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1 Introduction

The concept of Lie algebroid was introduced by Pradines in [23, 24] and has proved to be
a useful tool in the formulation and analysis of many problems in differential geometry and
applied mathematics [13, 2]. In the context of geometric Mechanics, a program was proposed
by A. Weinstein [25] in order to develop a theory of Lagrangian and Hamiltonian systems on
Lie algebroids and their discrete analogs on Lie groupoids. In the last years, this program has
been actively developed by many authors, and as a result, a powerful mathematical structure is
emerging. The purpose of this paper is to review some of such recent developments.

One of the main features of the Lie algebroid framework is its inclusive nature. In what
respect to Mechanics, under the same formalism one can describe such disparate situations as
Lagrangian systems with symmetry, systems evolving on Lie algebras and semidirect products,
or systems with holonomic constraints (see [12, 9] for recent reviews) obtaining in such cases
Lagrange–Poincaré equations, Poincaré equations, Euler–Poincaré equations or Euler–Lagrange
equations for holonomically constrained problems (see [5, 6]).

While the Lie algebroid approach to Mechanics builds on the geometrical structure of the
prolongation of a Lie algebroid [15], the origin of Lagrangian Mechanics is the calculus of varia-
tions. It is therefore important to have a variational description of Lagrange’s equations for
a Lagrangian system defined on a more general Lie algebroid. We will show that Lagrange’s
equations for a Lagrangian system on a Lie algebroid are precisely the equations for the critical
points of the action functional defined on the set of admissible curves on a Lie algebroid with
fixed base endpoints, and we will also show how to find such equations by means of a Lagrange
multiplier method [20].

One of the advantages of such a unifying formalism it that morphisms establish relations
between these apparently different systems, leading to an adequate way to study reduction
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theory. In particular we will show how to reduce the variational principle and the symplectic
equations in presence of a fiberwise surjective morphism of Lie algebroids.

The extension of this ideas to the theory of optimal control systems was initiated in [17],
and will also be briefly reviewed. On any Lie algebroid a generalized version of Pontryagin
maximum principle can be established in a global and coordinate free way which stresses its
geometric properties and can be successfully reduced under morphisms.

There are many other interesting aspects about the application of Lie algebroids to Mechanics
which are not covered in this review. For other applications to control theory [7], to discrete
mechanics [14] and field theory [18, 19] see the recent review [9]. For extensions to time-
dependent mechanics see [21].

The paper is organized as follows. In Section 2 we present some basic facts on Lie algebroids,
including results from differential calculus, morphisms and prolongations of Lie algebroids. In
Section 3, we give a brief review of the Hamiltonian and the Lagrangian formalism of Mechanics
on Lie algebroids. In Section 4 we show that Lagrange’s equation for a Lagrangian system on
a Lie algebroid can be obtained by means of variational calculus by selecting an appropriate
class of variations. Much inside is gained by studying the geometry of the infinite dimensional
manifold of admissible curves, which is done in Section 5. In Section 6 we study the transfor-
mation rules induced by morphism of Lie algebroids on the geometric objects of the theory, and
how this is useful in the theory of reduction of Lagrangian systems. Finally in Section 7 we
show how Pontryagin maximum principle can be extended for control systems defined on Lie
algebroids and how to reduce optimal control problems.

2 Preliminaries

Lie algebroids

A Lie algebroid structure on a vector bundle τ : E →M is given by a vector bundle map ρ : E →
TM over the identity in M , called the anchor, together with a Lie algebra structure on the
C∞(M)-module of sections of E such that the compatibility condition [σ, fη] = (ρ(σ)f)η+f [σ, η]
is satisfied for every f ∈ C∞(M) and every σ, η ∈ Sec(E). See [2, 13] for more information on
Lie algebroids.

In what concerns to Mechanics, it is convenient to think of a Lie algebroid as a generalization
of the tangent bundle of M . One regards an element a of E as a generalized velocity, and the
actual velocity v is obtained when applying the anchor to a, i.e., v = ρ(a). A curve a : [t0, t1] → E
is said to be admissible or an E-path if γ̇(t) = ρ(a(t)), where γ(t) = τ(a(t)) is the base curve.

A local coordinate system (xi) in the base manifold M and a local basis {eα} of sections
of E, determine a local coordinate system (xi, yα) on E. The anchor and the bracket are locally
determined by the local functions ρi

α and Cα
βγ on M given by

ρ(eα) = ρi
α

∂

∂xi
and [eα, eβ ] = Cγ

αβ eγ .

The functions ρi
α and Cα

βγ satisfy some relations due to the compatibility condition and the
Jacobi identity which are called the structure equations:

ρj
α

∂ρi
β

∂xj
− ρj

β

∂ρi
α

∂xj
= ρi

γC
γ
αβ ,

ρi
α

∂Cν
βγ

∂xi
+ ρi

β

∂Cν
γα

∂xi
+ ρi

γ

∂Cν
αβ

∂xi
+ Cµ

βγC
ν
αµ + Cµ

γαC
ν
βµ + Cµ

αβC
ν
γµ = 0.
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Cartan calculus

The Lie algebroid structure is equivalent to the existence of an exterior differential operator
on E, d : Sec(∧kE∗) → Sec(∧k+1E∗), defined as follows

dω(σ0, . . . , σk) =
k∑

i=0

(−1)iρ(σi)(ω(σ0, . . . , σ̂i, . . . , σk))

+
∑
i<j

(−1)i+jω([σi, σj ], σ0, . . . , σ̂i, . . . , σ̂j , . . . , σk),

for ω ∈ Sec(∧kE∗) and σ0, . . . , σk ∈ Sec(τ). d is a cohomology operator, that is, d2 = 0. In
particular, if f : M → R is a real smooth function then df(σ) = ρ(σ)f, for σ ∈ Sec(τ). Locally,

dxi = ρi
αe

α and deγ = −1
2
Cγ

αβe
α ∧ eβ,

where {eα} is the dual basis of {eα}. The above mentioned structure equations are but the
relations d2xi = 0 and d2eα = 0. We may also define the Lie derivative with respect to
a section σ of E as the operator dσ : Sec(∧kE∗) → Sec(∧kE∗) given by dσ = iσ ◦ d + d ◦ iσ.
Along this paper, except otherwise stated, the symbol d stands for the exterior differential on a
Lie algebroid.

