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Abstract. We study integrals of completely integrable quantum systems associated with
classical root systems. We review integrals of the systems invariant under the corresponding
Weyl group and as their limits we construct enough integrals of the non-invariant systems,
which include systems whose complete integrability will be first established in this paper.
We also present a conjecture claiming that the quantum systems with enough integrals given
in this note coincide with the systems that have the integrals with constant principal symbols
corresponding to the homogeneous generators of the B,-invariants. We review conditions
supporting the conjecture and give a new condition assuring it.

Key words: completely integrable systems; Calogero—Moser systems; Toda lattices with
boundary conditions

2000 Mathematics Subject Classification: 81R12; T0H06
To the memory of Professor Vadim B. Kuznetsov

1 Introduction

A Schrodinger operator

1~ 92
=1"J
with the potential function R(x) of n variables x = (x1,...,x,) is called completely integrable if
there exist n differential operators Py, ..., P, such that

P,P]=0 (1<i<j<n),
P eCl[h,..., P, (1.2)
P,..., P, are algebraically independent.

In this paper, we explicitly construct the integrals Py, ..., P, for completely integrable potential
functions R(x) of the form

R(z)= Y (ulei— ;) +wfwi+a5) + ) velan) (1.3)

1<i<j<n k=1
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appearing in other papers. The Schrédinger operators with these commuting differential oper-
ators treated in this paper include Calogero-Moser—Sutherland systems (cf. [5, 22, 27, 28, 36]),
Heckman—Opdam’s hypergeometric systems (cf. [34] for type A,_1, [11] in general), their exten-
sions (cf. [1, 8, 14, 23, 24, 25, 30]) and finite Toda lattices corresponding to (extended) Dynkin
diagrams for classical root systems (cf. [2, 9, 10, 17, 26, 33, 38]) and those with boundary
conditions (cf. [8, 13, 18, 19, 20, 21, 23, 30]).

Put 0; = 0/0x; for simplicity. We denote by o(Q) the principal symbol of a differential
operator of Q. For example, o(P) = —(1/2)(&2 + --- + £2).

We note that [40] proves that the potential function is of the form (1.3) if

o(Py) = Z §J2£J2k for k=1,...,n. (1.4)
1<ji<<jp<n

In this case we say that R(z) is an integrable potential function of type B,, or of the classical type.
Moreover when R(x) is symmetric with respect to the coordinate (z1, ..., z,) and invariant under
the coordinate transformation (zi,zo,...,x,) — (—x1,x2,...,2,), then R(x) is determined
by [32] for n > 3 and by [24] for n = 2 and P}, are calculated by [29].

Classifications of the integrable potential functions under certain conditions are given in
[23, 24, 25, 30, 37, 40] etc. In Section 9 we review them and we present Conjecture which claims
that the potential functions given in this note exhaust those of the completely integrable systems
satisfying (1.4). We also give a new condition which assures Conjecture.

If vy, =0 for k=1,...,n, we can expect o(Py) = 4 > ' ]21 j2k fork=1,...,n—1

1<j1<<jr<n
and o(P,) = §&2--- &, and we say the integrable potential function is of type D,. If vy = 0
and u;; =0fork=1,...,nand 1 < i < j <n, we can expect P, = 01 + -+ + Oy, 0(FP) =
& &, for k= 2,...,n and we say that the integrable potential function is of
1K< <gp<n
type A,_1. Note that the integrable potential function of type A, _1 or D, is of type B,.
The elliptic potential function of type A,_1 with
u;(t) = Cp(t; 2w, 2ws) + C, u$(t) =vE(t) =0 (C, C"eC)
(cf. [28]) and that of type B,, with

ug; (t) = v (t) = Ap(t; 2w, 2ws),

3
C
Uk(t) :Zij(t+wj;2w1,2wQ)—§, (A, s, CE(C)
§=0
introduced by [12] are most fundamental and their integrability and the integrals of higher order

are established by [25, 29, 32]. Here p(t;2w,2ws) is the Weierstrass elliptic function whose
fundamental periods are 2w and 2wy and

wo = 0, w1 + w2 + w3z = 0.

Other potential functions are suitable limits of these elliptic potential functions, which is
shown in [8, 13, 33] etc. We will study integrable systems by taking analytic continuations of
the integrals given in [25] with respect to a suitable parameter, which is done for the invariant
systems (of type A,_1) by [32] and (of types By, and D,,) by [29] and for the systems of type A,_1
by [33]. The main purpose of this note is to give the explicit expression of the operators
Py,...,P, in (1.2) in this unified way. Namely we construct enough commuting integrals of
the non-invariant systems from those of the invariant systems given by [24, 29, 32]. Such study
of the systems of types A,—1, B2, B, (n > 3) and D, are explained in Sections 3, 4, 5, 6,
respectively.
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Since the integrals of the system of type A,_1 are much simpler than those of type B,, we
review the above analytic continuation for the systems of type A,_1 in Section 3 preceding to
the study for the systems of type B,. There are many series of completely integrable systems
of type Bs, which we review and classify in Section 4 with taking account of the above unified
way.

We present 8 series of potential functions of type B, in Section 5. There are 3 (elliptic,
trigonometric or hyperbolic and rational) series of the invariant potentials of type B, whose
enough integrals are constructed by [25] and [29]. The complete integrability of the remaining
5 series of the potential functions is shown in Section 5, which is conjectured by [8] (4 series),
partially proved by [18, 19, 21] (3 series) and announced by [30] (5 series). The complete
integrability of two series among them seems to be first established in this note. Note that

when n > 3, our systems which do not belong to these 8 series of type B, are the Calogero—
1)

n—1°

Moser systems with elliptic potentials and the finite Toda lattices of type A
integrability is known.

The main purpose of our previous study in [23, 24, 25, 30] is classification of the completely
integrable systems associated with classical root systems. In this note we explicitly give integrals
of all the systems classified in our previous study with reviewing known integrals.

whose complete

Since our expression of Py is natural, we can easily define their classical limits without any
ambiguity and get completely integrable Hamiltonians of dynamical systems together with their
enough integrals. This is clarified in Section 7.

In Section 8 we examine ordinary differential operators which are analogues of the Schrédinger
operators studied in this note.

2 Notation and preliminary results

Let {ei1,...,e,} be the natural orthonormal base of the Euclidean space R™ with the inner
product

n
<.T,y>:ZCijJ for CC:(.'El,...,CUn), y:(yh?yn)ERn
j=1

Here e; = (01;,...,0n;) € R™ with Kronecker’s delta d;;.

Let a« € R™\{0}. The reflection w, with respect to « is a linear transformation of R™ defined
2{a,x)
(o)

by wq(z) = x — a for x € R". Furthermore we define a differential operator 0, by

d
Oa)(x) = —p(x + ta
(Gap)(z) = oz +1 )t:0

and then 9; = O, .
The root system (B,,) of type B, is realized in R™ by

(A1) ={ei—¢;; 1 <i<j<n}

S(Dp)T ={eite; 1<i<j<n},

S(Bn)§ = {ew 1 < k< n},

Y(Bn)t =X(Dn)t US(B,)E,

Y(F)={a,—a;a € B(F)T} for F=A,1, D, or B,

The Weyl groups W (B,,) of type By, W(D,,) of type D,, and W(A,_1) of type A,_1 are the
groups generated by w, for a € X(B,), ¥(D,) and X(A,_1), respectively. The Weyl group
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W (A,—1) is naturally identified with the permutation group &, of the set {1,...,n} with n
elements. Let € be the group homomorphism of W (B,,) defined by

B 1 if weW(D,),
e(w) = —1 if weW(B,) \W(D,).

