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Abstract. We consider some examples of quantum super-integrable systems and the as-
sociated nonlinear extensions of Lie algebras. The intimate relationship between super-
integrability and exact solvability is illustrated. Eigenfunctions are constructed through the
action of the commuting operators. Finite dimensional representations of the quadratic al-
gebras are thus constructed in a way analogous to that of the highest weight representations
of Lie algebras.
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1 Introduction

In classical mechanics, there is a well defined meaning to the term ‘complete integrability’.
If, in n degrees of freedom, we have n independent functions in involution (mutually Poisson
commuting), then the system can be integrated, ‘up to quadrature’. This is known as Liouville’s
Theorem. It is customary to consider one of these functions as ‘the Hamiltonian’ H, with
the others being its first integrals and this Hamiltonian is said to be completely integrable in
the Liouville sense. Whilst n is the maximal number of independent functions which can be
in involution, it is possible to have further integrals of the Hamiltonian H, which necessarily
generate a non-Abelian algebra of integrals ofH. The maximal number of additional independent
integrals is n−1, since the ‘level surface’ of 2n−1 integrals (meaning the intersection of individual
level surfaces) is just the (unparameterised) integral curve. Well known elementary examples
are the isotropic harmonic oscillator, the Kepler system and the Calogero–Moser system. The
quadratures of complete integrability are often achieved through the separation of variables of
the Hamilton–Jacobi equation. The solution of a maximally super-integrable system can also
be calculated purely algebraically (albeit implicitly), requiring just the solution of the equations
Ik = ck, k = 1, . . . , 2n− 1.

In n-dimensions, Quantum integrable systems are defined analogously by requiring the exis-
tence of n mutually commuting differential operators (usually with some requirements, such
as self-adjointness). One of these will be of Schrödinger type, being the quantum version of
the Hamiltonian H. However, we don’t have a theorem analogous to Liouville’s and we don’t
have anything resembling ‘reduction to quadrature’. There is a notion of separation of variables
(this time in the linear PDE sense), requiring a solution to be expressible as the product of n
functions of a single variable. This reduces the problem of solving one Schrödinger equation in
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n-dimensions to that of solving n Schrödinger equations in 1-dimension. This achieves less than
quadratures.

What we would like to achieve in quantum mechanics is to build the spectrum and corre-
sponding eigenfunctions for Schrödinger’s equation with some given boundary conditions. This
class of Schrödinger equation is called exactly solvable. Even in 1-dimension exactly solvable
Schrödinger equations are rare, so unlikely to be the end-product of applying the separation of
variables method. One particular class of 1-dimension exactly solvable Schrödinger equations
was presented by Infeld and Hull [8], related to the factorisation of operators. This can be
related to Darboux transformations, which can then be generalised to higher dimensions (where
factorisation is not possible). Darboux transformations can then be used to build exactly solv-
able Schrödinger equations in higher dimensions. In [4], Darboux transformations have been
shown to be related to the symmetries of the Laplacian.

In the quantum case we also have a notion of super-integrability. By analogy with the classical
case, super-integrability again involves having ‘extra’ commuting operators. Once again, we
cannot have more than n such operators in involution, so the algebra is necessarily non-Abelian.
Furthermore, if the operators are second order, their commutators are third order, with further
commutators being fourth order and so on, so cannot be expected to generate a finite dimensional
Lie algebra. However, they can generate a finite dimensional algebra with nonlinear commutation
relations (see [2, 10, 13], for example). There are many papers on super-integrable systems (both
classical and quantum). Particularly relevant to the present paper is a series of papers by Kalnins
et al. (see [9, 10] and references therein), in which a classification is given of super-integrable
systems in 2-dimensional flat and constant curvature spaces and in which a pair of quadratic first
integrals, together with their quadratic commutation relations are derived. As is well known,
super-integrable systems are separable in more than one coordinate system. In most of these
papers the main emphasis is on the separation of variables, first by constructing and classifying
coordinate systems and corresponding ‘separable potentials’ and then using this (in the quantum
case) to build eigenfunctions.

