Hence, it is natural that integration contours be defined in the complex plane to avoid kinematic
poles, and the direction of the deformation is exactly the one giving the proper correspondence
between the expansions (4.6) and (3.4).

It is also possible to understand the restrictions on the directions of the cut of semi-local
operators, as explained in the second comment after (4.6). Indeed, the finite-temperature form
factor FO1

α1,...,αk
(θ1, . . . , θk;β) is, in a sense, the analytical continuation of the matrix element

〈vac|O1|n1, . . . , nk〉β in the quantization on the circle, which describes “one half” of the two-
point function. In a path integral formulation, this matrix element corresponds to a path
integral on the half-cylinder, say, τ > 0, x ∈ [0, β], β ≡ 0 with some boundary condition at
τ = 0 (the excited state) and some asymptotic condition at τ →∞ (the vacuum). But since by
construction the function FO1

α1,...,αk
(θ1, . . . , θk;β) has no “knowledge” of the other operator O2 of

the two-point function, it always “stand” in the natural sector given by the trace, even if this
sector is modified by the cut emanating from O2 in the actual correlation function. Hence, it
is important that the cut associated to O2 does not change this sector, that is, that it does not
affect the conditions at τ →∞ neither those in the region of τ present between the position of
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O1 and that of O2. Similar arguments apply to the function FO2
−αk,...,−α1

(θk, . . . , θ1;β), and this
shows that the cut of O1 must be towards the right, and that of O2, towards the left, when both
are operators associated to twist fields.

To be more precise, if the cut associated to O2 does affect the sector in which O1 stands,
then the only way to provide this information is by modifying the choice of the discrete values
of rapidities in FO1

α1,...,αk
(θ1, . . . , θk;β) that will form the states on the circle; that is, to modify

the analytic structure of the measure ρ. This is indeed what is expected to happen: finite-
temperature form factors of twist fields should have an analytical structure that provides the
appropriate shift of the poles of the measure in order to produce the change of sector. Then,
we actually expect this to be enough information for the finite-temperature form factor of
O1 to be in this different sector whenever O1 is local with respect to the fundamental fields
corresponding to the particles involved. In that case, the cut of O2 can indeed be in any
direction, the expansion (4.6) will stay valid. Otherwise, if O1 is itself semi-local with respect
to the fundamental fields, then a change of the analytic structure of the measure is not enough,
hence the cut of O2 must be in opposite direction. This phenomenon is indeed what is observed
in the Majorana theory.

We can circumvent the restriction on directions of the cuts of the twist fields by “twisting”
the construction; this is done in the next section.

5 Twisted constructions

5.1 The twisted inner product

The construction of the previous section can be fruitfully modified when there is a U(1) inva-
riance (or sub-group thereof) in the theory, by changing the quasi-periodicity properties of the
fundamental fermion field in imaginary time. We still consider the space L of endomorphisms
of H, but now as a Hilbert space with a different inner product structure:

(A,B)ω =
Tr

(
e−βH+2πiωQA†B

)
Tr (e−βH+2πiωQ)

≡ 〈〈A†B〉〉ωβ , (5.1)

where Q is the Hermitian conserved charge associated to the U(1) symmetry. Then we again
have

(A,B)∗ω = (B,A)ω.

Now, we can still consider, in order to have a basis, the set of operators (4.2). We have

Zα(θ)e2πiωQ = e−2πiωq(α)e2πiωQZα(θ),

where q(α) is the charge2 of the excitation α. Again with diagonal scattering, using this it is
possible to write down all inner products (5.1) of the operator (4.2) in a simple way:

(Dα1,...,αk
(θ1, . . . , θk), Dα′1,...,α′l

(θ′1, . . . , θ
′
l))ω

= δk,l

k∏
i=1

ε
1−fai
i δai,a′i

δ(θi − θ′i)

1− (−1)faie2πiωq(αi) e−εiβmai cosh θi
. (5.2)

Here, we have assumed the ordering (4.1) for both members of the inner product.

2In particular the charge of the fundamental fermion, with ε = +, is 1, and in general we have q(a, +) =
−q(a,−).
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Note that simple “crossing” relations hold again for operators in EndRL(L):

(Dα1,...,αk
(θ1, . . . , θk) , φL(A)Dα′1,...,α′l

(θ′1, . . . , θ
′
l)) = e−2πiωq(α′l)e

ε′lβma′
l
cosh θ′l

× (Dα1,...,αk,ᾱ′l
(θ1, . . . , θk, θ

′
l), φL(A)Dα′1,...,α′l−1

(θ′1, . . . , θ
′
l−1)) (θ′l 6= θi ∀ i) (5.3)

and

(Dα1,...,αk
(θ1, . . . , θk) , φR(A)Dα′1,...,α′l

(θ′1, . . . , θ
′
l))

= (Dᾱ′1,α1,...,αk
(θ′1, θ1, . . . , θk) , φR(A)Dα′2,...,α′l

(θ′2, . . . , θ
′
l)) (θ′1 6= θi ∀ i). (5.4)

5.2 Twisted finite-temperature form factor expansion

Inverting (5.2), we now have the twisted finite-temperature form factor expansion (as before,
we assume that x > 0):

〈〈O1(x, t)O2(0, 0)〉〉ωβ

= e∆E x
∞∑

k=0

∑
α1,...,αk

∫
{Im(θj)=εj0+}

dθ1 · · · dθk

k∏
j=1

ε
1−faj

j e

k∑
j=1

εj(imaj x sinh θj−imaj t cosh θj)

k!
k∏

j=1

(
1− (−1)faj e2πiωq(αj)e−εjβmaj cosh θj

)
× ωFO1

α1,...,αk
(θ1, . . . , θk;β) ωFO2

−αk,...,−α1
(θk, . . . , θ1;β), (5.5)

where we have defined twisted finite-temperature form factors as the normalised matrix ele-
ments3:

ωFOα1,...,αn
(θ1, . . . , θn;β)

=
n∏

i=1

[
ε
1−fai
i

(
1− (−1)faie2πiωq(αi) e−εiβmai cosh θi

)]
(O†(0, 0), Dα1,...,αn(θ1, . . . , θn))ω. (5.6)

and used the identity(
ωF

O†2
α1,...,αk(θ∗1, . . . , θ

∗
k;β)

)∗ = ωFO2
−αk,...,−α1

(θk, . . . , θ1;β), (5.7)

which essentially follows from (6.2) below. Also, we have symmetrised over the orderings of
rapidities. The quantity ∆E is non-zero whenever O1 is a twist field σω1

η1
, and is now given by

∆E =


E

[
1
2

+ ω + ω1

]
− E

[
1
2

+ ω

]
(η1 = +),

E
[
1
2

+ ω

]
− E

[
1
2

+ ω − ω1

]
(η1 = −),

where E [ν] is the energy of the vacuum |vacν〉β (see the discussion around (3.9)). Again,
when both O1 and O2 are semi-local with respect to the fundamental fermion field, the finite-
temperature form factor expansion (4.6) is valid only when the cut of O1 extends towards the
right (positive x direction) and that of O2 extends towards the left (negative x direction). This
is justified in the same way as before, through the relation between (5.5) and a form factor
expansion on the circle (3.4). Note that with this prescription on the directions of the cuts, one
now produces the correlation functions

β〈vac 1
2
+ω+ω1

|Ô1(x, τ)Ô2(0, 0)|vac 1
2
+ω−ω2

〉β

with x = τ and t = ix. With ω1 = −ω2, it is now possible to have the NS vacuum by choosing
ω = −ω1.

3Again, note that the function FO
α1,...,αn

(θ1, . . . , θn; β) has no delta-function contributions at colliding rapidities.
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6 Formal structure and a generalisation of CFT’s mapping
to the cylinder

6.1 The space L as a Fock space, and physical interpretation

We have seen how the space L of operators on H can be used to obtain infinite series expressions
of correlation functions (4.6) and (5.5). The important objects are the finite-temperature form
factors (4.7), or the twisted version (5.6), which are certain matrix elements on the space L. It
will be convenient, here, to introduce the normalised operators

dα1,...,αk
(θ1, . . . , θk) =

k∏
i=1

1
gαi(θi)

Dα1,...,αk
(θ1, . . . , θk) (6.1)

with, in the general twisted case,

gα(θ) =
ε1−fa

1− (−1)fa e2πiωq(α) e−εβma cosh θ
.