The potential function (1.3) is of the form

Riz)= Y wallaz))+ > vs((B.a)

a€X(Dn)t a€%(Bn)E

with functions u, and vg of one variable. For simplicity we will denote

Ua(z) = u—a(?) = ua({,7))  for ae€X(Dy)T,
vp(e) = v ﬁ( ) =wvs((B,x))  for B€X(Bn)g,
u?;(m) Uete; (), vk(x) = Ve, (2).

Lemma 1. For a bounded open subset U of C, there exists an open neighborhood V' of 0 in C
such that the following statements hold.

i) The function Asinh™' Az is holomorphically extended to (z,\) € (U \ {0}) x V and the
function is 1/z when A = 0.

ii) Suppose Re A > 0. Then the functions

Msinh =2 \(z £ 1) and e (sinh 2 A(z £¢) — cosh 2 A(z £ 1))

2Xt

are holomorphically extended to (z,q) € U x V with ¢ = e~ and the functions are 4¢T*** and

16eT42 | respectively, when ¢ = 0.

Proof. The claims are clear from

)\2jz2j+1
AT Sth)\Z_Z—FZm,
46—2)\1& sinh2 )\(Z + t) — ezt2>\z(1 _ 6—2)\t€:|:2)\z)2’
sinh™® Az — cosh™ Az = 4sinh ™2 2. |

The elliptic functions p and ¢ of Weierstrass type are defined by

V) = ol 2] —;+Z((Z_1w)2 B J)

) = a2on 2 = 2+ (Ao k24 ),

where the sum ranges over all non-zero periods 2mjwi +2maowsy (M1, ma € Z) of p. The following
are some elementary properties of these functions (cf. [41]).

0(z) = p(z 4+ 2w1) = p(z + 2ws), (2.1)
((2) = —p(2),

(')? = 4% — g2 — g3 = 4(p — e1)(p — €2) (p — €3),

ey = p(wy) for v=123, W3 = —w1 — w9 and wp = 0, (2.3)
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4
1 _ (120(2)* — g)*
ZZ@ Z+wl/ - 16@’(2)2 —2@(2)7

0(2; 2w, 2w1) = p(z; 2w, 2ws), (2.4)

(e1 —e2)(e1 —e3)

; 2w1, 2 = 2.5
p(z + wi; 2w, 2ws) el+p(2;2w1,2w2)—61’ (2.5)
1
o(z;V/=1IX"17r, 00) = A2sinh ™2 Az + g)\Q, (2.6)
©(z;00,00) = 272, (2.7)
p(z;w1,2we) = p(z; 2w, 2we) + p(z + wi; 2wi, 2we) — €1, (2.8)
p(z1) ¢'(a1) 1
p(z2) ©'(22) 1]=0 if 21+ 29+ 23 =0, (2.9)
p(zs) ¢'(23) 1
STL)\Z —4niwsy

) 2

o(z; 2w, 2wy) = —|— M sinh ™2 \z 4 Z Ep=Trywe cosh 2nAz,
n=1
7T2 1 o0 n€—4n>\wz
m = ((wi; 2wy, 2wy) = o \12 2;163% ’
_ w2 _ omiT . —2\w2 _ d

T=—, =™ =¢ and A= ——. 2.10

w1 7 2v/—1wq ( )

Here the sums in (2.10) converge if

otm <2 > L

w1 lwi|”

Let 0 < k < 2m. Then (2.10) means
k k/m_—2\z O n(2—k/m) 2nAz
p<z+w2;2w1,2w2> :—ﬂ+4)\2 i 5 % )
m w1 (1 _ 6—2)\zqk‘/m) et 1 —qgn

1 & 2n
RPN D N
w1 12 nzll—q%

Lemma 2. Let k and m be integers satisfying 0 < k < 2m. Put

©0(2; 2w, 2wa) = P(2; 2w1, 2w) + %
1

A\ = ﬁ and t = ql/m _ emwg/(mwﬂ.
Then for any bounded open set U in C x C, there exists a neighborhood V of the origin of C
such that the following statements hold.
i) po(z;2w1, 2we) — A2 sinh™2 \z and ©0(z+wr; 2wr, 2w )+ A2 cosh™2 \z are holomorphic func-
tions of (z,A,q) € U x V' and vanish when ¢ = 0.
i) po(z + (k/m)ws;2w1, 2ws) is holomorphic for (z,\,t) € U x V and has zeros of order
min{k,2m — k} along the hyperplane defined by t = 0 and satisfies

= 4\Ze7 2N (0 <k <m),

k
tikpo (Z + —wa; 2wy, 2(,U2>
m t=0

= 8\%cosh 2)\z (k =m),
t=0

k
t ™ o0 <z + —ws; 2w, 2w2>
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= 4\ZePV2 (m < k < 2m).

k
tk_Qmpo <z + —ws; 2w, 2w2>
m t=0

For our later convenience we list up some limiting formula discussed above. Fix w; with

vV —1lw; > 0 and let we € R with we > 0. Then A = 7/(2v/—1w;) > 0 and

sinh? A\(z + w;) = — cosh? Az, cosh 2\(z + w1) = — cosh 2z,
1
lim A*sinh ™ Az = —,
—0 z
lim 2NV sinh ™2 A\(z + N) = 4722,
N—+oo

(
(
(
w21i>m+oo 00(2; 2w1, 2w) = A2 sinh™2 Az, (2.
lim  po(z + wi; 2w, 2ws) = —A? cosh™2 Az, (
(
(
(

wo—-+00

lim €220 (2 + rwo; 2w, 2wy) = 4X2e 2 if 0<r<l,

wa—00

2w

lim e ©0(2 + w23 2w, 2ws) = 8A\% cosh 2z,

wa—00

lim 2(2—")Aw2 ©o(z + rwe; 2wy, 2wse) = 4NN if l1<r<2.
w9 —00

3 Type A,_1 (n > 3)
The completely integrable Schrodinger operator of type A, _1 is of the form
1~ 02
P = —3 ; 8733? + 1<§<nuij(xi — xj).
Denoting
Ue;—e; (T) = Ue;—e, (7) = ugi (i — 75),

we put

1
Py = Z 2ul(k—2v) (n—k)! Z Unp(er—e2) Uun(eg—es) " Yu(eayr1—ean) Dw(eanar) * * Duule)

0<v<k/2 WEGH
- Z Z “iziz T ui;u—lizyai2u+1 T alk (3.1)
0<v<k/2

according to the integrals given in [25, 32]. We will examine the functions u;j(t) which satisfy

[P, Pj] =0 for 1<i<j<n. (3.2)
Here we note that

P:PQ—%PE, Pi=08++0y,

P, = Z 0;0; + Z uz_j(xZ —xj),

1<i<j<n 1<i<j<n
n
P3 = E 818]8k + E E UZ_J(.TZ - Ij)ak.
1<i<j<k<n k=11<i<j<n

i#k, j#k
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Py= Y 0.0;000+ Y. S ugokde+ Y (gt + Uiz, + Uzt
1<i<j<k<t<n 1<k<t<n 1<i<j<n 1<i<j<k<t<n
ikt 2k,