Morphisms

Given a second Lie algebroid τ ′ : E′ →M ′, a vector bundle map Φ: E → E′ over ϕ : M →M ′ is
said to be admissible if it maps admissible curves in E into admissible curves in E′, or equivalently
if ρ′ ◦ Φ = Tϕ ◦ ρ. The map Φ is said to be a morphism of Lie algebroids if Φ?dθ = dΦ?θ for
every p-form θ ∈ Sec(∧pE∗). Every morphism is an admissible map.

In coordinates, a vector bundle map Φ(x, y) = (ϕi(x),Φα
β(x)yβ) is admissible if and only if

ρ′iα
∂ϕk

∂xi
= ρk

βΦβ
α.

Moreover, such a map is a morphism if in addition to the above equation it satisfies

ρi
ν

∂Φα
µ

∂xi
− ρi

µ

∂Φα
ν

∂xi
− C ′α

βγΦβ
µΦγ

ν = 0.

Prolongation

In what respect to Mechanics, the tangent bundle to a Lie algebroid, to its dual or to a more
general fibration does not have an appropriate Lie algebroid structure. Instead one should use
the so called prolongation bundle which has in every case the appropriate geometrical struc-
tures [21, 16].

Let (E, [ , ], ρ) be a Lie algebroid over a manifold M and ν : P → M be a fibration. For
every point p ∈ P we consider the vector space

T E
p P = { (b, v) ∈ Ex × TpP | ρ(b) = Tpν(v) } ,

where Tν : TP → TM is the tangent map to ν and ν(p) = x. The set T EP = ∪p∈PT E
p P

has a natural vector bundle structure over P , the vector bundle projection τE
P being just the

projection τE
P (b, v) = τP (v). We will frequently use the redundant notation (p, b, v) to denote

the element (b, v) ∈ T E
p P . In this way, the projection τE

P is just the projection onto the first
factor.
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The vector bundle τE
P : T EP → P can be endowed with a Lie algebroid structure. The

anchor map is the projection onto the third factor and will also be denoted by ρ, that is, the
map ρ : T EP → TP given by ρ(p, b, v) = v. To define the bracket on sections of T EP we will
consider some special sections. A section Z ∈ Sec(T EP ) is said to be projectable if there exists
a section σ ∈ Sec(E) such that Z(p) = (p, σ(ν(p)), U(p)), for all p ∈ P . Now, the bracket of two
projectable sections Z1, Z2 given by Zi(p) = (p, σi(ν(p)), Ui(p)), i = 1, 2, is given by

[Z1, Z2](p) = (p, [σ1, σ2](ν(p)), [U1, U2](p)), p ∈ P.

Since any section of T EP can be locally written as a C∞(M)-linear combination of projectable
sections, the definition of the Lie bracket for arbitrary sections of T EP follows.

The Lie algebroid T EP is called the prolongation of ν : P → M with respect to E or the
E-tangent bundle to ν.

Given local coordinates (xi, uA) on P and a local basis {eα} of sections of E, we can define
a local basis {Xα,VA} of sections of T EP by

Xα(p) =
(
p, eα(ν(p)), ρi

α

∂

∂xi

∣∣∣
p

)
and VA(p) =

(
p, 0,

∂

∂uA

∣∣∣
p

)
.

If z = (p, b, v) is an element of T EP , with b = zαeα, then v is of the form v = ρi
αz

α ∂
∂xi + vA ∂

∂uA ,
and we can write

z = zαXα(p) + vAVA(p).

Vertical elements are linear combinations of {VA}.
The anchor map ρ applied to a section Z of T EP with local expression Z = ZαXα + V AVA

is the vector field on P whose coordinate expression is

ρ(Z) = ρi
αZ

α ∂

∂xi
+ V A ∂

∂uA
.

The Lie brackets of the elements of the basis are given by

[Xα,Xβ] = Cγ
αβ Xγ , [Xα,VB] = 0 and [VA,VB] = 0,

and, therefore, the exterior differential is determined by

dxi = ρi
αXα, duA = VA,

dX γ = −1
2
Cγ

αβX
α ∧ X β, dVA = 0,

where {Xα,VA} is the dual basis to {Xα,VA}.

Prolongation of maps

We consider now how to prolong maps between two fibrations ν : P → M and ν ′ : P ′ → M ′.
Let Ψ: P → P ′ be a map fibered over ϕ : M →M ′. We consider two Lie algebroids τ : E →M
and τ ′ : E′ → M ′ and a map Φ: E → E′ fibered over ϕ. If Φ is admissible, then we can define
a vector bundle map T ΦΨ: T EP → T E′

P ′ by means of

T ΦΨ(p, b, v) = (Ψ(p),Φ(b), TΨ(v)).

It follows that T ΦΨ is also admissible. In [19] it was proved that T ΦΨ is a morphism of Lie
algebroids if and only if Φ is a morphism of Lie algebroids.

In particular, when E = E′ and Φ = id we have that any map form P to P ′ fibered over the
identity can be prolonged to a morphism T idΨ which will be denoted simply by T Ψ. We will
also identify T EM (the prolongation of the ‘fibration’ id : M → M with respect to E) with E
itself by means of (m, b, ρ(b)) ≡ b. With this convention, the projection onto the second factor
of T EP is just T ν : T EP → E. It follows that T ν is a morphism of Lie algebroids.
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3 Symplectic Mechanics on Lie algebroids

By a symplectic structure on a vector bundle π : F → M we mean a section ω of ∧2F ∗ which
is regular at every point when it is considered as a bilinear form. By a symplectic structure on
a Lie algebroid E we mean a symplectic section ω of the vector bundle E which is moreover
d-closed, that is dω = 0. A symplectic Lie algebroid is a pair (E,ω) where E is a Lie algebroid
and ω is a symplectic section on it.

On a symplectic Lie algebroid (E,ω) we can define a dynamical system for every function
on the base, as in the standard case of a tangent bundle. Given a function H ∈ C∞(M) there
is a unique section σH ∈ Sec(τ) such that

iσHω = dH.

The section σH is said to be the Hamiltonian section defined by H and the vector field XH =
ρ(σH) is said to be the Hamiltonian vector field defined by H. In this way we get the dynamical
system ẋ = XH(x).

A symplectic structure ω on a Lie algebroid E defines a Poisson bracket { , } on the base
manifold M as follows. Given two functions F,G ∈ C∞(M) we define the bracket

{F,G} = ω(σF , σG).