In the present paper, there is no discussion of separation of variables and ‘differential equa-
tions techniques’ are kept to a minimum. Our main emphasis is on the direct relationship
between super-integrability and exactly solvability. We use the commuting operators in a direct
and explicit manner to build the eigenfunctions for our operators. This construction is the
analogue (in the context of our quadratic algebras) to that of the highest weight representation
of simple Lie algebras (see the Appendix). In particular, the polynomial eigenfunctions of the
Krall–Sheffer operator of Example 9 can be explicitly constructed in this way. The issue of
the relationship between super-integrability and exact solvability is not new and is discussed
in [10, 11, 14]. In [14] it is conjectured that exactly solvability should hold quite widely for
super-integrable systems. Whilst operator algebras are discussed in these papers they are not
used to construct eigenfunctions.

In this paper we consider some particular super-integrable systems, associated with a par-
ticular Laplace–Beltrami operator in 2-dimensions. One of the examples is in the Krall–Sheffer
classification of ‘admissible operators’. The relationship between Krall–Sheffer operators and
super-integrability was shown by Harnad, et al in [6, 15]. In these papers they reworked the
Krall–Sheffer classification and showed that in each case the leading order terms in the opera-
tor correspond to the Laplace–Beltrami operator of either a zero or constant curvature, 2-di-
mensional space. They also show that each of the 9 cases is super-integrable by presenting pairs
of commuting, second order operators. Example 9 of the current paper is exactly Case II of [6, 15].
In [15] it is pointed out that this case had been previously introduced and studied in [1, 10].

In the next section, we give some basic formulae related to our particular metric and its
symmetries. We then present 3 super-integrable examples, with their operator algebras and
finite representation spaces (families of eigenfunctions). We then give some concluding remarks.
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2 A metric and its symmetries

For an n-dimensional (pseudo-)Riemannian space, with local coordinates x1, . . . , xn and met-
ric gij , the Laplace–Beltrami operator is defined by Lbf = gij∇i∇jf , which has explicit form

Lbf =
n∑

i,j=1

1
√
g

∂

∂xj

(
√
ggij ∂f

∂xi

)
, (1)

where g is the determinant of the matrix gij . The coefficients of leading order terms in the Lap-
lace–Beltrami operator are the coefficients of the inverse metric gij . For a metric with isometries,
the infinitesimal generators (Killing vectors) are just first order differential operators which
commute with the Laplace–Beltrami operator (1). When the space is either flat or constant
curvature, it possesses the maximal group of isometries, which is of dimension n(n + 1)/2. In
this case, Lb is actually the second order Casimir function of the symmetry algebra (see [5]).

In this paper, we consider one particular constant curvature metric in 2-dimensions, with
inverse

gij =
(
x2 xy
xy y2 − y

)
. (2)

The choice of coordinates here is motivated by the relationship to Krall–Sheffer operators [12],
but otherwise quite arbitrary.

A convenient basis of Killing vectors is

H = 4x∂x, E = 2
√
xy∂y, F = 4

√
xy∂x + 2(y − 1)

√
y

x
∂y, (3)

satisfying the standard commutation relations of sl(2,C):

[H,E] = 2E, [H,F] = −2F, [E,F] = H. (4)

The Laplace–Beltrami operator for the metric (2) is proportional to the quadratic Casimir
operator:

Lb =
1
16

(H2 + 2EF + 2FE) = x2∂2
x + 2xy∂x∂y + (y2 − y)∂2

y +
3
2
x∂x +

1
2
(3y − 1)∂y. (5)

Remark 1. The operator Lb is invariant under an involution,

x̄ =
(y − 1)2

x
, ȳ = y. (6)

which, in fact, gives a concrete realisation of the Lie algebra automorphism

E↔ F, H→ −H.

This will be useful in some of the calculations below.

Second order operators, commuting with Lb, are just symmetric quadratic forms of Killing
vectors. Suppose K is such an operator. Then we may seek functions u and v, such that

[Lb + u,K + v] = 0,

which constitutes a coupled system of partial differential equations for u and v. The solution
depends upon a pair of arbitrary functions, each of one variable, typical of separable systems.
Requiring that there exist two of these second order commuting operators, Ij = Kj +vj , strongly
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constrains these (formerly) arbitrary functions, which reduce to rational functions depending
upon only a finite number of parameters. The coefficients of the second order derivatives in
such an operator K define a contravariant, rank-two Killing tensor. For brevity, we will refer to
these operators as Killing tensors in what follows.

The examples discussed below were presented in [4], in the context of Darboux transforma-
tions, which will not be discussed in this paper. Instead we discuss how to use the commuting
second order operators to build eigenfunctions of L = Lb + u in a way analogous to the highest
weight representation of a Lie algebra.