= 0,0;0000+ > u;0k0p+ > upup,
Py = Z 826]0k@30m + Z Ulgakaﬁam + Z u;j”l;éam’
Py = Z 8,0;0:000m0, + Z U5 000m 0y + Z ;U Om Oy + Z Ui U Uy s

Since W (A, —1) is naturally isomorphic to the permutation group &,, of the set {1,...,n}, we
will identify them. In [25, 32], the integrable potentials of type A, _; which are invariant under
the action of &,, are determined and moreover (3.2) with (3.1) is proved. They are

Uei—e; () = ul{ei — ej, 7)) (3.3)

with an even function v and

(Ellip-A,,—1) Elliptic potential of type Ap_1:

u(t) = Cpo(t; 2&)1,2&)2),
Rp(An-1;21,. . 203 C, 201, 209) = C Y golas — a5 2w1, 2ws),

1<i<j<n
(Trig-A,,—1) Trigonometric potential of type Ap_1:

u(t) = C'sinh =2 \t, Rr(Ap—1;21,...,2q;C,A) =C Z sinh ™2 \(z; — xj),

1<i<j<n
(Rat-A,,—1) Rational potential of type Ap_1:
C C
u(t) = ﬁ’ RR(An_l;CUl,...,.’En;C): Z m

1<i<j<n

We review how the integrability of (Ellip-A,_1) implies the integrability of other systems.
Since it follows from (2.14) that

wa—00

C
lim Rpg <An1;x;v,2w1,2w2> = Ry(An—1;7;C, N,

u(t) = lim %@o(t; 2w1,2ws) = C'sinh ™2 \t,

w9 —00

the integrability (3.2) for (Trig-A,—_1) follows from that for (Ellip-A,_1) by the analytic conti-
nuation of e, ., (z) and Py with respect to ¢ (cf. (2.10), (3.1), (3.3) and Lemma 2 i)).
The integrability for (Rat-A,_1) is similarly follows in view of Lemma 1 with

lim R (An—y; 23 XC,\) = Rp(An-1;7;C),
u(t) = /{ir% A2C'sinh ™2 \t.
This argument using the analytic continuation for the proof of (3.2) is given in [32].

As is shown [33], there are two other integrable potentials of type A,,_1 to which this argument
can be applied.
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(Toda—ASZI) Toda potential of type Agzl:
n—1
B 0:,3) = 57 Ceera 4 coter-e,
i=1
(Toda-A,—1) Toda potential of type Ap_1:

n—1
Rp(Ap-1;2;,C0) =) CeM@i—zit1),
=1

The integrability (3.2) for these potentials similarly follows in view of Lemmas 1, 2 and

2 2k (4/n)Aw2
lim RE An_l;:rl - ﬂ, ey L — w2,. R i 2(,02; 676’, 2W1,2(UQ
w2 —00 n n 4A2
= Rp(A52;C,—2)),
(4/m) w2 2i— i
. € 1)w
Ce 2A@i—zitn) if 1< j=i4+1<n,
={ Ce2Man—1)  if j=1 and j=n,
0 if 1<i<j<n and j—i#1l,n-—-1
and
62’\N
linooRT <An—1; 1 — Na ceeyp — an TC’ A) = RL(An_l;.’E; C) _2)\)7
62/\N
Ue,—e;(z) = lim ——C'sinh™> A(z; — 2 + (j — i)N)
Nooco 4
_ JCerPA@imri) if 1< j=i4+1<n,
o if 1<i<j<n and j#i+1,

respectively, if Re A > 0. The restriction Re A > 0 is removed also by the analytic continuation.
Thus the following theorem is obtained by the analytic continuation of the integrals (3.1) of
(Ellip-A,,—1) whose commutativity (3.2) is assured by [32].

Theorem 1 (A,—1, [10, 11, 28, 32, 33, 34], etc.). The Schridinger operators with the
potential functions (Ellip-A,_1), (Trig-A,—1), (Rat-4,,-1), (Toda—A,(ll_)l) and (Toda-A,_1) are
completely integrable and their integrals are given by (3.1) with ue,—c;(x) in the above.

Remark 1. i) There are quite many papers studying these Schrédinger operators of type A,,_1.
The proof of this theorem using analytic continuation is explained in [33].

ii) The complete integrability (3.2) for (Ellip-A,_1) is first established by [32, Theorem 5.2],
whose proof is as follows. The equations [Py, Py| = [Py, P;] = 0 for k = 1,...,n are easily
obtained by direct calculations with the formula (2.9) (cf. [32, Lemma 5.1]). Then the relation
[Pa, [P;, Pj]] = 0 and periodicity and symmetry of P imply [P;, Pj] = 0 (cf. [32, Lemma 3.5]).
Note that the proof of the integrability given in [28, § 5 Proposition 2 and Appendix E] is not
correct as is clarified in [32, Remark 3.7] (cf. [33, § 4.2]).

Note that the complete integrability for (Trig-A,—1) is shown in [34].

iii) If Re A > 0, we also have

J\;Lmoo Ry, (A(l) x4+ kN; Ce 2V, —2)\) = Rp(Ap_1;2;C, =2X).

n—1
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iv) Note that

n—1
Rp(An—1;25 + Ni; O, \) = Z CeNimNit1) | Al@i=ity)
i=1

Hence e*@122) _ ¢AM#2-23) gives the potential function of a completely integrable system of
type A,,_1 with n = 3 but the potential function

lim )\71(6)‘(‘%17962) — e)‘(m*“)) =1z — 220+ T3

does not give such a system because it does not satisfy (9.3) in Remark 13.
Considering the limit of the parameters of the integrable potential function, we should take
care of the limit of integrals.

Tt

v) Let P, (t) denote the differential operator P, in (3.1) defined by replacing u;; by @;; = u;;

with a constant ¢t € C. Then

2k)! .
Put)= ). (Qkk)'Pantk with Py =1,
0<k<n/2 '

[Pu(s), Pa()] =0  for s, teC. (3.4)

In fact, the term ujyus, - -u2_j_1 2j62j+182j+2 -+ Op_op appears only in the coefficient of tk in
the right hand side of (3.4) and it is contained in the terms

Uiy opirin—onge " Yinorin %127 u2j*1,2j82j+1 + On—2k

of P,(t), where the number of the possibilities of these @i, ,, i, o, - U ;18 (2k)!/(2%k!)
because {in_2k+1,0n—2k+2,---,in} ={n—2k+1,...,n}.

vi) Since
Po1=n—k+1)[Pg,x1+ -+ x,) for  k=2,....n,
[P, P»] = 0 implies [Py_1, P2] = 0 by the Jacobi identity. Here we note that
[urguay - - Ug;_1 5502541 -+ Ok—10y, ] = Upyuugy -~ - Ug;_y 9502541+ 1
forv=Fkk+1,...,n.
vi) The potential functions of (Trig-A,—1), (Rat-A,_1) and (Toda-A,_1) are specializations

of more general integrable potential functions of type B, (cf. Definition 5).

In the following diagram we show the relations among integrable potentials of type A,_1 by
taking limits.

Hierarchy of Integrable Potentials of Type A,,_1 (n > 3)

Toda—ASll —  Toda-A,_1

/! /!
Ellip-A,1 — Trig-A,1 — Rat-A,_1
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4 Type By

In this section we study the following commuting differential operators P and Ps.