Then, we have

FOα1,...,αk
(θ1, . . . , θk;β) = (O†(0, 0) , dα1,...,αk

(θ1, . . . , θk))

and the “crossing” relations (4.4), (4.5) change into

(dα1,...,αk
(θ1, . . . , θk) , φL(A)dα′1,...,α′l

(θ′1, . . . , θ
′
l))ω

= (dα1,...,αk,ᾱ′l
(θ1, . . . , θk, θ

′
l), φL(A)dα′1,...,α′l−1

(θ′1, . . . , θ
′
l−1))ω (θ′l 6= θi ∀ i) (6.2)

and

(dα1,...,αk
(θ1, . . . , θk), φR(A)dα′1,...,α′l

(θ′1, . . . , θ
′
l))ω = e2πiωq(α′1)e

−ε′1βma′1
cosh θ′1

× (dᾱ′1,α1,...,αk
(θ′1, θ1, . . . , θk) , φR(A)dα′2,...,α′l

(θ′2, . . . , θ
′
l))ω (θ′1 6= θi ∀ i). (6.3)

In order to describe in a convenient way the space spanned by dα1,...,αk
(θ1, . . . , θk), we intro-

duce the following operators acting on L:

Z†
α(θ),Zα(θ) ∈ End(L)

with the following properties:

Z†
α(θ)1H = dα(θ), Z†

α1
(θ1)dα2,...,αk

(θ2, . . . , θk) = dα1,...,αk
(θ1, . . . , θk), Zα(θ)1H = 0

and satisfying the following exchange relations:

Zα1(θ1)Zα2(θ2)− Sα1,α2(θ1 − θ2)Zα2(θ2)Zα1(θ1) = 0,

Z†
α1

(θ1)Z†
α2

(θ2)− Sα1,α2(θ1 − θ2)Z†
α2

(θ2)Z†
α1

(θ1) = 0, (6.4)

Zα1(θ1)Z†
α2

(θ2)− Sα2,α1(θ2 − θ1)Z†
α2

(θ2)Zα1(θ1) =
1

gα1(θ1)
δα1,α2δ(θ1 − θ2),

where δα1,α2 = δa1,a2δε1,ε2 and where

Sα1,α2(θ) =

{
Sa1,a2(θ) (ε1 = ε2),
Sa2,a1(−θ) (ε1 = −ε2).
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The space H is then seen as a Fock space over the algebra (6.4), with vacuum vector 1H an-
nihilated by Zα(θ). The algebra (6.4) has exactly the structure of the Zamolodchikov–Faddeev
algebra (2.1) with diagonal scattering, but with twice as many particles. The physical interpre-
tation is that the “states” dα1,...,αk

(θ1, . . . , θk) correspond to configurations of stable “additional
particles” (ε = +) and “missing particles” or holes (ε = −) in a thermal bath (we will call
both “excitations”), both created by the operators Z†

α(θ), and scattering through the matrix
Sα1,α2(θ1 − θ2). They are stable, since the states with n excitations have no overlap with those
with n′ 6= n excitations. It is both this stability and the fact that matrix elements should
have nice analytical properties that suggests that the correspondence between expansions in the
quantization on the circle and finite-temperature form factor expansions holds individually for
every term with a given excitation number. Only in integrable quantum field theory can we
expect these two properties together.

In order to have a better picture of the “particle” and “hole” states that we are discussing,
one should recall that we defined the in-states of H by multiple action of Z̄a(θ) on |vac〉 with
ordered rapidities, decreasing from left to right. When this order is not satisfied, one has an
“intermediate” state, which is a useful concept only in integrable quantum field theory. It
corresponds to having wave packets ordered such that some interact in the far past (like for
out states), while others interact in the far future (like for in states). Essentially, the order of
the operators Z̄a(θ) acting on |vac〉 corresponds to the order of the wave packets themselves
along the x axis, when time is taken to go “upward” (in the positive y direction). When we put
an operator Z̄a(θ) inside the finite-temperature trace (evaluating the trace in the in basis, for
instance), we take situations with various numbers of in particles at various ordered rapidities,
and put an additional wave packet far to the left, generically producing “intermediate” states.
This is the sense in which the operator Z̄a(θ) corresponds to an additional particle in a thermal
bath. Similarly, Za(θ) is taking away a particle from the thermal bath, by first bringing its
wave packet far to the left. Recall that it is because we keep the order of the wave packets fixed
while varying the rapidities that matrix elements of operators on H in “intermediate” states are
meromorphic functions. With the previous discussion, this lends support to the fact that the
basis Dα1,...,αk

(θ1, . . . , θk) of L should produce matrix elements with nice analytical properties.
It is also interesting to note a nice physical interpretation for the expected kinematical poles

in the finite-temperature form factors, occurring at colliding rapidities when they are associated
to opposite signs of ε. These poles can be seen, in the finite-temperature form factor expansion,
to lead to powers of the time variable t, instead of exponential factors. This corresponds to the
fact that a particle and a hole can annihilate and re-form themselves at arbitrary large time
differences without cost in energy. For a given excitation number, various powers in t will occur,
which can more or less be made in correspondence with various simultaneous annihilating and
re-creating of particle-hole pairs. It it these processes that make the computation of large-time
dynamics from finite-temperature form factors difficult: a re-summation of these powers of t is
necessary.

The fact that the Hilbert space L is the same as an ordinary Hilbert space with twice as many
“particles” does not mean that the finite-temperature theory is the same as a zero-temperature
one with such particles. Indeed, another ingredient that defines a theory is the set of local opera-
tors (in particular, the energy density), and this set looks very different on a finite-temperature
Hilbert space. In fact, it would be very interesting to study the structure of the energy density
on L.

6.2 A tool for evaluating traces and mapping to the cylinder

This is again a generalisation of a concept introduced in [2]. It is possible to construct the left
action of Z̄α through the operators Z†

α and Zᾱ (the right action is more complicated, from the



20 B. Doyon

definition of the operators Z†
α and Zα, but it is sufficient to consider the left action). Indeed,

one can verify that the mapping

φL(Z̄α(θ)) = Z†
α(θ)gα(θ) + Zᾱ(θ)gᾱ(θ) (ᾱ = (a,−ε) for α = (a, ε)) (6.5)

is an isomorphism of the algebra satisfied by Z̄α(θ):

Z̄α1(θ1)Z̄α2(θ2)− Sα1,α2(θ1 − θ2)Z̄α2(θ2)Z̄α1(θ1) = ε
1−fa2
2 δε1,−ε2δa1,a2δ(θ1 − θ2),

using the property Sᾱ2,α1(θ2 − θ1) = Sα1,α2(θ1 − θ2) as well as gα(θ) + (−1)1−fagᾱ(θ) = ε1−fa .
From this one can conclude the equality

(1H, φL(Z̄α1(θ1)) · · ·φL(Z̄αk
(θk))1H) = (1H, Z̄α1(θ1) · · · Z̄αk

(θk))

by bringing on both sides, for instance, all factors with ε = + to the right, by evaluating the
resulting right-hand side explicitly using the inner product (5.2), and by evaluating the left-
hand side using the representation (6.5). Then, restrict all rapidities numbered j + 1, . . . , k to
be different from one another, and restrict all rapidities numbered 1, . . . , j − 1 to be different
from one another. The left-hand side evaluates to

(Z̄αj−1(θj−1) · · · Z̄α1(θ1), φL(Z̄αj (θj))Z̄αj+1(θj+1) · · · Z̄αk
(θk)),

whereas the right-hand side evaluates to

(Z̄αj−1(θj−1) · · · Z̄α1(θ1), Z̄αj (θj)Z̄αj+1(θj+1) · · · Z̄αk
(θk)).

The equality of these two expressions shows the equality for all matrix elements, hence
shows (6.5).