It is easy to see that the closure condition dω = 0 implies that { , } is a Poisson structure on M .
In other words, if we denote by Λ the inverse of ω as bilinear form, then {F,G} = Λ(dF, dG).
The Hamiltonian dynamical system associated to H can be written in terms of the Poisson
bracket as ẋ = {x,H}.

Two important particular classes of symplectic dynamical systems on Lie algebroids are the
following.

Hamiltonian Mechanics [12, 16]

On T EE∗, the E-tangent to the dual bundle π : E∗ → M , we have a canonical symplectic
structure.

The Liouville section Θ ∈ Sec((T EE∗)∗) is the 1-form given by

〈Θ , (µ, b, w) 〉 = 〈µ , b 〉.

The canonical symplectic section Ω ∈ Sec(∧2(T EE∗)∗) is the differential of the Liouville section

Ω = −dΘ.

Taking coordinates (xi, µα) on E∗ and denoting by {Xα,Pβ} the associated local basis of sections
T EE∗, the Liouville and canonical symplectic sections are written as

Θ = µαXα and Ω = Xα ∧ Pα +
1
2
µγC

γ
αβX

α ∧ X β ,

where {Xα,Pβ} is the dual basis of {Xα,Pβ}.
The Hamiltonian section defined by a function H ∈ C∞(E∗) are given in coordinates by

ΓH =
∂H

∂µα
Xα −

(
ρi

α

∂H

∂xi
+ µγC

γ
αβ

∂H

∂µβ

)
Pα,

and therefore, Hamilton equations are

dxi

dt
= ρi

α

∂H

∂µα
,

dµα

dt
= −ρi

α

∂H

∂xi
− µγC

γ
αβ

∂H

∂µβ
.

The Poisson bracket { , } defined by the canonical symplectic section Ω on E∗ is but the
canonical Poisson bracket, which is known to exists on the dual of a Lie algebroid [2] and
Hamilton equations thus coincide with those defined by Weinstein in [25].
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Lagrangian Mechanics

The Lie algebroid approach to Lagrangian Mechanics builds on the geometrical structure of the
prolongation of a Lie algebroid [15] (where one can develop a geometric symplectic treatment of
Lagrangian systems parallel to J. Klein’s formalism [11]).

On the E-tangent T EE to E itself we do not have a canonical symplectic structure. Instead,
we have the following two canonical objects: the vertical endomorphism S : T EE → T EE which
is defined by

S(a, b, v) = (a, 0, bV
a),

where bV
a denotes the vertical lift to TaE of the element b ∈ E, and the Liouville section, which

is the vertical section corresponding to the Liouville vector field,

∆(a) = (a, 0, aV
a).

Given a Lagrangian function L ∈ C∞(E) we define the Cartan 1-section θL ∈ Sec((T EE)∗)
and the Cartan 2-section ωL ∈ Sec(∧2(T EE)∗) and the Lagrangian energy EL ∈ C∞(E) as

θL = S∗(dL), ωL = −dθL and EL = L∆L− L.

If the Cartan 2-section is regular, then it is a symplectic form on the Lie algebroid T EE, and we
say that the Lagrangian L is regular. The Hamiltonian section ΓL corresponding to the energy
is the Euler–Lagrange section and the equations for the integral curves of the associated vector
field are the Euler–Lagrange equations.

If (xi, yα) are local fibered coordinates on E, (ρi
α, C

γ
αβ) are the corresponding local structure

functions on E and {Xα,Vα} is the corresponding local basis of sections of T EE then SXα = Vα

and SVα = 0, and the Liouville section is ∆ = yαVα. The energy has the expression EL =
∂L
∂yα yα − L, and the Cartan 2-section is

ωL =
∂2L

∂yα∂yβ
Xα ∧ Vβ +

1
2

(
∂2L

∂xi∂yα
ρi

β −
∂2L

∂xi∂yβ
ρi

α +
∂L

∂yγ
Cγ

αβ

)
Xα ∧ X β,

from where we deduce that L is regular if and only if the matrix Wαβ =
∂2L

∂yα∂yβ
is regular. In

such case, the local expression of ΓL is

ΓL = yαXα + fαVα,

where the functions fα satisfy the linear equations

∂2L

∂yβ∂yα
fβ +

∂2L

∂xi∂yα
ρi

βy
β +

∂L

∂yγ
Cγ

αβy
β − ρi

α

∂L

∂xi
= 0.

Thus, the Euler–Lagrange equations for L are

ẋi = ρi
αy

α,
d

dt

( ∂L

∂yα

)
+
∂L

∂yγ
Cγ

αβy
β − ρi

α

∂L

∂xi
= 0.

Finally, we mention that, as in the standard case, the relation between the Lagrangian and
the Hamiltonian formalism is provided by the Legendre transformation FL : E → E∗ defined by

〈 FL(a) , b 〉 =
d

dt
L(a+ tb)

∣∣
t=0

,

for a, b ∈ E with τ(a) = τ(b). Then it is easy to see that

T FL
?(Θ) = θL and T FL

?(Ω) = ωL

and therefore, in the regular case, the corresponding Hamiltonian sections are related by ΓH ◦
FL = T FL ◦ ΓL.
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4 Variational description

While the Lie algebroid approach to geometric Mechanics builds on the geometrical structure of
the T EE, it is well known that the origin of Lagrangian Mechanics is the calculus of variations.
Integral curves of a standard Lagrangian system are those tangent lifts of curves on the base
manifold which are extremal for the action functional defined on a space of paths.

It is therefore interesting to find a variational description of Lagrange’s equations for a Lag-
rangian system defined on a more general Lie algebroid. The first steps in this direction where
already done by A. Weinstein in [25] in the case of an integrable Lie algebroid (i.e. the Lie
algebroid of a Lie groupoid) and by the author in [16, 3]. Finally, a formulation in the infinite
dimensional manifold of curves was developed in [20].