1[0 02
P = —5 <83:2 + ay2> + R(ﬂ?,y),
o .
P, = W + S with ord S < 4,
[P, 3] = 0. (4.1)

The Schrodinger operators P of type By in this section are known to be completely integrable.
They are listed in [23, 24, 30]. We review them and give the explicit expression of P;.

First we review the arguments given in [23, 24]. Since P is self-adjoint, we may assume P is
also self-adjoint by replacing P» by its self-adjoint part if necessary. Here for

iti
A=>"ai(x, Z/)aTayj

we define

it
g — E : _1)ttJ .
A ( ]‘) 8x’8y3 aZj (‘T?y)

and A is called self-adjoint if ‘A = A.

Lemma 3 ([23]). Suppose P and P are self-adjoint operators satisfying (4.1). Then

R(z,y) =ub(z+y) +u (x—y) + o)+ w(y),

2 2 9 9
5 = (afay+u(ac—y)—u+(x+y)> — QM(Q);—2v(x)88y2+4v(x)w(y)—|—T(x,y) (4.2)

and the function T(x,y) satisfies

8Tg;’y) = 2(u+(x + y) - uf(gj — y))alg:(yy) + 4w(y)88y(u+(x + y) . uf(aj _ y)))
aTg;y) =2t ) = o =) G ) @)~ @) (03)

Conversely, if a function T(x,y) satisfies (4.3) for suitable functions u®(t), v(t) and w(t), then
(4.1) is valid for R(xz,y) and Ps defined by (4.2).

Remark 2. i) If w(y) = 0, then T'(z,y) does not depend on .

ii) The self-adjointness of P, and the vanishing of the third order term of [P, P»| imply that
P, should be of the form (4.2) with a suitable function 7'(x,y). Then the vanishing of the first
order term implies (4.3). The last claim in Lemma 3 is obtained by direct calculation.

Since T'(z,y) satisfying (4.3) is determined by (u™,u™;v,w) up to the difference of constants,
we will write T'(u™,u";v,w) for the corresponding T'(x,y) which is an element of the space of
meromorphic functions of (z,y) modulo constant functions and define Q(u™,u™"; v, w) by

T utyv,w) =2(u (z —y) +u' (z +y))(v(z) +w(y) —4Qu™, v’ v, w). (4.4)

Note that T'(u™,u™;v,w) and Q(u~,u";v,w) are defined only if the function T'(z,y) satis-
fying (4.3) exists. The following lemma is a direct consequence of (4.3) and this definition

of Q.
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Lemma 4 ([23]). Suppose T'(u™,u";v,w) and T(u; ,u;;v;,w;) are defined. Then for any C,

AR It ]

Ci, C]’- € C the left hand sides of the following identities are also defined and
T(u™(t)
Qu™ (), u” (t);v(t) + Cyw(t) + C)) = Q(u™ (), u™ (t);v(t), w(t)),

Qu™ (Ct),u™ (Ct);v(Ct),w(Ct)) = Qu™ (t),u™ (t); v(t), w(t))|z—Ca, y—Cy

2 2 2 2 2
ZAZU ’ZAZU?_’ZC U],ZC w; | = ZZAZ'CJQ(“Z ,uj‘,v],w])

i=1 i=1 j=1 j=1 i=1 j=1

t) + Cout (1) + Cio(t), w(t))) = T(u (1), u (8); 0

~+
S~—

g
—~

~~
S~—
N—

Hence the left hand sides give pairs P and Py with [P, Py] = 0.

For simplicity we will use the notation
Qu~,uv) = Q(u™,utv,v), Quiv,w) = Qu,usv,w), Qusv) = Q(u,usv,v).  (4.5)

The same convention will be also used for T(u~,u";v,w). The integrable potentials of
type By in this note are classified into three kinds. The potentials of the first kind are the
unified integrable potentials which are in the same form as those of type B,, with n > 3, which
we call normal integrable potentials of type Ba.

The integrable potentials of type By admit a special transformation called dual which does
not exist in B, with n > 3. Hence there are normal potentials and their dual in the invariant
integrable potentials of type Bs. Because of this duality, there exist another kind of invariant
integrable potentials of type Bo, which we call special integrable potentials of type Bs.

In this section we present (R(m,y),T (:L",y)) as suitable limits of elliptic functions as in the
previous section since it helps to study the potentials of type B, in Section 5. We reduce the
complete integrability of the limits to that of a systems with elliptic potentials. But we can also
check (4.3) by direct calculations (cf. Remark 5).

4.1 Normal case

In this subsection we study the integrable systems (4.1) with (4.2) which have natural extension
to type B, for n > 3 and have the form

3 3
u () = Aug (1), wt(t)=Auf(t), o) =) Ciu(t),  w(t) =Y Cuwjt)
j=0 Jj=0

with any A, Cy, C1, Co, C3 € C. These systems are expressed by the symbol

((ug ), (ug); (vo, v1, va, v3), (wo, w1, wa, w3)).

The most general system is the following (Ellip-Bs) defined by elliptic functions, which is called
Inozemtsev model [12].

Theorem 2 (B3: Normal case, [12, 24, 23, 30] etc.). The operators P and P, defined by
the following pairs of R(x,y) and T'(x,y) satisfy (4.1) and (4.2).

(Ellip-Ba):  ({p(t)); {(p(t), p(t + w1), p(t + w2), p(t + ws)))

3
2) =) Ciplz+w),  wly) =Y Ciply+uw)
j=0 7=0
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u”(x—y)

= Ap(z —y), ut(z+y) = Ap(z + v),

3
R(z,y) = Alp(z —y) + p(x + 1)) + > Ci(p(x + w;) + oy + wj)),

§=0
T(z,y) =2A(p(z —y) + p(z +y) (ZC’ (x + wj) +p(y+w])>
3
—4AD " Cip(a + wi)p(y + wj).

J=0

(Trig-Bs): ((sinh™2 At); (sinh =2 Mt, sinh =2 2)\¢, sinh? ¢, sinh? 2)t))

1
v(z) = Cosinh ™2 Az + Cy cosh™2 Az 4 Cy sinh? Az + 103 sinh? 2\z,

w(y) = Co

u” (- y)

1
sinh™2 Ay + C; cosh™2 Ay + Cy sinh? \y + ZC’g sinh? 2)\y,
= Asinh 2 \(z — v), ut(z +y) = Asinh ™2 Az + ),

R(z,y) = A(simh_2 Az —y) + sinh 2 Mz + y)) + Co(sinh™? Az + sinh > Ay)
+ C1(cosh™ Az + cosh™ \y) + Cs(sinh? Az + sinh? \y)

1
+ 103 (sinh2 2\z + sinh? 2)\y),

T(z,y) = 2A(sinh ™2 X\(x — y) + sinh 2 X\(z + 7))

X (Co (sinh™? Az + sinh ™% Ay) + C1(cosh™2 Az + cosh™ \y)

1
+ Oy (sinh? Az + sinh? \y) + ZCg (sinh? 2\z + sinh? 2)\y)>

—4A (CO sinh ™2 Az - sinh 2 Ay — C cosh™2 Az - cosh™2 \y

+ Cy(sinh® Az + sinh? Ay + 2sinh? Az - sinh? Ay)).