From relation (6.5), one can write explicitly products Z̄α1(θ1) · · · Z̄αk
(θk) as linear combi-

nations of the basis elements dα′1,...,α′l
(θ′1, . . . , θ

′
l) (for l ≤ k and where primed variables form

a subset of un-primed variables), using

Z̄α1(θ1) · · · Z̄αk
(θk) = φL(Z̄α1(θ1)) · · ·φL(Z̄αk

(θk))1H.

In particular, using cyclic properties of the trace, one can relax the restriction of having different
rapidities in (6.2), and one obtains

(dα′1,...,α′l
(θ′1, . . . , θ

′
l), φL(A) dα1,...,αk

(θ1, . . . , θk))

= (dα′1,...,α′l−1
(θ′1, . . . , θ

′
l−1), φL(A) dα1,...,αk,α′l

(θ1, . . . , θk, θ
′
l))

+
k∑

j=1

Sαj ,αj+1(θj − θj+1) · · ·Sαj ,αk
(θj , θk)

δαj ,α′l
δ(θj − θ′l)

gαj (θj)

× (dα′1,...,α′l−1
(θ′1, . . . , θ

′
l−1), φL(A) dα1,...,α̂j ,...,αk

(θ1, . . . , θ̂j , . . . , θk)), (6.6)

where the hat means that the variable is missing.
It is now possible to generalise, in some sense, the concept of “mapping to the cylinder”

that can be used in conformal field theory in order to evaluate finite-temperature correlation
functions. In conformal field theory, one has a mapping (of vertex operator algebras) O 7→ Ô
such that correlation functions of Ô on the cylinder are equal to correlation functions of O on
the plane (for instance, for the stress energy tensor one has T 7→

(
β
2πT + c

24

)
z−2 where w is

the coordinate on the cylinder, z = e2πw/β is the coordinate on the plane and c is the central
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charge). We can generalise this here at the level of form factors. We seek a linear map Ω from L
to L such that

(1H, φL(ΩA)d(a1,+),...,(ak,+),(a′l,−),...,(a′1,−)(θ1, . . . , θk, θ
′
l, . . . , θ

′
1))

= a′1,...,a′l
〈θ′1, . . . , θ′l|A|θ1, . . . , θk〉a1,...,ak

(θ′i 6= θj ∀ i, j), (6.7)

where A ∈ L. This requirement is inspired by the fact that

lim
β→∞

(1H, φL(A)d(a1,+),...,(ak,+),(a′l,−),...,(a′1,−)(θ1, . . . , θk, θ
′
l, . . . , θ

′
1))

= a′1,...,a′l
〈θ′1, . . . , θ′l|A|θ1, . . . , θk〉a1,...,ak

(θ′i 6= θj ∀ i, j)

thanks to (6.2). Note that this in fact completely fixes the map φL ◦Ω, thanks to (6.6), and by
injection the map Ω, if it exists.

In order to describe the map Ω, it is convenient to consider elements of L that have simple
expectation values on H. We consider products where operators Z̄α(θ) are normal-ordered with
respect to the vacuum in H: operators Za(θ) are placed to the right of all operators Z̄a(θ),
without taking any delta-function term (but taking all S-matrices involved in the exchanges).
We will denote the normal-ordering of A by the standard :A:. The set of all normal-ordered
operators spans L. On the other hand, there is a natural normal-ordering with respect to the
vacuum 1H in L: it is the one whereby operators Z are placed to the right of operators Z†. We
will denote the normal-ordering of A ∈ End(L) by ∗

∗A∗∗. Then, it is simple to see that for all
normal-ordered A (that is, :A: = A),

∗
∗φL(A)∗∗ (6.8)

can be put in place of φL(Ω(A)) in (6.7) in order to have equality. Indeed if A contains exactly
l operators of type Z̄a and k operators of type Za, then the equality is clear; otherwise, both
sides are zero, hence the equality still holds. However, this does not yet show that the map Ω
exists.

Now, let us choose a basis in L, with normal-ordered elements Ai composed of products of
finitely many operators Z̄α. Certainly, the set φL(Ai) is not a basis in End(L). However, if we
are to project from the left with 1H, then we do obtain a basis: (1H, φL(Ai)·) is a basis in the
dual of L. Similarly, the space of operators ∗

∗φL(Ai)∗∗ gives another basis in the dual of L when
projected from the left with 1H. Hence, we have the change-of-basis relation

(1H, ∗∗φL(Ai)∗∗ ·) =
ki∑

j=0

Mi,j (1H, φL(Aj) ·), (6.9)

where the sum is finite. Then we find, from the discussion around (6.8) and recalling that
:Ai: = Ai,

ΩAi =
ki∑

j=0

Mi,jAj .

The change of basis (6.9) could be calculated explicitly, but there is a nice way of expressing
it. Suppose we can find an operator Υ in End(L) such that

Υ1H = 0, [Υ,Zα(θ)] = 0, [Υ,Z†
α(θ)]gα(θ) = Zᾱ(θ)g(a,−)(θ).

Then one can verify that eΥ∗∗φL(:A:)∗∗e
−Υ1H = :A:, hence that

Ω = e−Υ.
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But using the algebra (6.4), one can see that

Υ =
∫
dθ

∑
a

Z(a,−)(θ)Z(a,+)(θ)g(a,−)(θ) (6.10)

has the right properties. Hence we have found an explicit expression for the map, acting on the
space of operators on H, that transform finite-temperature form factors into zero-temperature
form factors. This is the generalisation of the concept of “mapping to the cylinder” in conformal
field theory. Finite-temperature form factors can then be calculated using

(1H, φL(A) d(a1,+),...,(ak,+),(a′l,−),...,(a′1,−)(θ1, . . . , θk, θ
′
l, . . . , θ

′
1))

= a′1,...,a′l
〈θ′1, . . . , θ′l|

(
eΥA

)
|θ1, . . . , θk〉a1,...,ak

.

It is important to note, however, that the operator eΥ does not act on the initial Hilbert space H,
but rather on the space of operators acting on it L. In the quantization on the line, this is not
isomorphic to H. In conformal field theory, one usually thinks about the quantization on the
circle around a fixed point (radial quantization), and by the operator-state correspondence, one
then has an operator acting on the Hilbert space that performs the mapping to the cylinder.

The action of eΥ on A ∈ L can be made more explicit using (6.10). Indeed, taking A =
Z̄α1(θ1) · · · Z̄αk

(θk), we can write

eΥ(Z̄α1(θ1) · · · Z̄αk
(θk)) = eΥφL(Z̄α1(θ1)) · · ·φL(Z̄αk

(θk))1H
= eΥφL(Z̄α1(θ1))e

−Υ · · · eΥφL(Z̄αk
(θk))e−Υ1H

and use

eΥφL(Z̄α(θ))e−Υ = φL(Z̄α(θ)) + Zᾱ(θ)g(a,−)(θ),

Zᾱ(θ)φL(Z̄α′(θ′)) = Sα,α′(θ − θ′)φL(Z̄α′(θ′))Zᾱ(θ) + δᾱ,α′δ(θ − θ′)

to bring all the Zα(θ) to the right, annihilating 1H. This leads to a natural generalisation of
Wick’s theorem, whereby eΥA is written as A + operators where more and more contractions
have been performed, the contractions being given by

contraction of Z̄α(θ) with Z̄α′(θ′) = g(a,−)(θ)δᾱ,α′(θ − θ′).

If the S-matrix Sα,α′(θ − θ′) is equal to ±1 (free models), then this gives the standard Wick’s
theorem, and in particular it can be applied to linear combinations of the type

∫
dθZ̄α(θ)fθ

as well. In free models certain linear combinations of this type indeed represent local fields,
and this immediately leads to the phenomenon of “mixing” that was described in [2] (using
slightly different arguments). Of course, local fields in interacting models and twist fields in
general are not simply such linear combinations, but rather are sums of operators with more
and more factors of Z̄α(θ) (since many-particle form factors are non-zero). Hence all term will
contribute to any given finite-temperature form factor, and it is a non-trivial matter to re-sum
these contributions.