The standard case

Let us consider first the situation in the standard case of Lagrangian Mechanics, where E = TM .
Given a Lagrangian function L ∈ C∞(TM) we want to find those curves v : [t0, t1] → TM
which are tangent prolongation of a curve in M , that is v = γ̇ for γ = τ ◦ v, that connect
to given points m0 and m1 in the base manifold M , and are extremal points of the action
functional S(v) =

∫ t1
t0
L(v(t))dt. One proceed as follows: given a solution v(t) = γ̇(t) we

consider variations vs(t) of v(t) such that v0(t) = v(t) and, for every fixed s, vs(t) = γ̇s(t),
where γs(t) = τ(vs(t)). The infinitesimal variation is the vector Z(t) along v(t) given by
Z(t) = d

dsvs(t)
∣∣∣
s=0

, which obviously projects onto the vector field W (t) along γ(t) given by

W (t) = d
dsγs(t)

∣∣∣
s=0

. The Euler–Lagrange equations δL = 0 are derived then by standard
manipulations of the condition for stationary points

d

ds
S(vs)

∣∣∣
s=0

=
∫ t1

t0

〈 δL ,W 〉 dt.

Notice that γs determines vs, and hence W determines Z. This is clear in natural local
coordinates (xi, vi) on TM : we have that W = W i(t) ∂

∂xi and Z = W i ∂
∂xi + Ẇ i ∂

∂vi . In classical
notation δxi = W i and δvi = Ẇ i, which is but the well known rule for calculating the variation
of the velocities as the derivative of the variation of the coordinates

δvi = δ

(
dxi

dt

)
=

d

dt
(δxi) = Ẇ i.

Finally notice that due to the fixed endpoints condition we have that W (t0) = W (t1) = 0.
Geometrically, things are a bit more difficult. The vector field W (t) is a vector field along

the curve γ(t), and hence, it is a curve in TM over γ(t). If we take the tangent lift, the curve Ẇ
is a curve in TTM over W (t) and therefore defines a vector field along W (t), instead of a vector
field along v(t) = γ̇(t). Therefore, the variation vector field Z(t) is not just Ẇ (t) since they
are defined at different points. A further operation is needed and this is the so called canonical
involution or Tulczyjew involution. It is a map χTM : TTM → TTM such that

χTM

(
∂2β

∂s∂t
(0, 0)

)
=

∂2β

∂t∂s
(0, 0),

for every map β : R2 → M locally defined in a neighborhood of the origin. It follows that the
variation vector field Z is not Ẇ but it is

Z = χTM (Ẇ ).
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In many situations this kind of variations is obtained in terms of the flows of vector fields.
Given a vector fieldX on the manifoldM we consider its flow {ψs} and then we define a variation
of v(t) by vs(t) = Tψs(v(t)). It is clear that they are admissible variations, being the base
variations γs(t) = ψs(γ(t)), that W (t) = X(γ(t)) and Z(t) = XC(v(t)). In this expression,
XC ∈ X(TM) is the complete or tangent lift of X, whose flow is {Tψs} and which can be
defined in terms of the canonical involution by means of

XC(v) = χTM (TX(v)), for all v ∈ TM .

Using this kind of variations, the Euler–Lagrange equations can be easily found to be

d

dt
〈 θL , X

C 〉 = LXCL,

where L denotes the Lie derivative.

The general case

In the general case of a Lagrangian system on an arbitrary Lie algebroid E we can follow a similar
path. We consider a Lagrangian L ∈ C∞(E) and the action

S(a) =
∫ t1

t0

L(a(t)) dt

defined on the set of admissible curves on E with fixed base endpoints m0 at t0 and m1 at t1.
We look for a variational principle for the Euler–Lagrange equations, that is we have to specify
boundary conditions and a class of variations such that the critical points of the action are
precisely those curves satisfying Lagrange equations. As we will see such variations are related
to complete lifts of sections of E.

Every section η of E can be naturally lifted to a section of T EE in two different ways: the
vertical lift ηV and the complete lift ηC. The structure of Lie algebroid in T EE is determined
by the brackets of such sections,

[ηC, σC] = [σ, η]C, [ηC, σV] = [σ, η]V and [ηV, σV] = 0.

This relations were used in [15] to define the Lie algebroid structure, so that we mimic (and
hence extend) the properties of complete and vertical lifts in the tangent bundle, which are on
the base for the geometric formalism in the calculus of variations.

In local coordinates, if η = ηαeα is a local section of E then the vector field associated to its
complete lift has the local expression

ηC = ηαXα +
(
η̇α + Cα

βγy
βηγ

)
Vα,

and the associated vector field has the expression

ρ(ηC) = ρi
αη

α ∂

∂xi
+

(
η̇α + Cα

βγy
βηγ

) ∂

∂yα
,

where ḟ = ρi
αy

α ∂f
∂xi . More generally, one can define the complete lift of a time-dependent section,

which has a similar expression as long as one defines ḟ = ∂f
∂t + ρi

αy
α ∂f

∂xi .
Using the properties of complete and vertical lifts, it is easy to see that the Euler–Lagrange

equations iΓL
ωL = dEL can also be written in the form

dΓL
〈 θL , σ

C 〉 = dσCL,
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for every time-dependent section σ of E. From this expression one can deduce that the infinite-
simal variations that one must consider are precisely the vector field associated to the complete
lifts of sections of E.

The above observation is not only a formal statement, but can be carried on precisely in
terms of the flow associated to a time-dependent section (see [3, 16]). For simplicity in the
exposition I will consider only time-independent sections. If η is a section of E then the flow Φs

of the vector field ρ(ηC) ∈ X(E) projects to the flow ϕs of the vector field ρ(η) ∈ X(M). For
every fixed s, the map Φs is a vector bundle map which is a morphism of Lie algebroids over ϕs.
The pair (Φs, ϕs) is said to be the flow of the section η ∈ Sec(E), and we have that

dηθ =
d

ds
Φ?

sθ
∣∣∣
s=0

,

for every tensor field θ over E.
Given an admissible curve a(t) we consider a section σ of E and its flow (Φs, ϕs) the variations

as(t) = Φs(a(t)), which are also admissible curves, since Φs are morphisms of Lie algebroids. If
we moreover consider sections η vanishing at the endpoints, η(m0) = η(m1) = 0, then the varied
curve has fixed endpoints, τ(as(t0)) = m0 and τ(as(t1)) = m0.

Notice that, in general, there are more general variations preserving the admissibility of curves
than those considered here. Nevertheless, we have to chose exactly the ones we have chosen: if
we consider a restricted class of variations, we will get unspecified dynamics and if we consider
a more general class of variations we will get some constraints. One can clearly see this fact in
the case of a Lie algebra, where every curve is admissible and hence every variation preserves
admissible curves.

The canonical involution

In the argument given above, in order to define a variation we need a section of E defined
in a neighborhood of the base path. As in the case of the standard Lagrangian mechanics,
a different procedure consists in using the canonical involution for defining variations.