(Rat-Bs):  ({

u”(x—y)

t_2>; <t_2, t27 t47 t6>)
v(z) = Cox ™2 + Ci22 + Coz* + C3a, w(y) = Coy_2 + Cly2 + ng4 + ngG,
A +
= —3, u'(rT+yY) = —,
CEre )= Grgp
A A

R(CE,y) =

T(z,y) =2(u (z —y) +u' (z+y))(v(z) +wy)) - 4A<
+ C3(z* + y* + 33:2y2)> =84

(Toda—Dél)—bry) :

v(z) = Cp
u (z—y)
R(z,y)

+Co(z72 +y )+ 0O (22 + )+ Co(at +yb) + C3(2°+99),

@y " @ty

C
202 + Co(a? + y?)

2CH + 2013:23/2 + CQ.CIZ‘ (.CIZ‘ +vy ) + 203x4y4
(.’L’2 _ y2)2

((cosh 2)t); (sinh ™2 At, sinh ™2 2\t), (sinh ™2 At, sinh =2 2\t))

sinh ™2 Az + C} sinh =2 2\, w(y) = Cysinh™2 \y + C3sinh ™2 2)\y,
= Acosh2\(z — y), uT (x4 y) = Acosh2\(z + 7)),

= Acosh2X(x — y) + Acosh 2\ (z + y)

+ Cpsinh™2 Az + C sinh 2 2\z + Cy sinh™2 Ay + C3 sinh ™2 2)\y,
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T(x,y) = 8A(Cpcosh2\y + Cs cosh 2Az).
(Toda-B{V-bry):  ((e=2M); (€2, e4M) (sinh~2 At, sinh 2 2A¢))
v(x) = Coe* 4+ Cre*??, w(y) = Cysinh ™2 \y + Cysinh ™2 2)\y,
u”(z—y) = Ae” @Y, ut(z +y) = Ae” A+,
R(z,y) = Ae @0 4 Ae=2MoHY) 4 0N 4+ 01 + Cy sinh ™2 Ay + Cs sinh ™2 2)y,
T(z,y) = 4A(C’0 cosh 2\y + 2026_2)\:5).

(Trig_Agl)_bry): ((Sinh_2 L), 0; <€—2)\t’ e~ 2 €4>\t>)
v(x) — 00672/\95 + 01674)\:1: + 0262)\:6 + 0364)@’
w(y) = Coe M + Cre™M + Che®M + Cse®,
u (z—y) = Asinh™2 ANz —y), ut(z+y) =0,
R(z,y) = Asinh 2 Xz — y) + 00(6—2)\1' + 6—2Ay) + Cl(e_“”” n 6—4)\y)
+ 02(€2>\x + €2>\y) 4 03(64)\1‘ + €4>\y)’
T(z,y) = 2Asinh 2 Az — y)(Co (e 72 + e72)
1+ 20 e 2ty 4 o (62,\1 + 62)\y) + 2052 @HY)Y,
(Toda—Cél)): (<6—2)\t>7 0; <62)\t7 64/\t>, <e—2)\t7 6—4,\t>)
o(@) = CoeP + CP, w(y) = Coe™ + Cye™,
u (z—y)= Ae*Q’\(m*y)j u+(x +y) =0,
R(z,y) = Ae™22@Y) 1 e - O 4 Che™ W 4 Cye ™M,
T(z,y) = 2A(Coe*Y + Coe 7).

(Rat-A1-bry): ((t72),0; (¢, 12,13, 1%))
v(z) = Cox + Cra” + Caa® + Csa?, w(y) = Coy + C1y” + Coy® + Csy?,

_ A
u (x—y):ma ut(z+y) =0,
A
Rz.y) = oz + Cole +9) + O +7) + Cofe” +47) + Csla’ + ),
2A
T(z,y) = W(CO(CU +y) + C1(2” + %) + Coxy(z + y) + 2C32%y7).

Remark 3. For example, ((t72),0; (t,t2,¢3,t*)) in the above (Rat-A;-bry) means
u(t)=At72  ut(t) =0,  w(t) =w(t) = Cot + C1t* + Cot® 4 Cst?
with a convention similar to that in (4.5).
We will review the proof of the above theorem after certain remarks.

Remark 4. All the invariant integrable potentials of type Bs together with P» are determined
by [24, 25]. They are classified into three cases. In the normal case they are (Ellip-Bs), (Trig-Ba)
and (Rat-Bg) which have the following unified expression of the invariant potentials given by
[32, Lemma 7.3|, where the periods 2w; and 2wy may be infinite (cf. (2.6) and (2.7))

Cyp(x)* + C3p(x)3 + Cop(x)? + Crp(x) + Co
" o (@)’

R(z,y) = Ap(r — y) + Ap(r +y)
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N Cup(y)* + Cap(y)® + Cop(y)? + Cip(y) + Co

¢ (y)?
T(0.9) = 44(sa) = o) *( CaploPolw) + Fola o)
+ %p(%)p(y)2 + Cap()p(y) + %@(w) + %@(y) + Co).

This is the original form we found in the classification of the invariant integrable systems of
type B, (cf. [25]). Later we knew Inozemtzev model and in fact, when the periods are finite,
(2.3) and (2.5) show that the above potential function corresponds to (Ellip-Bj3).
When w) = ws = 00, p(t) =t2 and (p(z) — p(y)) "2 = z*y*(2? — ?)~2 and
A A
7+ 2
(r—y)? (z+y)

1
+ 1(041/_2 + O3 + Oy + Cry* + Coy®),

1
R(z,y) = + Z(C4l‘_2 + C5 + Coz® + Ozt + C'Oajﬁ)
T(w,y) = 24(* = y*) *(2Cs + C3(a” + y°) + 2Co2y” + Cray?(2” + y?) + 2C02"y").
We review these invariant cases discussed in [24, 32]. Owing to the identity

2(u” —um) +4v((u™) — (u)) + 0,(2(u~ +u) (v + w) — dow)

v v’ 1 v = 1
=2|w —w' 1 +2lw —w 1
u —(u7) 1 ut (ut) 1

and (2.9), the right hand side of the above is zero and we have (4.3) when
u” =Cp(z—y)+C', u"=Cpz+y)+C', v=Cp(x)+C" and w=Cp(y)+C’

with T(z,y) = 2(u™ + uT)(v + w) — 4vw. Hence with Q(p(t); p(t)) = p(x)p(y), the function
T(x,y) given by (4.4) satisfies (4.3) with the above u*, v and w. Using the transformations
(x,y) — (z + wj,y + wj), we have

Pz +w)p(y +wj) = Qe +w)); p(t +w))) = Qp(t); p(t +w))) (4.6)

for j = 0,1,2,3 because the function p(x £ y) does not change under these transformations
(cf. (2.1)). Thus we have Theorem 2 for (Ellip-B3) in virtue of Lemma 3 and Lemma 4.

Here we note that p may be replaced by gg.

By the limit under wy — 0o, we have the following (Trig-B2) from (Ellip-Bs). See the proof
of [29, Proposition 6.1] for the precise argument.