7 Results in the free massive Majorana theory

7.1 Free massive Majorana fermions

The free massive Majorana theory with mass m can be described by the action

A = i

∫
d2x(−ψ(∂x + ∂t)ψ + ψ̄(∂x − ∂t)ψ̄ −mψ̄ψ).
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It is a model with only one particle, and with only Z2 internal symmetry, described by a change of
sign of the fermion fields. In particular, the fields ψ and ψ̄ are both real (hence the corresponding
operators in any quantization scheme are Hermitian). The quantization on the line is simple to
describe. Fermion operators are given by:

ψ(x, t) =
1
2

√
m

π

∫
dθ eθ/2

(
a(θ) eipθx−iEθt + a†(θ) e−ipθx+iEθt

)
,

ψ̄(x, t) = − i
2

√
m

π

∫
dθ e−θ/2

(
a(θ) eipθx−iEθt − a†(θ) e−ipθx+iEθt

)
,

where the mode operators a(θ) and their Hermitian conjugate a†(θ) satisfy the canonical anti-
commutation relations

{a†(θ), a(θ′)} = δ(θ − θ′) (7.1)

(other anti-commutators vanishing) and where

pθ = m sinh θ , Eθ = m cosh θ.

The fermion operators satisfy the equations of motion

∂̄ψ(x, t) ≡ 1
2

(∂x + ∂t)ψ =
m

2
ψ̄,

∂ψ̄(x, t) ≡ 1
2

(∂x − ∂t) ψ̄ =
m

2
ψ (7.2)

and obey the equal-time anti-commutation relations

{ψ(x, t), ψ(x′, t)} = δ(x− x′), {ψ̄(x, t), ψ̄(x′, t)} = δ(x− x′). (7.3)

The Hilbert space H is simply the Fock space over the algebra (7.1) with vacuum vector |vac〉
defined by a(θ)|vac〉 = 0. Vectors in H will be denoted by

|θ1, . . . , θk〉 = a†(θ1) · · · a†(θk)|vac〉.

A basis is formed by taking, for instance, θ1 > · · · > θk. This is exactly the construction
described in Section 2, with only one particle and S(θ) = −1. The Hamiltonian is given by

H =
∫ ∞

−∞
dθm cosh θ a†(θ)a(θ)

and has the property of being bounded from below on H and of generating time translations:

[H,ψ(x, t)] = −i ∂
∂t
ψ(x, t), [H, ψ̄(x, t)] = −i ∂

∂t
ψ̄(x, t). (7.4)

In the discussions of the previous sections, we also considered quantization on the circle of
circumference β. It will be convenient to have the description of this quantization for the present
model, with anti-periodic (NS) conditions on the fermion fields. The fermion operators evolved
in Euclidean time τ are:

ψ̂(x, τ) =
1√
2L

∑
n∈Z+ 1

2

eαn/2

√
coshαn

(
an e

ipnx−Enτ + a†n e
−ipnx+Enτ

)
,

ˆ̄ψ(x, τ) = − i√
2L

∑
n∈Z+ 1

2

e−αn/2

√
coshαn

(
an e

ipnx−Enτ − a†n e
−ipnx+Enτ

)
,



24 B. Doyon

where the discrete mode operators an and their Hermitian conjugate a†n satisfy the canonical
anti-commutation relations

{a†n, an′} = δn,n′ (7.5)

(other anti-commutators vanishing) and where

pn = m sinhαn =
2πn
L

(
n ∈ Z +

1
2

)
, (7.6)

En = m coshαn.

The fermion operators satisfy the equations of motion (7.2) as well as the equal-time anti-
commutation relations (7.3) (with the replacement ψ 7→ ψ̂ and ψ̄ 7→ ˆ̄ψ); the latter is simple to
derive from the representation

δ(x) =
1
L

∑
n∈Z+ 1

2

eipnx

of the delta-function, valid on the space of antiperiodic functions on an interval of length β. The
Hilbert space Hβ is simply the Fock space over the algebra (7.5) with vacuum vector |vacNS〉β
defined by an|vacNS〉β = 0. Vectors in Hβ will be denoted by

|n1, . . . , nk〉β = a†n1
· · · a†nk

|vacNS〉β.

A basis is formed by taking, for instance, n1 > · · · > nk. The Hamiltonian (with vacuum energy)
is given by

Hβ = ENS +
∑

n∈Z+ 1
2

m coshαn a
†
nan

and has the property of being bounded from below on Hβ and of generating time translations:

[Hβ , ψ̂(x, τ)] =
∂

∂τ
ψ̂(x, τ), [Hβ ,

ˆ̄ψ(x, τ)] =
∂

∂τ
ˆ̄ψ(x, τ) .

Our discussion was with the NS sector in mind, but it is not hard to perform the quantization
in the R sector. What will be important for us are relative energies of the NS and R vacua:

ENS ≡ E [1/2] = ε−
∫ ∞

−∞

dθ

2π
cosh θ ln

(
1 + e−mβ cosh θ

)
,

ER ≡ E [0] = ε−
∫ ∞

−∞

dθ

2π
cosh θ ln

(
1− e−mβ cosh θ

)
, (7.7)

where we used the notation of the discussion around (3.9). Here, the vacuum energies of both
sectors were calculated in the same regularisation scheme and ε contain terms that are common
to both.

It is worth noting that the normalisation that we took is slightly different from the more
standard normalisation in conformal field theory, that makes the fields ψ and ψ̄ not real, but with
definite phase. With our normalisation, the leading terms of the operator product expansions
(OPE’s) ψ(x, t)ψ(0, 0) and ψ̄(x, t)ψ̄(0, 0) are given by

ψ(x, t)ψ(0, 0) ∼ i

2π(x− t)
, ψ̄(x, t)ψ̄(0, 0) ∼ − i

2π(x+ t)
. (7.8)



Finite-Temperature Form Factors: a Review 25

7.2 Twist fields

Two fields are of particular importance: they are two primary twist fields associated to the Z2

symmetry, which we will denote by σ and µ as is customary4, the first one being bosonic, the
second fermionic. In the sense of quantum chains, the first one is an “order” field, with non-
zero vacuum expectation value, the second is a “disorder” field, with zero vacuum expectation
value. As we explained in sub-section 3.3, to each of these fields there are two operators on H,
which makes four operators: σ± and µ±. They are fully characterised by the leading terms in
the (equal-time) OPE’s that are displayed in Appendix A. These leading terms are fixed by
the general requirements (3.5) and (3.6), by our choice of branch which says that when fermion
operators are placed before the twist-field operators, they are on the same branch no matter the
direction of the cut, and by the general “field” product expansion that holds inside correlation
functions:

ψ(x, t− i0+)σ(0, t) ∼ i

2
√
πx+ i0+

µ(0, t), ψ(x, t− i0+)µ(0, t) ∼ 1
2
√
πx+ i0+

σ(0, t),

ψ̄(x, t− i0+)σ(0, t) ∼ − i

2
√
πx− i0+

µ(0, t), ψ̄(x, t− i0+)µ(0, t) ∼ 1
2
√
πx− i0+

σ(0, t)

with branch cuts on x < 0.
It is worth nothing that the relations of Appendix A are in agreement with the Hermiticity

relations σ†± = σ± and µ†± = ±µ±.

7.3 Riemann–Hilbert problem for twisted
and untwisted finite-temperature form factors

7.3.1 Untwisted case

In [2], the (untwisted) finite-temperature form factors (4.7) of the twist-field operators above
were shown to solve a Riemann–Hilbert problem of the type found at zero temperature, but
with important modifications. We repeat here the results.

Consider the function

fη(θ1, . . . , θk) = F
Oη

+,...,+(θ1, . . . , θk;β)

where Oη is the operator with branch cut on its right (η = +) or on its left (η = −) representing
any twist field: this can be the order field σ± or the disorder field µ±, or any of their conformal
descendants (that is, fields which reproduce conformal descendants in the massless limit). Con-
formal descendants include space derivatives, as well as other fields related to action of higher
conformal Virasoro modes on twist fields. A way of describing such descendants is by taking
the limit x→ 0 of the finite part of the OPE O(x)σ±(0) or O(x)µ±(0), where O is any bosonic
operator formed out of normal-ordered products of fermion operators.