For some calculations, such as those of [4], it is convenient to use separation coordinates. In
our case we can choose 2 (or even 3) such coordinate systems, but the current calculations are
as easily done in terms of the x− y coordinates.

3 The system with Killing tensors H2 and E2

Requiring both I1 = H2 + v1 and I2 = E2 + v2 to commute with L leads to the specific forms of
u(x, y), vi(x, y) in the operators below

L = Lb +
c0
x

+
c1
y

+ c2
y − 1
x2

,

I1 = E2 − 4
(
c1
x

y
+ c2

y

x

)
,

I2 = H2 − 16

(
c0

(
y − 1
x

)
+ c2

(
y − 1
x

)2
)
. (7)

In order to build eigenfunctions of L it is convenient to change gauge:

L 7→ L̃ = G−1LG with G = exp
(
α

2

(
y − 1
x

))
x(β+γ−1)/2y−(2γ+1)/4, (8)

which simultaneously reduces the 3 potential terms to constants. The specific coefficients in G
were chosen to simplify the final expressions for the operators. Removing the additive constants
and adjusting overall multiplicative factors (and dropping the ‘tilde’) we arrive at the following
operators:

L = x2∂2
x + 2xy∂x∂y +

(
y2 − y

)
∂2

y + (βx+ α)∂x + (βy + γ)∂y,

I1 = xy∂2
y + (αy − γx)∂y,

I2 = x2∂2
x + ((β + γ)x+ α(1− y))∂x, (9)

where c0 = α(2 − β − γ)/2, c1 = (2γ + 1)(2γ + 3)/16, c2 = α2/4. This is an example of
admissible operator, as defined by Krall and Sheffer [12]. The connection between Krall–Sheffer
operators and super-integrability was first pointed out in [6, 15]. Indeed, Example 9 above is
exactly Case II of [6, 15]. As pointed out in [15], this case was previously introduced and studied
in [1, 10].

The operator I3 = [I1, I2] is third order, so cannot be written as a polynomial (in particular,
linear, Lie algebraic) expression in L, I1, I2, but does satisfy the polynomial equation:

I2
3 =

4
3
(I2

1I2 + I1I2I1 + I2I
2
1 − 2I2

1 ) + α(β − γ − 2)
(
I1I2 + I2I1 −

4
3
I1

)
+ (β + γ − 2)((β + γ)I2

1 − 2αI1L) + α2(I2 − L)2 +
2
3
α2(I2 − (3γ + 1)L).
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These 4 operators satisfy the commutation relations:

[L, I1] = [L, I2] = [L, I3] = 0, [I1, I2] = I3,

[I1, I3] = 2I2
1 + α(β − γ − 2)I1 + α2(I2 − L),

[I2, I3] = −2(I1I2 + I2I1) + (β + γ − 2)(αL− (β + γ)I1)− α(β − γ − 2)I2. (10)

By definition (see [12]), an admissible operator possesses a sequence of eigenvalues λn (with
λn 6= λm form 6= n)1, such that, for each n ≥ 0, there exist n+1 linearly independent polynomial
eigenfunctions of degree n, with eigenvalue λn. The degeneracy (for n > 0) of λn stems from the
super-integrability in a very explicit way. We show below how to use the operators I1 and I2 to
build sequences of polynomial eigenfunctions of L, using a construction which is analogous to
that of the ‘highest weight representation’ of a simple Lie algebra.

We start with a polynomial eigenfunction

Pn,0 = xn +
n∑

i=1

ρix
n−i,

for constants ρi, which is independent of y and therefore in the Kernel of I1. This satisfies the
1-dimensional eigenvalue problem

LxPn,0 ≡ (x2∂2
x + (βx+ α)∂x)Pn,0 = λnPn,0, λn = n(n+ β − 1).

This value of λn is easily determined by looking at the coefficient of xn. It is easy to show that

P1,0 = x+
α

β
, P2,0 = x2 +

2αx
β + 2

+
α2

(β + 2)(β + 1)
,

and that this sequence satisfies the 3-point recursion relation

rx : Pn+1,0 = (x+An)Pn,0 +BnPn−1,0,

with

An =
α(β − 2)

(β + 2n)(β + 2n− 2)
, Bn =

α2n(n+ β − 2)
(β + 2n− 1)(β + 2n− 2)2(β + 2n− 3)

.