Indeed, the canonical involution can also be defined on any Lie algebroid E (see [12] for the
details). That is, there exists a canonical map χE : T EE → T EE such that χ2

E = id and it is
defined by χE(a, b, v) = (b, a, v̄), for every (a, b, v) ∈ T EE, where v̄ ∈ TbE is the vector which
projects to ρ(a) and satisfies

v̄θ̂ = vθ̂ + dθ(a, b)

for every section θ of E∗, where θ̂ ∈ C∞(E) is the linear function associated to θ. In local
coordinates the canonical involution is given by

χE(xi, yα, zα, vα) = (xi, zα, yα, vα + Cα
βγz

βyγ).

From this expression is clear that the complete lift of a section η ∈ Sec(E) can be given in terms
of the canonical involution by

ηC(a) = χE

(
T η(a)

)
for all a ∈ E.

This formula suggests to consider the following map. Given an admissible curve a : R → E
over γ = τ ◦ a we consider the map Ξa from sections of E along γ to sections of TE along a, i.e.
Ξa : Secγ(E) → Seca(TE), given by

Ξa(σ) = ρ1(χE(σ, a, σ̇)).

The local expression of the map Ξa is

Ξa(σ)(t) = ρi
α(γ(t))σα(t)

∂

∂xi

∣∣∣
a(t)

+
(
σ̇α(t) + Cα

βγ(γ(t))aβ(t)σγ(t)
) ∂

∂yα

∣∣∣
a(t)

,

where a and σ have the local expression a(t) = (γi(t), aα(t)) and σ(t) = (γi(t), σα(t)).
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5 The manifold of E-paths

To get some more insight into the variational principle that we have obtained, we can analyze
the situation from the point of view of the geometry of the infinite dimensional manifold of
admissible curves.

Homotopy of E-paths

Let I = [0, 1] and J = [t0, t1], and denote the coordinates in R2 by (s, t). Given a vector bundle
map Φ: TR2 → E, denote a(s, t) = Φ(∂t|(s,t)) and b(s, t) = Φ(∂s|(s,t)), so that we can write
Φ = adt+ bds.

Definition 1. Two E-paths a0 and a1 are said to be E-homotopic if there exists a morphism
of Lie algebroids Φ: TI × TJ → E, Φ = adt+ bds, such that

a(0, t) = a0(t), b(s, t0) = 0,
a(1, t) = a1(t), b(s, t1) = 0.

We will say that Φ is an E-homotopy from the E-path a0 to the E-path a1.

It follows that the base map is a homotopy (in the usual sense) with fixed endpoints between
the base paths. Notice that a(s, t) is a variation of a(0, t) and one should think of b(s, t) as the
vector generating the variation.

Theorem 1 ([10]). The set of E-paths

A(J,E) =
{
a : J → E

∣∣∣∣ ρ ◦ a =
d

dt
(τ ◦ a)

}
is a Banach submanifold of the Banach manifold of C1-paths whose base path is C2. Every
E-homotopy class is a smooth Banach manifold and the partition into equivalence classes is
a smooth foliation. The distribution tangent to that foliation is given by a ∈ A(J,E) 7→ Fa

where

Fa = {Ξa(σ) ∈ TaA(J,E) | σ(t0) = 0 and σ(t1) = 0 } .

and the codimension of F is equal to dim(E). The E-homotopy equivalence relation is regular
if and only if the Lie algebroid is integrable (i.e. it is the Lie algebroid of a Lie groupoid).

The space of E-paths

Therefore, on the same set A(J,E) there are two natural differential manifold structures: as
a submanifold of the set of C1 paths in E, which will be denoted just A(J,E), and the structure
induced by the foliation into E-homotopy classes, which will be denoted P(J,E). We will refer
to it as the space of E-paths on the Lie algebroid E. The structure of A(J,E) is relevant when
one wants to study the relation between neighbor E-homotopy classes, as it is the case in the
problem of integrability of Lie algebroids to Lie groupoids. The structure of P(J,E) is just the
structure that one needs in Mechanics, where one does not have the possibility to jump from
one E-homotopy class to another.

Notice that every homotopy class is a connected component of P(J,E), and the identity
defines a smooth map i : P(J,E) → A(J,E) which is an (invertible) injective immersion. The
image by i of a leaf is an immersed (in general not embedded) submanifold of A(J,E). The
tangent space to P(J,E) at a is TaP(J,E) = Fa. The topology of P(J,E) is finer than the
topology of A(J,E). In particular, if G : A(J,E) → Y is a smooth map, then G◦i : P(J,E) → Y
is also smooth.
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Variational description

With the manifold structure that we have previously defined on the space of E-paths, we can
formulate the variational principle in a standard way. Let us fix two points m0,m1 ∈ M and
consider the set P(J,E)m1

m0
of those E-paths with fixed base endpoints equal to m0 and m1,

that is

P(J,E)m1
m0

= { a ∈ P(J,E) | τ(a(t0)) = m0 and τ(a(t1)) = m1 } .

We remark that P(J,E)m1
m0

is a Banach submanifold of P(J,E), since it is a disjoint union of
Banach submanifolds (the E-homotopy classes of curves with base path connecting such points).
On the contrary, there is no guaranty that the analog set A(J,E)m1

m0
is a manifold (see [22]).

Theorem 2 ([20]). Let L ∈ C∞(E) be a Lagrangian function on the Lie algebroid E and
fix two points m0,m1 ∈ M . Consider the action functional S : P(J,E) → R given by S(a) =∫ t1
t0
L(a(t))dt. The critical points of S on the Banach manifold P(J,E)m1

m0
are precisely those

elements of that space which satisfy Lagrange’s equations.

Lagrange Multipliers

We can also analyze the problem by using Lagrange multipliers method by imposing a condition
on A(J,E) which represents the constraint that our E-paths are in a given E-homotopy class.
This is connected with the theory of Lin constraints [4].

We consider only the case of an integrable Lie algebroid, since in the contrary we will not
have a differential manifold structure in the set of E-homotopy equivalence classes. In this
case, the foliation defined by the E-homotopy equivalence relation is a regular foliation so that
quotient G = A(J,E)/ ∼ has the structure of quotient manifold and the quotient projection
q : A(J,E) → G is a submersion. Defining the source and target maps by s([a]) = τ(a(t0)) and
t([a]) = τ(a(t1)), the unit map ε : M → G by ε(m) = [0m], where 0m denotes the constant curve
with value 0 ∈ Em, and the multiplication induced by concatenation of E-paths, we have that
G is the source simply-connected Lie groupoid with Lie algebroid E. See [10] for the details.