The function f solves the following Riemann–Hilbert problem:

1. Statistics of free particles: f acquires a sign under exchange of any two of the rapidity
variables;

2. Quasi-periodicity:

fη(θ1, . . . , θj + 2iπ, . . . , θk) = −f(θ1, . . . , θj , . . . , θk), j = 1, . . . , k;

4In the present section, the symbol σ does not denote a generic twist field, but rather the primary twist field
as described here.
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3. Analytic structure: f is analytic as function of all of its variables θj , j = 1, . . . , k ev-
erywhere on the complex plane except at simple poles. In the region Im(θj) ∈ [−iπ, iπ],
j = 1, . . . , k, its analytic structure is specified as follows:

(a) Thermal poles and zeroes: fη(θ1, . . . , θk) has poles at

θj = αn − η
iπ

2
, n ∈ Z, j = 1, . . . , k

and has zeroes at

θj = αn − η
iπ

2
, n ∈ Z +

1
2
, j = 1, . . . , k,

where αn are defined in (7.6) (and, of course, we use this definition for any n);
(b) Kinematical poles: fη(θ1, . . . , θk) has poles, as a function of θk, at θj ± iπ, j =

1, . . . , k − 1 with residues given by

fη(θ1, . . . , θk) ∼ ±η (−1)k−j

π

1 + e
−βEθj

1− e
−βEθj

fη(θ1, . . . , θ̂j , . . . , θk−1)
θk − θj ∓ iπ

.

In order to have other finite-temperature form factors than those with all positive charges,
one more relation needs to be used. We have:

4. Crossing symmetry:

F
Oη
ε1,...,εj ,...,εk(θ1, . . . , θj + iπ, . . . , θk;β) = iF

Oη

ε1,...,−εj ,...,εk
(θ1, . . . , θj , . . . , θk;β).

The name “crossing symmetry” is inspired by the zero-temperature case (and it is not to be
confused with the simpler “crossing relations” introduced in (4.4), (4.5), (6.2), (6.3)). To make
it more obvious, define the functions

fη(θ′1, . . . , θ
′
l|θ1, . . . , θk) = (d+,...,+(θ′1, . . . , θ

′
l), φL(Oη(0, 0)) d+,...,+(θ1, . . . , θk). (7.9)

These are in fact distributions, and can be decomposed in terms supported at separated rapidities
θ′i 6= θj , ∀ i, j, and terms supported at colliding rapidities, θ′i = θj for some i and j. We will
denote the former by f sep.

η (θ′1, . . . , θ
′
l|θ1, . . . , θk), and the latter by f coll.

η (θ′1, . . . , θ
′
l|θ1, . . . , θk).

Under integration over rapidity variables, the former gives principal value integrals. Recalling
the property (6.2), we have

f sep.
η (θ′1, . . . , θ

′
l | θ1, . . . , θk) = F

Oη

+,...,+,−,...,−(θ1, . . . , θk, θ
′
l, . . . , θ

′
1;β)

for (θ′i 6= θj ∀ i ∈ {1, . . . , l}, j ∈ {1, . . . , k}), where on the right-hand side, there are k positive
charges (+), and l negative charges (−). Analytically extending from its support the distribution
f sep.

η to a function of complex rapidity variables, crossing symmetry can then be written

f sep.
η (θ′1, . . . , θ

′
l|θ1, . . . , θk + iπ) = if sep.

η (θ′1, . . . , θ
′
l, θk|θ1, . . . , θk−1),

f sep.
η (θ′1, . . . , θ

′
l + iπ|θ1, . . . , θk) = if sep.

η (θ′1, . . . , θ
′
l−1|θ1, . . . , θk, θ

′
l),

which justifies its name.
It is worth mentioning that the distributive terms corresponding to colliding rapidities satisfy

a set of recursive equations:
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5. Colliding part of matrix elements:

f coll.
η (θ′1, . . . , θ

′
l|θ1, . . . , θk)

=
l∑

i=1

k∑
j=1

(−1)l+k−i−j 1 + e
−βEθj

1− e
βEθj

δ(θ′i − θj)fη(θ′1, . . . , θ̂
′
i, . . . , θ

′
l|θ1, . . . , θ̂j , . . . , θk).

Note that the colliding part vanishes in the limit of zero temperature, β → ∞. Finally, it
is instructive to re-write the distribution fη(θ′1, . . . , θ

′
l | θ1, . . . , θk) as an analytical function with

slightly shifted rapidities, plus a distribution, using the relations

1
θ ∓ i0+

= ±iπδ(θ) + P
(

1
θ

)
, (7.10)

where P means that we must take the principal value integral under integration. Defining the
disconnected part fdisconn.

η (θ′1, . . . , θ
′
l | θ1, . . . , θk) of the matrix element (7.9) as

fη(θ′1, . . . , θ
′
l | θ1, . . . , θk) = f sep.

η (θ′1 − ηi0+, . . . , θ′l − ηi0+ | θ1, . . . , θk)

+ fdisconn.
η (θ′1, . . . , θ

′
l | θ1, . . . , θk),

where again we analytically extend from its support the distribution f sep.
η to a function of

complex rapidity variables, we find that the disconnected part satisfies the recursion relations

fdisconn.
η (θ′1, . . . , θ

′
l | θ1, . . . , θk)

=
l∑

i=1

k∑
j=1

(−1)l+k−i−j (1 + e
−βEθj ) δ(θ′i − θj)fη(θ′1, . . . , θ̂

′
i, . . . , θ

′
l | θ1, . . . , θ̂j , . . . , θk).

Note that the factor (1 + e
−βEθj ) δ(θ′i − θj) appearing inside the double sum is just the overlap

(d+(θ′i), d+(θj)), so that the equation above can be naturally represented as a “sum of discon-
nected diagrams.” This equation is, in fact, consequence of the general relation (6.6).

7.3.2 Twisted case

The twisted case was not considered in [2], but can be obtained from the same arguments.
There is no U(1) invariance, but we can still twist by the Z2 symmetry. Hence, we consider

twisted finite-temperature form factors (5.6) with ω = 1
2 . The derivation of [2] for the Riemann–

Hilbert problem can easily be adapted to this case, and the results are as follows.
Consider the function

fη(θ1, . . . , θk) =
1
2F

Oη

+,...,+(θ1, . . . , θk;β),

where Oη is the operator with branch cut on its right (η = +) or on its left (η = −) representing
a twist field. The function f solves the following Riemann–Hilbert problem:

1. Statistics of free particles: f acquires a sign under exchange of any two of the rapidity
variables;

2. Quasi-periodicity:

fη(θ1, . . . , θj + 2iπ, . . . , θk) = −fη(θ1, . . . , θj , . . . , θk), j = 1, . . . , k;

3. Analytic structure: f is analytic as function of all of its variables θj , j = 1, . . . , k every-
where on the complex plane except at simple poles. In the region Im(θj) ∈ [−iπ, iπ],
j = 1, . . . , k, its analytic structure is specified as follows:
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(a) Thermal poles and zeroes: fη(θ1, . . . , θk) has poles at

θj = αn − η
iπ

2
, n ∈ Z +

1
2
, j = 1, . . . , k

and has zeroes at

θj = αn − η
iπ

2
, n ∈ Z, j = 1, . . . , k;

(b) Kinematical poles: fη(θ1, . . . , θk) has poles, as a function of θk, at θj ± iπ, j =
1, . . . , k − 1 with residues given by

fη(θ1, . . . , θk;L) ∼ ±η (−1)k−j

π

1− e
−βEθj

1 + e
−βEθj

fη(θ1, . . . , θ̂j , . . . , θk−1)
θk − θj ∓ iπ

.

Again, in order to have other finite-temperature form factors than those with all positive
charges, one more relation needs to be used. We have:

4. Crossing symmetry:
1
2F

Oη
ε1,...,εj ,...,εk(θ1, . . . , θj + iπ, . . . , θk;β) = i

1
2F

Oη

ε1,...,−εj ,...,εk
(θ1, . . . , θj , . . . , θk;β).

Moreover, matrix elements

fη(θ′1, . . . , θ
′
l|θ1, . . . , θk) = (d+,...,+(θ′1, . . . , θ

′
l), φL(Oη(0, 0)) d+,...,+(θ1, . . . , θk) 1

2

can again be decomposed in terms supported at separated rapidities θ′i 6= θj , ∀ i, j (which
give principal value integrals under integration), and terms supported at colliding rapidities,
θ′i = θj for some i and j, denoted respectively by f sep.