We now use I2 (for α 6= 0) to build a sequence of (monic) eigenfunctions

Pn−k,k = xn−kyk + lower order terms, k = 1, . . . , n.

The case of α = 0 is the reduction c0 = c2 = 0, which has a different algebra and is dealt with
later (see the system (12)). Since I2 commutes with L, all such eigenfunctions will have the same
eigenvalue λn, which means (important for P0,n, below) that the degree of each polynomial must
be n. The polynomials Pn−k,k are defined recursively by

I2Pn−k,k =(n−k)(n−k−1+β+γ)Pn−k,k−α(n−k)Pn−k−1,k+1, k = 0, . . . , n− 1, (11)

as can be seen by inspecting the form of I2 and by inspecting the coefficients of xn−kyk and
xn−k−1yk+1. It can be seen that I2P0,n = 0, so the polynomial P0,n must be independent of x.2

The polynomials P0,n(y) also satisfy a 3-point recursion relation [3]

ry : P0,n+1 = (y + Ãn)P0,n + B̃nP0,n−1,

1The condition (3.8) of [12], which ensures this, is that β should not be a negative integer.
2Since the leading order term is killed, any non-zero result would be a polynomial of lower degree, which is

not possible. This can also be seen by setting k = n in (11).
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with

Ãn =
(n+ 1)(γ − n)

β + 2n
− n(γ − n+ 1)

β + 2n− 2
,

B̃n = − n(γ − n+ 1)
2(β + 2n− 2)

(
(n+ 1)

γ − n
β + 2n− 1

− 2n
γ − n+ 1
β + 2n− 2

+ (n− 1)
γ − n+ 2
β + 2n− 3

)
.

The space of polynomials spanned by this basis is also invariant under the action of I1:

I1Pn−k,k = kαPn−k,k + k(k − γ − 1)Pn−k+1,k−1, k = 1, . . . , n.

This array of polynomials, together with the action of I1, I2 and the 3-point recursion relations,
are depicted in Fig. 1.

P0,0

P1,0 P0,1

P2,0 P1,1 P0,2

P3,0 P2,1 P1,2 P0,3

P4,0 P3,1 P2,2 P1,3 P0,4

��	 @@R

��	 @@R

��	 @@R

��	 @@R

�

� �

� � �

� � � �

rx ry

Figure 1. The triangular lattice of polynomials Pn−k,k, k = 0, . . . , n with P0,0 = 1, for system (9).
Horizontal arrows denote the action of I1 (left) and I2 (right).

For each n ≥ 1, the sequence of polynomials Pn−k,k, k = 0, . . . , n, defines an n+1 dimensional
representation of the algebra (10). These can be explicitly calculated. For instance, apart
from P1,0 and P2,0, given above, we have

P0,1 = y +
γ

β
, P1,1 = xy +

1
β + 2

(γx+ αy) +
αγ

(β + 2)(β + 1)
,

P0,2 = y2 + 2
(γ − 1)y
β + 2

+
γ(γ − 1)

(β + 2)(β + 1)
.

It is easy to see that, for n ≥ 2, the 4 representative matrices generate a larger Lie algebra
(commutators lie outside the linear span), but do satisfy the quadratic relations (10).

4 The system with Killing tensors H2 and F2

Requiring both I1 = H2 + v1 and I2 = F2 + v2 to commute with L leads to the specific forms
of u(x, y), vi(x, y) in the operators below

L = Lb + c0
x

(y − 1)2
+
c1
y

+ c2
x2

(y − 1)3
,

I1 = F2 − 4
(
c1

(y − 1)2

xy
+ c2

xy

(y − 1)2

)
,

I2 = H2 − 16

(
c0

(
x

y − 1

)
+ c2

(
x

y − 1

)2
)
.
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These are, in fact, directly transformed from (7) under the action of the involution (6). Either
by composing the gauge transformation (8) with this involution or by directly transforming (9)
by (6) (and dropping ‘bars’), we obtain

L = x2∂2
x + 2xy∂x∂y + (y2 − y)∂2

y +
(
βx+

2(β + γ − 1)x
y − 1

− αx2

(y − 1)2

)
∂x + (βy + γ)∂y,

I1 = 4xy∂2
x + 4y(y − 1)∂x∂y +

y(y − 1)2

x
∂2

y + 2
(

(1− γ)y +
αxy

y − 1
+ γ

)
∂x

+
(
αy − γ(y − 1)2

x

)
∂y,

I2 = x2∂2
x +

(
(2− β − γ)x− αx2

1− y

)
∂x,

where c0 = α(2−β−γ)/2, c1 = (2γ+1)(2γ+3)/16, c2 = α2/4. These satisfy the same quadratic
relations (10). Starting from these operators, it would not be so easy to find a simple function
in the kernel of I1, and then to build the sequence of eigenfunctions, but there is no need to do
this, since the functions