Given g ∈ G, we can select the curves in an E-homotopy class as the set q−1(g). Therefore we
look for the critical points of the functional S(a) =

∫ t1
t0
L(a(t)) dt defined in A(J,E), constrained

by the condition q(a) = g. Since q is a submersion, there are not singular curves for the constraint
map, and we can use Lagrange multiplier method in the standard form [1].

Theorem 3 ([20]). Let S : A(J,E) → R, be the action functional S(a) =
∫ t1
t0
L(a(t)) dt. An

admissible curve a ∈ A(J,E) is a solution of Lagrange’s equations if and only if there exists
µ ∈ T ∗g G such that dS(a) = µ ◦ Taq.

A more convenient setting for this constrained problem consists in fixing one of the endpoints.
Givenm0 ∈M , the subsetA(J,E)m0 of those E-paths whose base path start atm0, A(J,E)m0 =
{ a ∈ A(J,E) | τ(a(t0)) = m0 }, is a smooth Banach submanifold of A(J,E). On A(J,E)m0 we
define the map p : A(J,E)m0 → s−1(m1) by p(a) = Lg−1(q(a)). With the help of this map, the
constraint reads p(a) = ε(m1), because an E-path is in q−1(g) if and only if it is in p−1(ε(m1)).
Then the tangent space to A(J,E)m0 at a ∈ A(J,E)m0 is

TaA(J,E)m0 = {Ξa(σ) | σ(t0) = 0 } .

p is a submersion and the tangent map Tap : TaA(J,E)m0 → Em1 to p at a point a ∈ p−1(ε(m1)),
is given by the endpoint mapping

Tap(Ξa(σ)) = σ(t1)

for every σ ∈ Secγ(E) such that σ(t0) = 0. If we now apply Lagrange multiplier theorem we
obtain the following result.
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Theorem 4 ([20]). Let Sm0 be the restriction of the action functional to the submanifold
A(J,E)m0. An admissible curve a ∈ A(J,E)m0 is a solution of Lagrange’s equations if and only
if it there exists λ ∈ E∗

m1
such that dSm0(a) = λ ◦ Taq. The multiplier λ is given explicitly by

λ = θL(a(t1)).

6 Morphisms and reduction

One important advantage of dealing with Lagrangian systems evolving on Lie algebroids is that
the reduction procedure can be naturally handled by considering morphisms of Lie algebroids,
as it was already observed by Weinstein [25]. We study in this section the transformation laws
of the different geometric objects in our theory and we apply these results to the study of the
reduction theory.

Mappings induced by morphisms

We recall that admissible maps are precisely those maps which transforms admissible curves into
admissible curves. Therefore an admissible map Φ: E → E′ induces a map between E-paths by
composition a 7→ Φ◦a. We prove now that such a map is smooth provided that Φ is a morphism.

More precisely, let Φ: E → E′ be an admissible map. It is easy to see that, Φ is a Lie
algebroid morphism if and only if TΦ ◦ Ξa(σ) = ΞΦ◦a(Φ ◦ σ) for every E-path a and every
section σ along the base path τ ◦ a. It follows that morphisms transform vectors tangent to the
foliation into vectors tangent to the foliation, and hence they induce a smooth map between
path spaces.

Proposition 1 ([20]). Given a morphism of Lie algebroids Φ: E → E′ the induced map
Φ̂ : P(J,E) → P(J,E′) given by Φ̂(a) = Φ ◦ a is smooth. Moreover,

• If Φ is fiberwise surjective then Φ̂ is a submersion.

• If Φ is fiberwise injective then Φ̂ is a immersion.

As a consequence, the variational structure of the problem is not broken by reduction. On
the contrary, reduction being a morphism of Lie algebroids, preserves such structure. The
above results says that morphisms transforms admissible variations into admissible variations.
Therefore, a morphism induces relations between critical points of functions defined on path
spaces, in particular between the solution of Lagrange’s equations.

Reduction of the variational principle

Consider a morphism Φ: E → E′ of Lie algebroids and the induced map between the spaces of
paths Φ̂ : P(J,E) → P(J,E′). Consider a Lagrangian L on E and a Lagrangian L′ on E′ which
are related by Φ, that is, L = L′ ◦Φ. Then the associated action functionals S on P(J,E) and S′

on P(J,E′) are related by Φ̂, that is S′ ◦ Φ̂ = S. Indeed,

S′(Φ̂(a)) = S′(Φ ◦ a) =
∫ t1

t0

(L′ ◦ Φ ◦ a)(t) dt =
∫ t1

t0

(L ◦ a)(t) dt = S(a).

The following result is already in [25] but the proof is different.

Theorem 5 ([25, 20]). Let Φ: E → E′ be a morphism of Lie algebroids. Consider a Lagran-
gian L on E and a Lagrangian L′ on E′ such that L = L′ ◦Φ. If a is an E-path and a′ = Φ ◦ a
is a solution of Lagrange’s equations for L′ then a itself is a solution of Lagrange’s equations
for L.
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Proof. Since S′ ◦ Φ̂ = S we have that 〈 dS′(Φ̂(a)) , TaΦ̂(v) 〉 = 〈 dS(a) , v 〉 for every v ∈
TaP(J,E)m1

m0
. If Φ̂(a) is a solution of Lagrange’s equations for L′ then dS′(Φ̂(a)) = 0, from

where it follows that dS(a) = 0. �

From the above relations between the action functionals it readily follows a reduction theorem.

Theorem 6 ([20]). Let Φ: E → E′ be a fiberwise surjective morphism of Lie algebroids. Con-
sider a Lagrangian L on E and a Lagrangian L′ on E′ such that L = L′ ◦ Φ. If a is a solution
of Lagrange’s equations for L then a′ = Φ ◦ a is a solution of Lagrange’s equations for L′.

Proof. Since S′ ◦ Φ̂ = S we have that 〈 dS′(Φ̂(a)) , TaΦ̂(v) 〉 = 〈 dS(a) , v 〉 for every v ∈
TaP(J,E)m1

m0
. If Φ is fiberwise surjective, then Φ̂ is a submersion, from where it follows that Φ̂

maps critical points of S into critical points of S′, i.e. solutions of Lagrange’s equations for L
into solutions of Lagrange’s equations for L′. �

Reduction of the symplectic form and the dynamics

Reduction can also be studied in the context of the symplectic formalism on Lie algebroids,
see [8] or [9] for the details.