η (θ′1, . . . , θ
′
l | θ1, . . . , θk) and f coll.

η (θ′1, . . . , θ
′
l |

θ1, . . . , θk). Recalling the property (6.2), we have

f sep.
η (θ′1, . . . , θ

′
l | θ1, . . . , θk) =

1
2F

Oη

+,...,+,−,...,−(θ1, . . . , θk, θ
′
l, . . . , θ

′
1;β)

for (θ′i 6= θj ∀ i ∈ {1, . . . , l}, j ∈ {1, . . . , k}), where on the right-hand side, there are k positive
charges (+), and l negative charges (−). The distributive terms corresponding to colliding
rapidities satisfy again a set of recursive equations, now modified by the twisting:

5. Colliding part of matrix elements:

f coll.
η (θ′1, . . . , θ

′
l | θ1, . . . , θk)

=
l∑

i=1

k∑
j=1

(−1)l+k−i−j 1− e
−βEθj

1 + e
βEθj

δ(θ′i − θj)fη(θ′1, . . . , θ̂
′
i, . . . , θ

′
l | θ1, . . . , θ̂j , . . . , θk).

Finally, we can again re-write the distribution fη(θ′1, . . . , θ
′
l | θ1, . . . , θk) as an analytical func-

tion with slightly shifted rapidities, plus a distribution, using the relations (7.10). Defining the
disconnected part fdisconn.

η (θ′1, . . . , θ
′
l | θ1, . . . , θk) of the matrix element (7.9) as

fη(θ′1, . . . , θ
′
l | θ1, . . . , θk) = f sep.

η (θ′1 − ηi0+, . . . , θ′l − ηi0+ | θ1, . . . , θk)

+ fdisconn.
η (θ′1, . . . , θ

′
l | θ1, . . . , θk),

where again we analytically extend from its support the distribution f sep.
η to a function of

complex rapidity variables, we find that the disconnected part satisfies the recursion relations

fdisconn.
η (θ′1, . . . , θ

′
l | θ1, . . . , θk)

=
l∑

i=1

k∑
j=1

(−1)l+k−i−j (1− e
−βEθj ) δ(θ′i − θj)fη(θ′1, . . . , θ̂

′
i, . . . , θ

′
l | θ1, . . . , θ̂j , . . . , θk).
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7.3.3 Other local f ields

It is worth noting that points 1, 2 and 4 are in fact also valid for fields that are local with
respect to ψ and ψ̄. The analytic structure, point 3, for such fields, is much simpler: the finite-
temperature form factors are entire functions of all rapidities. In fact, the finite-temperature
form factors of ψ and ψ̄ themselves are exactly equal to their zero-temperature form factors, and
for other fields, a phenomenon of mixing occurs, as described in [2] and as can be calculated
using the techniques of Section 6.

7.3.4 Differences with zero-temperature Riemann–Hilbert problems,
and some explanations

There are three main differences between the Riemann–Hilbert problems stated in this sub-
section, and the Riemann–Hilbert problems solved by zero-temperature form factors, reviewed
in Section 2. First, there are, in the former, so-called “thermal” poles and zeroes. They are in
fact consequences of the semi-locality of the operators with respect to the fundamental fermion
fields, and play the role of “changing the sector” of the excited states when integrals are deformed
to reproduce the form factor expansion in the quantization on the circle. Indeed, they displace
the poles of the measure in order to reproduce the right set of discrete momenta.

Second, the kinematical residue has an additional factor. This factor, in fact, is closely related
to the presence of the thermal poles and zeroes.

Finally, there is a subtle but important difference: the quasi-periodicity equation has a sign
difference. Essentially, the quasi-periodicity equation that we have at finite-temperature is
exactly the one we would have at zero-temperature with fields that are local with respect to
the fermion field. This difference is again due to the presence of the thermal poles and zeroes.
More precisely, in the limit of zero temperature, the finite-temperature form factors converge
to the zero temperature one only in the strip Im(θ) ∈]− π/2, π/2[. At the lines Im(θ) = ±π/2
(the sign depending on which excitation type and form factor we are looking at), there is
an accumulation of poles and zeroes that produces a cut. The quasi-periodicity equation of
zero temperature comes from the analytical continuation through this cut. Note that it is this
analytical continuation that recovers rotation invariance in Euclidean plane, an invariance which
is broken by the cylindrical geometry at finite temperature.

We would like to mention, in relation to the breaking of Euclidean rotation invariance, that
yet crossing symmetry, point 4, is valid. It is in fact a consequence of the fact that the defor-
mation of the contours, as explained in Subsection 4.4, should give residues at the poles of the
measure occurring in (4.6). These residues come from two contributions: the contribution of the
displaced θ contour associated to ε = +, and that associated to ε = −. That these two contribu-
tions should give a residue impose certain conditions on the value of the finite-temperature form
factors: they should correspond to contours in opposite direction and on opposite sides of the
same pole. From this and from knowing that all finite-temperature form factors of the fermion
fields satisfy crossing symmetry, one concludes that crossing symmetry holds for all local fields.

7.4 Results for twisted and untwisted finite-temperature form factors

Again, we repeat here the results of [2], and generalise them to the twisted case. Note that the
method of computing one-particle finite-temperature form factors by solving the Riemann–
Hilbert problem with this asymptotic is very similar to the method used by Fonseca and
Zamolodchikov [21] for calculating form factors on the circle.

For the order and disorder operators, σ± and µ± the solutions to the Riemann–Hilbert
problems above are completely fixed (up to a normalization) by the asymptotic ∼ O(1) at
θ → ±∞, imposed by the fact that they are primary fields of spin 0.
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For the one-particle finite-temperature form factor of the disorder operator with a branch
cut on its right, the solution is

F
µ+
± (θ;β) = e±

iπ
4 C(β) exp

[
∓

∫ ∞∓i0+

−∞∓i0+

dθ′

2πi
1

sinh(θ − θ′)
ln

(
1 + e−βEθ′

1− e−βEθ′

)]
(7.11)

for some real constant C(β). This is in agreement with the Hermiticity of µ+, which gives
(Fµ+

± (θ;β))∗ = F
µ+
∓ (θ;β) for θ real. Using

1
sinh(θ − (θ′ ± i0+))

= ±iπδ(θ − θ′) + P
(

1
sinh(θ − θ′)

)
this can also be written

F
µ+
± (θ;β) = C(β)e±

iπ
4

√
1 + e−βEθ

1− e−βEθ
exp

[
∓

∫ ∞

−∞

dθ′

2πi
P

(
1

sinh(θ − θ′)

)
ln

(
1 + e−βEθ′

1− e−βEθ′

)]
.

That this is a solution can be checked by verifying the asymptotic Fµ+
± (θ;β) ∼ e±

iπ
4 C(β) as

|θ| → ∞, and by verifying that the functions Fµ+
± (θ;β) have poles and zeros at the proper

positions. Positions of poles and zeros are the values of θ such that when analytically continued
from real values, a pole at sinh(θ− θ′) = 0 in the integrand of (7.11) and one of the logarithmic
branch points pinch the θ′ contour of integration. The fact that these positions correspond to
poles and zeros can be deduced most easily from the functional relation

F
µ+
± (θ;β)Fµ+

± (θ ± iπ;β) = ±iC(β)2
1 + e−βEθ

1− e−βEθ
. (7.12)

Note that this implies the quasi-periodicity property

F
µ+
± (θ + 2iπ;β) = −Fµ+

± (θ;β).