Qn−k,k(x, y) = Pn−k,k

(
(y − 1)2

x
, y

)
are obtained directly through the involution. The operator L is no longer ‘admissible’ in the
Krall–Sheffer sense, and the eigenfunctions are no longer polynomial, but the same set of rela-
tions hold, leading to the same diagram of Fig. 1.

5 The system with Killing tensors E2 and F2

Requiring both I1 = E2 + v1 and I2 = F2 + v2 to commute with L leads to the specific forms of
u(x, y), vi(x, y) in the operators below

L = Lb +
c1
y
, I1 = E2 − 4c1

x

y
, I2 = F2 − 4c1

(y − 1)2

xy
. (12)

However, it can be seen that the potential of L is a subcase of (7), with c0 = c2 = 0, so there
should also be an integral of the form I3 = H2 + v3. Indeed, it should be exactly as in the case
of (7). However, in this reduction, we just have I3 = H2, so may consider the algebra generated
by L, I1, I2 and H, which satisfy the commutation relations

[H, I1] = 4I1, [H, I2] = −4I2, [I1, I2] = 2(8c1 − 1)H−H3 + 16HL, (13)

as well as [L, I1] = [L, I2] = [L,H] = 0. Under the action of the involution (6), L 7→ L, I1 7→ I2,
I2 7→ I1, H 7→ −H, which preserves the commutation relations (13). The Casimir operator of
the algebra (13) is

C = I1I2 + I2I1 +
1
2
(8c1 − 5)H2 − 1

8
H4 + 4H2L.

This is not, of course, independent of L and can be written C = 32L2−16(4c1+1)L+16c1(2c1−1).
We mimic the highest weight representation of sl(2,C) and seek function ϕ1(x, y), satisfying

Hϕ1 = sϕ1, Lϕ1 = λϕ1, I1ϕ1 = 0.
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The first of these gives ϕ1(x, y) = xs/4ψ(y), so the remaining equations lead to

16y2(y − 1)ψ′ + 8y((s+ 3)y − 1)ψ′ + (16c1 + (s(s+ 2)− 16λ)y)ψ = 0,

2y2ψ′ + yψ′ − 2c1ψ = 0,

which can be solved for both λ and ψ to give

λm,s =
1
16

(s+m+ 1)(s+m+ 3), ψ = y(m+1)/4, where c1 =
m2 − 1

16
.

We now define

ϕk = Ik−1
2 ϕ1, satisfying Hϕk = (s− 4(k − 1))ϕk.

Under the involution, we have ϕ1 7→ ϕ̄1 and

Hϕ̄1 = −sϕ̄1, I2ϕ̄1 = 0.

For this to be in our sequence ϕk, we must have s− 4(k− 1) = −s for some k. For some integer
n, we therefore have

s = 2n and ϕ̄1 = ϕn+1, I2ϕn+1 = 0.

In this case, ϕk, k = 1, . . . , n+ 1, define a finite dimensional representation of the algebra. For
other values of s, the representation is infinite.

The representations obtained in this way are deformations of representations of sl(2,C) (given
in the Appendix), which correspond to the reduction c1 = 0 (which ism = −1). In this reduction,
the eigenvalue reduces to the value λ−1,2n = 1

4n(n+ 1). When c1 = 0, I2 reduces to F2, so our
sequence ϕ1, ϕ2, . . . reduces to ψn

1 , ψ
n
3 , . . . , jumping in steps of 2. We thus retrieve only n+ 1 of

the 2n+ 1 vectors of the highest weight representation.

Example 1 (The case n = 2). Here we have

ϕ1 = xyp, ϕ2 = 4(3y − 1 + 4p(y − 1))yp, ϕ3 = 8(y − 1)2(3 + 16p+ 16p2)yp,

where m = −1 + 4p. When p = 0, these reduce to ψ2
1, ψ

2
3 and ψ2

5, given in the Appendix.