Proposition 2. Let Φ: E → E′ be a morphism of Lie algebroids, and consider the Φ-tangent
prolongation of Φ, i.e T ΦΦ: T EE → T E′

E′. Let S and S′, and ∆ and ∆′, be the the vertical
endomorphisms and the Liouville sections on E and E′, respectively. Then,

T ΦΦ ◦∆ = ∆′ ◦ Φ and T ΦΦ ◦ S = S′ ◦ T ΦΦ.

Proposition 3. Let L ∈ C∞(E) be a Lagrangian function, θL the Cartan form and ωL = −dθL.
Let Φ: E → E′ be a Lie algebroid morphism and suppose that L = L′ ◦ Φ, with L′ ∈ C∞(E′)
a Lagrangian function. Then, we have

(T ΦΦ)?θL′ = θL, (T ΦΦ)?ωL′ = ωL and (T ΦΦ)?EL′ = EL.

The transformation of the symplectic equation is easily found by means of standard argu-
ments, and we find

(T ΦΦ)?
(
iΓL′ωL′ − dEL′

)
− (iΓL

ωL − dEL) = ωL′
(
ΓL′ ◦ Φ− T ΦΦ ◦ ΓL, T ΦΦ( · )

)
,

It follows that, if Φ is a fiberwise surjective morphism and L is a regular Lagrangian on E,
then L′ is a regular Lagrangian on E′ (note that T ΦΦ: T EE → T E′

E′ is a fiberwise surjective
morphism) we have that the dynamics of both systems is uniquely defined, and it is related as
follows.

Theorem 7. Let ΓL and ΓL′ be the solutions of the dynamics defined by the Lagrangians L
and L′, respectively, with L = L′ ◦Φ. If Φ is a fiberwise surjective morphism and L is a regular
Lagrangian, then L′ is also a regular Lagrangian and

T ΦΦ ◦ ΓL = ΓL′ ◦ Φ.

Finally, by introducing some constraints one can also study nonholonomic mechanical systems
on Lie algebroids. See [8, 9] for the general theory and results on reduction for nonholonomic
systems.
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Examples

We present here some examples where the reduction process indicated above can be applied.
See [20, 8, 9] for more examples.

Lie groups. Consider a Lie group G and its Lie algebra g. The map Φ: TG → g given by
Φ(g, ġ) = g−1ġ is a morphism of Lie algebroids, which is fiberwise bijective. As a consequence
if L is a left-invariant Lagrangian function on TG and L′ is the projected Lagrangian on the Lie
algebra g, that is L(g, ġ) = L′(g−1ġ), then every solution of Lagrange’s equations for L projects
by Φ to a solution of Lagrange’s equations for L′. Moreover, since Φ is surjective every solution
can be found in this way: if the projection ξ(t) = g(t)−1ġ(t) of an admissible curve (g(t), ġ(t))
is a solution of L′, then (g(t), ġ(t)) is a solution for L. Thus, the Euler–Lagrange equations on
the group reduce to the Euler–Poincaré equations on the Lie algebra, both being symplectic
equations in the Lie algebroid sense.

Lie groupoids. Consider a Lie groupoid G over M with source s and target t, and with
Lie algebroid E. Denote by T sG → G the kernel of Ts with the structure of Lie algebroid
as integrable subbundle of TG. Then the map Φ: T sG → E given by left translation to
the identity, Φ(vg) = TLg−1(vg) is a morphism of Lie algebroids, which is moreover fiberwise
surjective. As a consequence, if L is a Lagrangian function on E and L is the associated left
invariant Lagrangian on T sG, then the solutions of Lagrange’s equations for L project by Φ
to solutions of the Lagrange’s equations. Since Φ is moreover surjective, every solution can be
found in this way.

Group actions. We consider a Lie group G acting free and properly on a manifold Q, so
that the quotient map π : Q→M is a principal bundle. We consider the standard Lie algebroid
structure on E = TQ and the associated Atiyah algebroid E′ = TQ/G → M . The quotient
map Φ: E → E′, Φ(v) = [v] is a Lie algebroid morphism and it is fiberwise bijective. Every
G-invariant Lagrangian on TQ defines uniquely a Lagrangian L′ on E′ such that L′ ◦ Φ = L.
Therefore every solution of the G-invariant Lagrangian on TQ projects to a solution of the
reduced Lagrangian on TQ/G, and every solution on the reduced space can be obtained in
this way. Thus, the Euler–Lagrange equations on the principal bundle reduce to the Lagrange–
Poincaré equations on the Atiyah algebroid, both being symplectic equations in the Lie algebroid
sense.

7 Optimal control theory

As it is well known, optimal control theory is a generalization of classical mechanics. It is
therefore natural to see whether our results can be extended to this more general context. The
central result in the theory of optimal control systems is Pontryagin maximum principle. The
reduction of optimal control problems can be performed within the framework of Lie algebroids,
see [17]. This was done as in the case of classical mechanics, by introducing a general principle
for any Lie algebroid and later studying the behavior under morphisms of Lie algebroids.

Pontryagin maximum principle [17]

By a control system on a Lie algebroid τ : E → M with control space π : B → M we mean
a section σ of E along π. A trajectory of the system σ is an integral curve of the vector
field ρ(σ) along π. Given an index function L ∈ C∞(B) we want to minimize the integral of L
over some set of trajectories of the system which satisfies some boundary conditions. Then
we define the Hamiltonian function H ∈ C∞(E∗ ×M B) by H(µ, u) = 〈µ , σ(u) 〉 − L(u) and
the associated Hamiltonian control system σH (a section of T EE∗ along pr1 : E∗ ×M B → E∗)
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defined on a subset of the manifold E∗ ×M B, by means of the symplectic equation

iσH Ω = dH. (?)

The integral curves of the vector field ρ(σH) are said to be the critical trajectories.
In the above expression, the meaning of iσH is as follows. Let Φ: E → E′ be a morphism

over a map ϕ : M → M ′ and let η be a section of E′ along ϕ. If ω is a section of
∧pE′∗ then

iηω is the section of
∧p−1E∗ given by

(iηω)m(a1, . . . , ap−1) = ωϕ(n)(η(m),Φ(a1), . . . ,Φ(ap−1))

for every m ∈ M and a1, . . . , ap−1 ∈ Em. In our case, the map Φ is T pr1 : T E(E∗ ×M B) →
T EE∗, the prolongation of the map pr1 : E∗×M B → E∗ (this last map fibered over the identity
in M), and σH is a section along pr1. Therefore, iσH Ω − dH is a section of the dual bundle to
T E(E∗ ×M B).