It is also easy to see that the crossing symmetry relation is satisfied.
For the operator µ− with a branch cut on its left, one can check similarly that the function

F
µ−
± (θ;β) = F

µ+
± (θ − iπ;β) = −iFµ+

∓ (θ;β)

solves the Riemann–Hilbert problem of Paragraph 7.3.1 with η = −. Explicitly,

F
µ−
± (θ;β) = −ie∓

iπ
4 C(β) exp

[
±

∫ ∞±i0+

−∞±i0+

dθ′

2πi
1

sinh(θ − θ′)
ln

(
1 + e−βEθ′

1− e−βEθ′

)]
. (7.13)

In particular, we observe that (Fµ−
± (θ;β))∗ = −Fµ−

∓ (θ;β), which is in agreement with the anti-
Hermiticity of the operator µ−. Note that we chose the same constant C(β) as a normalization
for both F

µ−
± and F

µ+
± . This is not a consequence of the Riemann–Hilbert problem, but can

be checked by explicitly calculating the normalisation. The normalisation was calculated in [2],
and is given by

C(β) =
〈〈σ〉〉β√

2π
, (7.14)

where the average 〈〈σ〉〉β was calculated in [28] (the average at zero-temperature (that is, β →∞)
can be found in [45]) and is given by

m
1
8 2

1
12 e−

1
8A

3
2 exp

[
(mβ)2

2

∫ ∫ ∞

−∞

dθ1dθ2
(2π)2

sinh θ1 sinh θ2
sinh(mβ cosh θ1) sinh(mβ cosh θ2)
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× ln
∣∣∣∣(coth

θ1 − θ2
2

)∣∣∣∣] ,
where A is Glaisher’s constant. Essentially, this normalisation is evaluated by computing the lea-
ding of 〈〈ψ(x, 0)µ−(0, 0)〉〉β as x→ 0+, and the leading of 〈〈µ+(0, 0)ψ(x, 0)〉〉β as x→ 0−, using
the form factor expansions; in both cases, it is important to approach the point x = 0 from a
region that is away from the cut.

Multi-particle finite-temperature form factors can be easily constructed from the well-known
zero-temperature form factors (first calculated in [9]), by adjoining “leg factors”, which are just
normalized one-particle finite-temperature form factors:

F
O+
+,...,+(θ1, . . . , θk;β) = i[

k
2 ]〈〈σ〉〉β

 k∏
j=1

F
µ+
+ (θj ;β)
〈〈σ〉〉β

 ∏
1≤i<j≤k

tanh
(
θj − θi

2

)
,

where O+ is σ+ if k is even, and µ+ if k is odd. The symbol [k/2] equals the greatest integer
smaller than or equal to k/2. This satisfies the condition on thermal poles and zeroes simply from
the properties of the leg factors, and it can be verified that this satisfies the quasi-periodicity
condition and the kinematical pole condition, Point 2 and Point 3b of Subsection 7.3.1, respec-
tively. Using crossing symmetry, Point 4, it is a simple matter to obtain the formula for other
values of the charges:

FO+
ε1,...,εk

(θ1, . . . , θk;β) = i[
k
2 ]〈〈σ〉〉β

 k∏
j=1

F
µ+
εj (θj ;β)
〈〈σ〉〉β

 ∏
1≤i<j≤k

(
tanh

(
θj − θi

2

))εiεj

. (7.15)

Similarly, we have

FO−ε1,...,εk
(θ1, . . . , θk;β) = i[

k
2 ]〈〈σ〉〉β

 k∏
j=1

F
µ−
εj (θj ;β)
〈〈σ〉〉β

 ∏
1≤i<j≤k

(
tanh

(
θj − θi

2

))εiεj

, (7.16)

where O− is σ− if k is even, and µ− if k is odd.
Finally, twisted one-particle finite-temperature form factors can easily be obtained by solving

the Riemann–Hilbert problem of Paragraph 7.3.2 as follows:

1
2F

µη
ε (θ) =

εiC(β)2

F
µη
ε (θ)

.

These functions have the correct analytic structure, they satisfy the crossing symmetry relation
(point 4), and their normalisation is the correct one that can be deduced from the fact that the
leading of (ψ(x, 0), µ−(0, 0)) 1

2
as x→ 0+, and the leading of (µ+(0, 0), ψ(x, 0)) 1

2
as x→ 0−, are

the same as in the untwisted case. Twisted multi-particle form factors can also be obtained in
a simple way:

1
2F

Oη
ε1,...,εk(θ1, . . . , θk;β)

= i[
k
2 ]〈〈σ〉〉β

 k∏
j=1

1
2F

µη
εj (θj ;β)
〈〈σ〉〉β

 ∏
1≤i<j≤k

(
tanh

(
θj − θi

2

))εiεj

, (7.17)

where O± is σ± if k is even, and µ± if k is odd.
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7.5 Form factors on the circle from finite-temperature form factors

As explained in Subsection 4.4, there is a relation between finite-temperature form factors and
form factors in the quantization on the circle. In the present case of the Majorana theory, this
relation was written explicitly in [2], and was proven by independent means. A slight extension
to the twisted case gives it as follows:

β〈ñ1, . . . , ñl|Ô(0, 0)|n1, . . . , nk〉β

= e−
iπs
2

(
2π
mL

) k+l
2

 l∏
j=1

1√
cosh(αñj )

  k∏
j=1

1√
cosh(αnj )


× ωFO+,...,+,−,...,−

(
αn1 +

iπ

2
, . . . , αnk

+
iπ

2
, αñl

+
iπ

2
, . . . , αñ1 +

iπ

2
;β

)
, (7.18)

where there are k positive charges and l negative charges in the indices of ωFO, and where αn

are defined in (7.6). Here, s is the spin of O. This formula is valid for any excited states in the
sector above |vac 1

2
+ω〉 (see the discussion around (3.9)). That is, if ω = 0, it is valid for excited

states in the NS vacuum, hence with ni, ñi ∈ Z + 1
2 . For ω = 1

2 , it is valid for excited states in
the R vacuum, hence with ni, ñi ∈ Z.

When O is a twist field, its associated branch cut changes the sector of the bra or the ket,
hence formula (7.18) can then be applied only if one of the bra or the ket is the vacuum, and
if the branch cut associated to the twist field is chosen so that this vacuum is in the opposite
sector (in order to keep the excited states in the same sector). If ω = 0, the vacuum will then
be in the R sector, and if ω = 1

2 , it will be in the NS sector. For a branch cut to the right, it is
the bra that must be chosen as this vacuum, whereas for a branch cut to the left, it is the ket.

It is easy to check, using (7.18), that the formulas above for finite-temperature form factors
reproduce the known form factors on the circle [19, 20, 21].

7.6 Two-point functions, Fredholm determinants
and scaling limit of the quantum Ising model

The finite-temperature form factor expansion (5.5) now gives explicit expansions for finite-
temperature two-point functions of twist fields at x > 0:

〈〈σ+(x, t)σ−(0, 0)〉〉ωβ = e(E[ω]−E[ 1
2
+ω])x

×
∞∑

k=0
k even

∑
ε1,...,εk=±

∫
{Im(θj)=εj0+}

dθ1 · · · dθke

k∑
j=1

εj(imx sinh θj−imt cosh θj)

k!
k∏

j=1

(
1 + e2πiωe−εjmβ cosh θj

)
× ik

k∏
j=1

( ωFµ+
εj

(θj ;L))2
∏

1≤i<j≤k

tanh
(
θj − θi

2

)2εiεj

(7.19)

and

〈〈µ+(x, t)µ−(0, 0)〉〉ωβ = −e(E[ω]−E[ 1
2
+ω])x

×
∞∑

k=0
k odd

∑
ε1,...,εk=±

∫
{Im(θj)=εj0+}

dθ1 · · · dθke

k∑
j=1

εj(imx sinh θj−imt cosh θj)

k!
k∏

j=1

(
1 + e2πiωe−εjmβ cosh θj

)
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× ik
k∏

j=1

( ωFµ+
εj

(θj ;L))2
∏

1≤i<j≤k

tanh
(
θj − θi

2

)2εiεj

, (7.20)

where ω = 0 or ω = 1
2 , and we recall that E [0] = ER and E [1/2] = ENS are given in (7.7). In order

to fully clarify the meaning of these finite-temperature correlation functions, we recall also that
at imaginary time t = ix and at positive x = τ , they correspond to the following correlation
functions in the quantization on the circle:

〈〈σ+(τ, ix)σ−(0, 0)〉〉ωβ = β〈vacω|σ(x, τ)σ(0, 0)|vacω〉β ,
〈〈µ+(τ, ix)µ−(0, 0)〉〉ωβ = β〈vacω|µ(x, τ)µ(0, 0)|vacω〉β ,

where the vacuum is in the R sector if ω = 0, and in the NS sector if ω = 1/2.
Following [2], where techniques from [46, 47] were borrowed, Fredholm determinant represen-

tations can now easily be obtained for two-point functions from the formulas

det
i,j

{
ui − uj

ui + uj

}
=


∏

1≤i<j≤k

(
ui − uj

ui + uj

)2

k even,

0 k odd

(7.21)

and

deti,j

{
1

ui + uj

}
=

1
2ku1 · · ·uk

∏
1≤i<j≤k

(
ui − uj

ui + uj

)2

. (7.22)

Formula (7.21) gives

〈〈σ+(x, t)σ−(0, 0)〉〉ωβ = det(1 + K),

where K is an integral operator with an additional index structure, defined by its action
(Kf)ε(θ) =

∑
ε′=±

∫∞
−∞ dθ′Kε,ε′(θ, θ′)fε′(θ′) and its kernel

Kε,ε′(θ, θ′) = i( ωFµ+
ε (θ;β))2 tanh

(
θ′ − θ

2

)εε′ eε(imx sinh θ−imt cosh θ)

1 + e2πiωe−εmβ cosh θ
.