(Trig-Bs):
Q(sinh™2 Mt;sinh =2 At
Q(Simh_2 At; cosh™2 At
Q(sinh™2 Mt; sinh? \t) =

= sinh™2 Az - sinh ™2 \y, (4.7)

= —cosh™2 \z - cosh ™2 \y,

< ~—

0,
1
Q <sinh_2 At sinh? 2)\t> = sinh? Az + sinh? Ay + 2sinh? Az - sinh? \y. (4.10)

The equations (4.7), (4.8) and (4.9) correspond to (2.14), (2.15) and (2.17), respectively. More-
over (2.8) should be noted and (4.10) corresponds to (2.17) with replacing (wi, A) by (w1/2,2X).
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By the limit under A — 0, we have the following (Rat-B3) from (Trig-Bs) as was shown in
the proof of [29, Proposition 6.3]. Here we note (2.13) and

cosh™2 Mt - sinh? A\t = 1 — cosh™2 \t,
cosh™? Xt - sinh* \t = —1 + cosh™2 At + sinh? \t,
cosh™2 A\t - sinh® A\t = 1 — cosh™2 At — 2sinh? M\t + % sinh? 2\,
;ii% AN Yecosh 2\t -sinh® M =¢¥  for j=1,2,3,
1 1 2(z% + y?)
9P Gty G

The result is as follows.

(Rat—Bg):

QUt™*t7?) = a2y ~?,
Tt %t =4 +y )@z —y)  +(@+y) %) —da 2y ?
4(1:2 + y2)2 _ 4($2 _ y2)2 B 16

222 (22 — y2)2 (22 — 42)2°

Q(t72%:1%) = 2t + y* + 3272
4(z% + y?) (25 + ) 1624y*
(2% —y?)? (22 —y?)*
This expression of T'(z,y) for (Rat-Bsy) is also given in Remark 4. Note that we ignore the
difference of constants for @ and T'.

T(t %1% = — 42" + 32y + ) =

Proof of Theorem 2. The three cases (Ellip-Bz), (Trig-B2) and (Rat-Bs) have been explai-
ned. Note that if u*, v, w and T(u™,u";v,w) (or Q(u~,uT;v,w)) are defined and they have
an analytic parameter, Lemma 3 assures that their analytic continuations also define P and P»
satisfying [P, P»] = 0.

(Toda—Dgl)-bry) — (Ellip-Bs): Replacing (z,y) by (x + wa,y), we have

wg—00 82
62)\w2
= lim 7@)(36 + w)po(y) = cosh 2z - sinh ™2 Ay,

wo—00 8

2 wo 1 1
Q(cosh 2\t; 0,sinh 2 X\t) = lim Q(e po(t—l—wz);/\QWO(t—i-ua),)\gpo(t))

2 wo 1 1
Q(cosh 2Xt; 0, cosh ™2 \t) :wliinoo <€8)\2 ©o(t+wa); —ﬁpo(t—kwl + wa); —Azpo(t—kwl))

62/\0.12
lim S g

wy—oo A4

= —cosh 2\z - cosh™2 \y,

Q(cosh 2\t;sinh™2 \t, 0) = sinh™2 Az - cosh? My,

T+ wq +w2) . po(y+w1)
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Q(cosh 2\t; cosh™2 M, 0) = — cosh ™2 Az - sinh? \y.
Hence
T(cosh 2Xt; 0, sinh ™2 At) = 2(cosh 2A(z + y) + cosh 2\ (z — y)) - sinh ™2 \y
— 4 cosh 2\z - sinh ™2 \y = 8 cosh 2\z,
T(cosh 2)t; 0, cosh™2 \t) = 2(cosh2X(z + y) + cosh 2\ (z — y)) - cosh™2 \y
+ 4 cosh 2\x - cosh™2 \y = 8 cosh 2\z,
T(cosh 2)t; 0, sinh ™2 2At) = T'(cosh 2\t; sinh ™2 2)¢t, 0) = 0,
T(cosh 2)t; sinh =2 \t, 0) = 8 cosh 2)y.
(Toda—Bél)—bry) — (Toda—Dgl)—bry): Replacing (z,y) by (xr — N,y), we have
T(e 2 0,sinh ™2 \t) = Jim T(2¢72*N cosh 2A(t — N);0,sinh =2 \t)

= lim 16e=2*V cosh2\(z — N) = 8¢~ 22,

N—o0
T(e 2 0,sinh 2 2X\t) = Jim T(2¢=2*N cosh 2\(t — N);0,sinh =2 2Xt) = 0,
— 0
1
T (e 2 &M () :A}im T<2€2)‘N cosh2\(t—N); ZeQAN sinh ™2 \(t—N), 0) = 4 cosh 2\y,
— 00

1
T(e72M; e 0) = lim T<2e_2’\N cosh2\(t — N); Ze‘“N sinh™22X\(t — N), o) = 0.

N—o0

(Trig—C’él)) — (Trig—Bél)—bry): Replacing (z,y) by (x + N,y + N),

T(€_2)\t, 07 62/\t, 0) — ]\}lm T(e—2>\t, 6_2/\(t+2N); 6_2/\N€2/\(t+N),O)
—00
= A}im e MW cosh 2\ (y + N) = 22,
—00
T(672)\t7 07 64/\t,0) — ]\;.lm T(672)\t7 672/\(t+2N); 674)\N€4)\(t+N)70) — O
—00

By the transformation (z,y,\) — (y,x, —\), we have

T(€_2)\t, 0, 0’ e—2>\t) — 26—2)\237 T(e—2>\t’ O, O, e—4>\t) =0.
(Trig—Agl)—bry) «— (Trig-B2): Replacing (z,y) by (z + N,y + N),
1
Q(sinh ™2 \t, 0; €M) = Jim Q <sinh_2 M, sinh =2 \(t 4 2N); ZeQW sinh =2 \(t + N))
—0Q0

1
= A}im Ze”‘N sinh 2 \(z + N)sinh 2 \(y + N) = 0,
—00

T(sinh_2 A, 0; €2>\t) = 2(e® 4+ 2 sinh =2 \(z — y),
Q(sinh~2 \t, 0; ™) Jim Q(sinh =2 M, sinh 2 \(t 4 2N); 4e =V sinh? 2\ (t + N))
=16 A}im e N (sinh? A(z + N) + sinh? A(y + N)
—00
+ 2sinh? A(z + N) sinh? A(y + N)) = 22+,
T(sinh =2 Xt, 0; e™) = 2sinh ™2 A(z — y) (e™® + W) — ge2A@+v)
= 2sinh 2 Az — y)(e** 4 PV — A #H) (AE—y) _ o= A@—w)y2)

= 42 @HWginh =2 Az — y).
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(Rat-A;-bry) « (Trig-A;-bry): Taking the limit A — 0,

1
Q™ 05t) = lim Q <)\2 sinh ™% Xt, 0; o (e — 1)> =0,

2\
2
T(t2,0;1) = 221V,
(z—y)
1
Q(t72,0;t?) = )l\iir(l) Q <)\2 sinh ™2 \t, 0; 472(@% e 2 2)) =0,

$2+y2

Tt 2,0;t%) =2— 2
( ) (z —y)?