6 Conclusions

The main message of this paper is that super-integrability in a quantum system leads directly and
explicitly to the construction of eigenfunctions. This leads to exact solvability, which is much
stronger than just complete integrability.

The examples presented here are fairly simple, but the general approach can be used for any
super-integrable system. The examples presented here are associated with the Laplace–Beltrami
operator of a 2-dimensional space of constant curvature. The main feature used was the existence
of a large number of symmetries of the underlying space. Using these it is possible to deform the
Laplace–Beltrami operator, by adding a potential, in such a way that it possesses (generally)
higher order (non-geometric) symmetries in the form of higher order commuting operators. This
can be thought of as a ‘ghost’ of the previous geometric symmetry. These higher symmetries
generate an algebra with nonlinear commutation relations, whose representations are built in
a way analogous to the highest weight representations of Lie algebras. In 2 dimensions the
symmetry algebra is very small, being just sl(2,C) in our case (the 2-dimensional Euclidean
algebra in the flat case), so the representations are very simple. In higher dimensions, the
usual highest weight representations apply for the symmetry algebra of the Laplace–Beltrami
operator. In this case there is no longer a single chain of eigenfunctions, so we can expect similar
behaviour for the algebra of higher symmetries.
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Appendix. Eigenfunctions of the Laplace–Beltrami operator

We use the highest weight representations of the symmetry algebra sl(2,C) to construct eigen-
functions of Lb. Since H and Lb commute, they share eigenfunctions and for H these are built
by the highest weight construction. Furthermore, starting with any eigenfunction of Lb, we may
use the symmetry algebra to construct further eigenfunctions (with the same eigenvalue). Since
this eigenspace is invariant under the action of sl(2,C) (by construction), it can be decomposed
into irreducible components, which are just weight spaces. Therefore all eigenfunctions of Lb

can be written as linear combinations of those we construct below.
A highest weight vector ψn

1 , of weight 2n, satisfies

Eψn
1 = 0, Hψn

1 = 2nψn
1 ,

which constitute a pair of partial differential equations for the eigenfunction. These are com-
patible on the zeros of the differential operator E, since

HEψn
1 −EHψn

1 = 2Eψn
1 = 0.

The specific form of ψn
1 depends upon n and upon the choice of representation for sl(2,C).

However, the general structure of the representation is independent of this specific form, being
a consequence only of the commutation relations (4) (see [7]).

Defining ψn
r = Fr−1ψn

1 , the commutation relations imply:

Hψn
r = 2(n+ 1− r)ψn

r , Eψn
r = (r − 1)(2n+ 2− r)ψn

r−1. (14)

Our definition of Laplace–Beltrami operator Lb as Casimir operator (5) implies that

Lb ψ
n
r =

1
4
n(n+ 1)ψn

r , for all r, n.

We can also construct a 3-point recursion relation between these eigenfunctions, but this is
explicitly dependent upon the form of the operators. Let

H = h1 ∂z1 + h2 ∂z2 , E = e1 ∂z1 + e2 ∂z2 , F = f1 ∂z1 + f2 ∂z2 ,

where hi, etc are functions of the coordinates zi. We have (with µr and ar defined by (14))

Hψn
r = µrψ

n
r ,

Eψn
r = arψ

n
r−1

}
⇒

(
∂z1ψ

n
r

∂z2ψ
n
r

)
=

1
h1e2 − e1h2

(
e2 −h2

−e1 h1

)(
µrψ

n
r

arψ
n
r−1

)
.

The relation ψn
r+1 = Fψn

r then implies that

ψn
r+1 =

f1e2 − e1f2

h1e2 − e1h2
µrψ

n
r +

h1f2 − f1h2

h1e2 − e1h2
arψ

n
r−1.

When this is singular the representation reduces to 1 dimension.
In the case of our vector field representation (3), this takes explicit form

ψn
r+1 = 2(n− r + 1)

√
y

x
ψn

r + (r − 1)(2n+ 2− r)
(
y − 1
x

)
ψn

r−1,

with

ψn
1 =

√
xn, ψn

2 = 2n
√
xn−1y.

When n is an integer, these representations are of finite dimension 2n + 1 and irreducible,
but infinite dimensional otherwise. For instance, when n = 2, we have

ψ2
1 = x, ψ2

2 = 4
√
xy, ψ2

3 = 4(3y − 1),

ψ2
4 = 24(y − 1)

√
y

x
, ψ2

5 =
24(y − 1)2

x
.
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