Finally, in order to obtain two-point functions of disorder fields, we must consider the linear
combinations σ ± µ. Formula (7.22) gives

〈〈(σ+(x, t) + ηµ+(x, t))(σ−(0, 0) + ηµ−(0, 0))〉〉ωβ = det(1 + J(η))

with η = ± and by definition (J(η)f)ε(u) =
∑

ε′=±

∫∞
0 du′J

(η)
ε,ε′ (u, u

′)fε′(u′) where the kernel is

given by

J
(η)
ε,ε′ (u, u

′) = −2η i( ωFµ+
ε (ln(u);β))2

1
εu+ ε′u′

e
ε
2
(imx(u−u−1)−imt(u+u−1))

1 + e2πiωe−
εmβ

2
(u+u−1)

.

The interest in Fredholm determinant representations is, in part, that they can be used to
efficiently obtain asymptotics of correlation functions.

Finally, we mention that these two-point functions in the Majorana theory can be used to
evaluate the off-critical scaling limit of two-point functions in the quantum Ising chain (see,
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for instance, the book [48]). The quantum Ising chain is a quantum mechanical model with
Hamiltonian

HIsing = −
∑

j

(Jsz
js

z
j+1 + hsx

j )

with J > 0. The spin variables sx
j and sz

j are in the spin-1/2 representation of SU(2), and are
two of the usual Pauli matrices on the jth two-dimensional space, the third one being sy

j :

sx =
(

0 1
1 0

)
, sy =

(
0 −i
i 0

)
, sz =

(
1 0
0 −1

)
.

It is the “Hamiltonian limit” of the two-dimensional Ising classical statistical model. There is
a value h = hc of the transverse magnetic field at which this model is critical. The conformal
field theory that describes it is the free massless Majorana theory. For h < hc, the system is
ordered, and at zero temperature the average of sz

j is non-zero. On the other hand, for h > hc,
the system is disordered. As h is made to approach hc, the correlation length ξ associated to
the two-point function 〈sz

js
z
0〉 diverges. The scaling limit is obtained by looking at the situation

where h → hc, while the inverse temperature is made to diverge as Jβ ∝ ξ, and the distances
between points in correlation functions are made to diverge as |j| ∝ ξ. The quantum field theory
model that describes the appropriately normalised correlation functions obtained in this limit is
the free massive Majorana theory, the product of mass times position being equal to mx = |j|/ξ.
If h is sent to hc from below (ordered regime), then we have the correspondence

Z−1ξ
1
4

Tr
(
e−βHIsingsz

j (t)s
z
0(0)

)
Tr

(
e−βHIsing

) → m− 1
4 〈〈σ+(x, t)σ−(0, 0)〉〉

1
2
β ,

where

sz
j (t) = e−itHIsingsz

je
itHIsing

and Z is a non-zero, non-universal number. On the other hand, if h is sent to hc from above
(disordered regime), then

Z−1ξ
1
4

Tr
(
e−βHIsingsz

j (t)s
z
0(0)

)
Tr

(
e−βHIsing

) → m− 1
4 〈〈µ+(x, t)µ−(0, 0)〉〉

1
2
β .

It is important to realise that the spin variables sz does not converge, in the scaling limit, to
the twist fields σ, µ; indeed, only its products converge to products of twist fields. This is clear,
since the finite-temperature average of single twist fields are non-zero (but have non-trivial space
dependence, as explained in Subsection 3.3), but finite-temperature averages of spin variables
are zero (since at finite temperature, there can be no symmetry breaking). One should recall
that the passage from the quantum Ising model to the Majorana theory involves writing the
spin variables as exponentials of sums of (bilinear of) fermionic variables lying on a segment of
the chain, and the two end-points of the segment correspond to two spin variables.

8 Perspectives

We have developed partly the concept of finite-temperature form factor in the general context of
factorised scattering theory, and we completed the program in the case of the Majorana theory.
The most important next step is, of course, to complete this program in models with non-trivial
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scattering. We believe that ideas concerning the relation between finite-temperature form factors
and matrix elements in the quantization on the circle will lead to restrictive conditions that will
greatly help fully fix finite-temperature form factors in interacting models. Also, the operator
implementing the generalisation of CFT’s “mapping to the cylinder” may be useful, and this
method is not far from the explicit construction of “boundary-creating operator” in integrable
boundary QFT. The generalisation to interacting models is a very important step, and will
open the way to results about large-distance and large-time behaviours of correlation functions
in interacting, integrable models.

Another interesting avenue is to generalise the program to the free Dirac theory; this should
not pose any difficulties, and will clarify the structure of finite-temperature form factors of more
general twist fields (two-point functions at finite-temperature were already studied in [49]).
Then, it would be interesting to understand the structure for descendants of twist fields in such
free fermionic models, perhaps using the operator Ω defined in (6.7) that provides a “mapping
to the cylinder”.

Finally, one would like to obtain the full large-time expansion of correlation functions in the
quantum Ising model. Besides directly using the finite-temperature form factor expansion, it is
possible that the Fredholm determinant representations obtained here can be used fruitfully for
this purpose (work is in progress [31]).

A OPE’s in the Majorana theory

The order and disorder fields have operator representations σ± and µ± on H. These operators
are completely characterised by the leading terms in their OPEs with the fermion fields:

ψ(x, t)σ+(0, t) ∼ 1
2
√
−πx− i0+

µ+(0, t), σ+(0, t)ψ(x, t) ∼ 1
2
√
−πx+ i0+

µ+(0, t),

ψ(x, t)σ−(0, t) ∼ i

2
√
πx+ i0+

µ−(0, t), σ−(0, t)ψ(x, t) ∼ i

2
√
πx− i0+

µ−(0, t),

ψ(x, t)µ+(0, t) ∼ −i
2
√
−πx− i0+

σ+(0, t), µ+(0, t)ψ(x, t) ∼ i

2
√
−πx+ i0+

σ+(0, t),

ψ(x, t)µ−(0, t) ∼ 1
2
√
πx+ i0+

σ−(0, t), µ−(0, t)ψ(x, t) ∼ −1
2
√
πx− i0+

σ−(0, t)

and

ψ̄(x, t)σ+(0, t) ∼ 1
2
√
−πx+ i0+

µ+(0, t), σ+(0, t)ψ̄(x, t) ∼ 1
2
√
−πx− i0+

µ+(0, t),

ψ̄(x, t)σ−(0, t) ∼ − i

2
√
πx− i0+

µ−(0, t), σ−(0, t)ψ̄(x, t) ∼ − i

2
√
πx+ i0+

µ−(0, t),

ψ̄(x, t)µ+(0, t) ∼ i

2
√
−πx+ i0+

σ+(0, t), µ+(0, t)ψ̄(x, t) ∼ −i
2
√
−πx− i0+

σ+(0, t),

ψ̄(x, t)µ−(0, t) ∼ 1
2
√
πx− i0+

σ−(0, t), µ−(0, t)ψ̄(x, t) ∼ −1
2
√
πx+ i0+

σ−(0, t),

where everywhere, the square root is on its principal branch.
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