1
-2 .43y _ 1: 2 12 ) ANt 2Nt _ —2Xt
Q(t™4,0;t )-)l\lg})@()\ sinh )\t,O,SW(e —3e¢*M —e +3)>
= lim 3(62’\(“” —-1) = 1(a: +v)
A—0 8A 2 '
T(t_2 0: t3) — QM — 2z +y) = QM
o (z—y)? (z—y)*’
1
—2 . 4y _ 1 2 12 ) ANt | —4Nt 2X¢ —2Xt
Q(t ,0,75)-)1\13})@()\ sinh™“ At, 0; 16)\4(6 +e —4e" — 4e +6)>

1
T 2 (2Maty) | —2M(zty) 9y _ 2
TR D= gty

2t 4yt 422y
Tt 2,0t =2—L — 2z +y)? = —F—.
EEmE EE
Thus we have completed the proof of Theorem 2 by using Lemma 3 and Lemma 4. |

Remark 5. Theorem 2 can be checked by direct calculations. For example, Remark 2 and the
equations

2(66—2)\(z+y) _ 6—2)\(z—y))(e2)\x)/ + 462)\x§(56—2>\(:8+y) _ 6—2)\(;t—y))
€T

0
= d\(ee PV — ?) — 8A(ce PN — M) = —(2(ee” PV + €¥V)),

0y

2(66—2)\($+y) _ 6—2)\(z—y))(e4)\m)l + 464)\95%(56—2/\(90—&-?;) _ 6—2)\(ac—y)) -0

with € = 1 give T(e2*;e2*,0) and T'(e=2M; e**,0) for (Trig- Bo-bry). Moreover the functions
T(e 2 0;e2M,0) and T(e= 2, 0; e, 0) for (Toda—C’él)) also follow from these equations with
e =0.

4.2 Special case

In this subsection we study the integrable systems (4.1) with (4.2) which are of the form
R(z,y) =u”(z —y) +u’ (v +y) + v(x) + w(y),

1 1
w(t) =Y Aui(t),  wt(t) =) Ajul(),
j=0 Jj=0

1 1
(t) =Y Cius(t),  w(t) = Chuy(t)
j=0 Jj=0

with Ap, A1, Cy, C1 € C. The most general system (Ellip-Bs-S) in the following theorem is
presented by [24] as an elliptic generalization of (Trig-Bs-S) found by [32].
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Theorem 3 (Bs : Special case, [23, 24, 30] etc.). The operators P and P defined by the
following pairs of R(x,y) and T(x,y) satisfy (4.1) and (4.2).

(Ellip-B2-S):  ((p(t; 2w1, 2wa), p(t; wi, 2wa)); (p(t; wi, 2wa), p(t; wi,wa)))

v(z) = Cop(z;wr, 2we) + Crp(x; wi,we), w(y) = Cop(y; w1, 2wa) + Crp(y; wi,wa),
u (z—y) = Aop(z — y; 2w, 2w2) + A1p(T — y; w1, 2w2),
ut (z +y) = Aop(z + y; 2w1, 2w2) + Ar1p(z + Y3 w1, 2w2),
R(z,y) = Aop(z — y; 2wi, 2wa) + App(x + y; 2w, 2ws)

+ A1p(r — y; w1, 2w2) + A1p(z + y; w1, 2w2)

+ Cop(x; w1, 2wa) + Cop(y; w1, 2wa) + Crp(7; w1, wa) + Crp(y; wi, wa),
T(x,y) = 2(Aop(z — y; 2w1, 2w) + Aop(z + y; 2w, 2w2)
+ A1p(x — yywi, 2w2) + A1p(x + y; w1, 2w2))

x (Cop(w;wi, 2wa) + Cop(y; wi, 2wa) + Crp(z; w1, w2) + Crp(y; wi,w2))
1
—4A40Cy Z P + wj; 2w, 2we) - P(Y + wj; 2wi, 2wo)
j=0
3
—4A0C Z o + wj; 2w, 2we) P(Y + wj; 2wi, 2wo)
j=0
— 4A1Cop(r; w1, 2wa) p(y; w1, 2w2)
1
—4A1C1 ) p(x + wajiwi, 2w2)9(y + waji wi, 2wn).

=0
(Trig-Bs-S): ((sinh™2 Mt sinh~2 2\t); (sinh ™2 2\t, sinh? 2)¢t))
v(x) = Cysinh™ 2\z 4 Cy sinh? 2\z, w(y) = Cosinh™2 2\y + Cy sinh? 2\,
u”(x —y) = Agsinh 2 \(z — y) + Ay sinh ™2 2\ (z — ),
ut(x +y) = Agsinh 2 Mz + y) + Ay sinh 2 2\ (z + v),
R(z,y) = Agsinh ™2 X\(z 4+ y) + Agsinh ™2 A\(z — y) + Ay sinh 2 2\ (z + y)
+ Ay sinh 22\ (2 — y) + Cosinh 2 2)\z + Cysinh ™2 2)\y
+ O sinh? 2\zx + C sinh? 2y,
T(z,y) = 2(Agsinh 2 \(z + y) + Agsinh ™2 X(x — y) + Ay sinh ™2 2\ (z + y)
+ Ay sinh ™22\ (2 — ))(Cosinh ™2 2\ + Cy sinh™2 2\y + Cy sinh? 2)z
+ Cy sinh? 2)\y) — AoCy (sinh*2 Az - sinh™2 \y + cosh™2 Az - cosh™2 )\y)
— 4A¢C1(sinh? Az 4 sinh? Ay + 2sinh? Az - sinh? \y)
— 4A,C)sinh =2 2\z - sinh 2 2\y.
(Rat-Bs-S): ((t72,42); (t72,12))
v(z) = Coz~? + C1a2?, w(y) = Coy~> + C1y?,

- Ag 2 Ao 2
— ) = A — + = A
u (z —y) T 1z—y)7 u(z+y) Gror 1@ +y)7,
Ag Ag Co , Co
R(x,y) = (x — y)2 + (.%' T y)2 + Al(:(} - y)2 + Al(l‘ + y)2 + ? + ? + 01.7}2 + C’lyQ,
16A40Co + 16 AgCh2%y?
T(x,y) = 200 T 020N 4 6.4, Cya?y?.

(.%'2 _ y2)2
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(Toda-D{Y-S-bry):  ((cosh 2), cosh 4At); (sinh ™2 2At), (sinh 2 2At))

v(x) = Cpsinh 2 2)\z, w(y) = Cy sinh™2 2)\y,

u (r —y) = Agcosh 2\(z — y) + Aj cosh 4\ (x — y),

ut (x4 y) = Agcosh 2\(z + y) + Ay cosh 4\ (z + 7)),

R(z,y) = Agcosh2A(z — y) + Ag cosh 2\ (x + y) + Aj cosh 4\ (x — y)
+ Aj cosh 4\ (x + y) + Cpsinh ™2 2z + O} sinh ™2 2)y,

T(x,y) = 8A1(Cpcosh 4y + Cj cosh4)zx).

(Toda—Bél)—S—bry): ((e72At, e 4. (22 (sinh =2 2)\t))

v(x) = Coe*, w(y) = Oy sinh ™2 2)\y,

u”(z —y) = Age” @Y 4 4 e PNEmy) ut (x4 y) = Age @Y L 4 e Hy),
R(z,y) = Age @) 4 Age= M) 4 AL o= N EY) 4 g e @) 4 0p et 4O sinh 2 2y,
T(x,y) = 441 (Cp cosh 4\y + 2C e~ 7).