It is easy to see that the symplectic equation (?) has a unique solution defined on the following
subset

SH = { (µ, u) ∈ E∗ ×M B | 〈 dH(µ, u) , V 〉 = 0 for all V ∈ ker T pr1 } .

Therefore, it is necessary to perform a stabilization constraint algorithm to find the integral
curves of σH which are tangent to the constraint submanifold.

In local coordinates, the solution to the above symplectic equation is

σH =
∂H

∂µα
Xα −

[
ρi

α

∂H

∂xi
+ µγC

γ
αβ

∂H

∂µβ

]
Pα,

defined on the subset where

∂H

∂uA
= 0,

and therefore the critical trajectories are the solution of the differential-algebraic equations

ẋi = ρi
α

∂H

∂µα
,

µ̇α = −
[
ρi

α

∂H

∂xi
+ µγC

γ
αβ

∂H

∂µβ

]
,

0 =
∂H

∂uA
.

Notice that ∂H
∂µα

= σα.
One can easily see that whenever it is possible to write µα = piρ

i
α then the above differential

equations reduce to the critical equations for the control system Y = ρ(σ) on TM and the
index L. Nevertheless it is not warranted that µ is of that form. For instance in the case of a Lie
algebra, the anchor vanishes, ρ = 0, so that the factorization µα = piρ

i
α will not be possible in

general.

Reduction

Consider two optimal control systems, with data (B,E,M, σ, L) and (B′, E′,M ′, σ′, L′). Let
Φ: E → E′ be a fiberwise bijective morphism of Lie algebroids over a map ϕ. Then Φm : Em →
E′

ϕ(m) is invertible for every m ∈ M , and we can consider the contragredient map Φc : E∗ →
E

′∗. This is the vector bundle map over ϕ whose restriction to the fiber over m ∈ M is
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Φc
m = Φ∗−1

m : E∗
m → E

′∗
ϕ(m), given by 〈Φc(µ) , a 〉 = 〈µ ,Φ−1

m (a) 〉 for every µ ∈ E∗
m and every

a ∈ E′
ϕ(m).

If we further have a fibered map ψ : B → B′ over the same map ϕ, then we can define the
map Ψ: E∗ ×M B → E′∗ ×M ′ B′ by

Ψ(µ, u) = (Φc(µ), ψ(u)), (µ, u) ∈ E∗ ×M B,

and we have the following transformation properties.

Proposition 4. We have the following properties

1. (T ΦΦc)?Θ′ = Θ.

2. (T ΦΦc)? Ω′ = Ω.

3. If L′ ◦ ψ = L, then H ′ ◦Ψ = H.

Proof. For every (µ, b, v) ∈ T EE∗ we have

〈 (T ΦΦc)?Θ′ , (µ, b, v) 〉 = 〈Θ′ , T ΦΦc(µ, b, v) 〉 = 〈Θ′ , (Φc(µ),Φ(b), TΦc(v)) 〉
= 〈Φc(µ) ,Φ(b) 〉 = 〈µ , b 〉 = 〈Θ , (µ, b, v) 〉,

which proves the first.
The proof of the third is similar and will be omitted. For the second just take into account

that T ΦΦc is a morphism. �

By mean of standard manipulations one can easily show that

(T ΦΨ)?
(
iσH′Ω

′ − dH ′)− (
iσH Ω− dH

)
= Ω′

(
σH′ ◦Ψ− T ΦΦc ◦ σH , T ΦΨ( · )

)
,

from where the following theorem, which establishes the relation between critical trajectories of
the two related optimal control problems, readily follows.

Theorem 8. Let ψ : B → B′ and Φ: E → E′ be fibered maps over the same map ϕ : M →M ′,
and assume that ψ is fiberwise submersive and Φ is a morphism of Lie algebroids which is
fiberwise bijective. Let L be an index function on B′ and L′ be an index function on B′ such
that L = L′ ◦ ψ and let σH and σH′ the corresponding critical sections. Then we have that
Ψ(SH) ⊂ SH′ and

T ΦΦc ◦ σH = σH′ ◦Ψ

on the subset SH .
As a consequence, the image under Ψ of any critical trajectory for the index L is a critical

trajectory for the index L′.

As an application of the above result we can consider the case of reduction by a symmetry
group (with a free and proper action). Indeed, applying this result to E = TQ, B = B, M = Q
and E′ = TQ/G, B′ = B/G, M ′ = Q/G, with ψ(b) = [b], Φ(v) = [v], ϕ(q) = [q], the quotient
maps and index L, L′([b]) = L(b) (so that L = L′ ◦ψ) we have that any critical trajectory for L
in Q is a critical trajectory for L′ in the reduced space M ′.

Finally notice that the case of Hamiltonian mechanics corresponds to B = E and σ = id, and
hence the set SH is the graph of the Legendre transform. Therefore, the above results about
optimal control produce also results about reduction of Hamiltonian systems. It would be nice
to have a similar result for fiberwise surjective (no necessarily fiberwise invertible) morphisms.
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groupoides infinitésimaux, C. R. Acad. Sci. Paris, Série A 264 (1967), 245–248.

[25] Weinstein A., Lagrangian mechanics and groupoids, Fields Inst. Commun. 7 (1996), 207–231.

http://arxiv.org/abs/math.OC/0402437
http://arxiv.org/abs/math-ph/0512003
http://arxiv.org/abs/math-ph/0511009
http://arxiv.org/abs/math.DG/0105033
http://arxiv.org/abs/math.DG/0407528
http://arxiv.org/abs/math.DG/0506299
http://arxiv.org/abs/math.DG/0410551
http://arxiv.org/abs/math.DG/0411352
http://arxiv.org/abs/math.DG/0603028
http://arxiv.org/abs/math.DG/0203178
http://arxiv.org/abs/math.OC/0004148

	1 Introduction
	2 Preliminaries
	3 Symplectic Mechanics on Lie algebroids
	4 Variational description
	5 The manifold of E-paths
	6 Morphisms and reduction
	7 Optimal control theory
	References