(Toda-C{7-8): (e, e=12), 05 (), (=N

o(@) = Coe™,  w(y) = Cre,

u(z—y) = Age @Y 4 A e Emy), wt(z+y) =0,
R(z,y) = Ape~ @Y L A e~y | et 4 0,
T(x,y) =24, (C’oe4>‘y + C'le"““”),

(Trig-A;-S-bry): ((sinh™2 Xt,sinh ™2 2At), 0; (e M, e4Mt))

o(z) = Coe™ ¥+ Cre™, w(y) = Coe N + Cre,
u”(z —y) = Agsinh 2 A\(z —y) + A1 sinh ?2\(z —y),  u'(z+y) =0,
R(z,y) = Agsinh™? Mz — y)+ Ay sinh ™2 2\ (z — y)+Coe~ M +Coe~ M +Cre" "+ Cre*,
T(z,y) = 24; sinh 2 2\ (z — y)(Coe™ 7 + Coe=*M + 01 1 Oy eM)
+ 4Agsinh ™2 Mz — y)(Coe~22@HY) 1 02\ @+)),

(Rat®-Da-S-bry):  ({£%,t1); (t72), (t7?))

v(z) = Coz 2, w(y) = Cry 2,
u(z—y)=Ao(z —y)2+ Az —y)',  uT(@+y) =Ao(z+y)* + Az +y)*,

1

C
R(z,y) = 240(2* + y*) + 241 (z* + 62y + y*) + 573 t

T(a;, y) = 32141(003/2 + C1x2).
Proof. (Ellip-B>-S): We have the following from (4.6), Lemma 4 and (2.8).

Qp(t; w1, 2wa); p(t; wi, 2w2)) = p(x; w1, 2w2)P(Y; w1, 2wa),
Qp(t; 2w1, 2wa); p(twi, 2wa)) = Qp(t; 2w1, 2w2); P(¢; 2w, 2w2)

+ p(t2A1 sinh ™2 2\ (z — y)(Co + w1; 2w1, 2ws))

= p(z; 2w1, 2w2) P(y; 2w1, 2w2) + P(x + wi; 2w1, 2wa) (Y + w1; 2w1, 2ws),
Q(p(t; w1, 2wa); p(t;wi, wa)) = p(z; w1, 2w2)P(Y; w1, 2w2)
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+ p(z + wos wi, 2we) (Y + wa; wi, 2ws),
3

Q(p(t; 2w1, 2w2); p(t; w1, w2)) = Y p(x + wji 2w1, 2wa) (Y + wjs 2wi, 2wa).
=0

(Rat-B2-S) is given in [32, (7.13)] but it is easy to check (4.3) or prove the result as a limit
of (Trig-Bs-S). (Rat?-Dy-S-bry) follows from T'(t%;¢t72,0) = 0 and T'(t*;¢t72,0) = 3232 (cf. Re-
mark 2 i)). Moreover (Trig-B2-S), (Toda—Dél)—S—bry), (Toda—Cél)—S) and (Trig-A;-S-bry) are
obtained from the corresponding normal cases together with Lemma 4. For example, () for
(Trig-By-S) is given by (4.7), (4.9) and

1 1
Q(sinh™2 M;sinh 2 2X\t) = Q (sinh2 At i sinh 2 M\t — 1 cosh ™2 )\t>

1
—= —(sinh™2 At sinh™2 Ay + cosh ™ Az cosh™2 \y),
4
Q(sinh™2 2)t; sinh ™2 2\t) = sinh ™2 2z - sinh ™2 2y,
Q(sinh ™2 2\t; sinh? 2)\t) = 0.

Thus we get Theorem 3 from Theorem 2. |

4.3 Duality

Definition 1 (Duality in B, [23]). Under the coordinate transformation

(2,y) — (X,Y) = (x;iy x;)

the pair (P, P? — P) also satisfies (4.1), which we call the duality of the commuting differential
operators of type Bs.

Denoting 0, = 0/0x, 9y = 0/dy and put
L=P—p— Loz lo2 (040, + ut (s — D))
=P =P =50 - 50, tw—v +u” (O +0y)” +u" (0 — 0y)~.
Then the order of L is at most 2 and the second order term of L is
—(uT +u” v+ w) (92 + 8;) —2(u” — u")9,0, + 2wd? + 21)85 — (w — ) (9% - 85)
+u (0 + 0y)? +ut (9, — 9,)* = 0.
Since L is self-adjoint, L is of order at most 0 and the 0-th order term of L is

1
—5(89% + ) (ut +u” v+ w) + uh +uT +v+w)? —dow—T — 0,0, (u” —u’)

—%(65—8;)(10—@):(u++u_—|—v+w)2—4vw—T

and therefore we have the following proposition.

Proposition 1 ([23, 24]). i) By the duality in Definition 1 the pair (R(z,y),T(z,y)) changes
into (R(z,y),T(z,y)) with

R(z,y) = v<$\g‘y> + w(:c\;;) +ut(V2z) +u” (V2y),
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~ ~ z+y T—y r+y r—y
T x, =R x, 2_ Y w =T ;

o = Rea? =10 (7 ) (22 ) - (S
Combining the duality with the scaling map R(x,y) — c¢ 2R(cx,cy), the following pair
), T%x,y)) defines commuting differential operators if so does (R(z,y),T(z,y)). This
(x,y) is also called the dual of R(z,vy),

V2 V2

ii)
d(m

Ri(z,y) = v(z +y) +w(z —y) +u’ (22) +u” (2y),

Tz, y) = R4x,y)* — dv(z + y)w(z —y) — T(z + y,z — y).

Remark 6. i) We list up the systems of type Bs given in Sections 4.1 and 4.2:
(u™ (t),u™(t);v(t),w(t)) Symbol
()); (p(t), p(t + w1), p(t + w2), p(t + w3))), (Ellip-By)
(t; 2w1, 2w2), P(t; w1, 2w2)); (P(t wi, 2w2), P(t; W1, w2))), (Ellip- B-S)
sinh ™2 At); (sinh =2 ¢, sinh =2 2\t, sinh? A, sinh? 2)t)), (Trig-Bo)
sinh ™2 At,sinh ™2 2)t); (sinh ™2 2\¢, sinh? 2)\t)), (Trig-Bs-S)
72y (172,82, 1) 19)), (Rat-Bs)

£2,2); (672, 8)),

cosh 2\t); (sinh =2 At, sinh =2 2\t), (sinh ™2 At, sinh =2 2\t)),

6—2)\t> ( 2>\t 4)\t>’ <Sinh_2 )\t, sinh_2 2)\t>),

e~ *2)"‘/) <62>‘t>, (sinh™2 \t)),

—2)\t> < 22Xt 4)\t> < —2Xt —4)\t>)

€ y \€ y € )

6—2)\t —4/\t>’ 0; <e4)\t>7 <e—4)\t>>7

(Rat Bg S)
(Toda- D -bry)
(Toda- D S bry)
(Toda— bry)
(Toda— )s- bry
(Toda—C(l)
(Toda— )s

sinh =2 M\, sinh =2 2At), 0; (e~ e*Y), (Trig-A;-S-bry
t72),0; (t, 2,13, 1), (Rat-A;-bry
((E72), (725 (%, ¢h)).
The first 6 cases above are classified by [24] as invariant systems. The systems such that at
least two of u™, v and w are not entire are classified by [23]. (Trig-*) and (Toda-*) in the above
are classified by [30] as certain systems with periodic potentials.
We do not put ({t~2,¢2),0; (¢,t?)) in the list which corresponds to (Rat-A;-S-bry) because its
dual defines a direct sum of trivial operators (cf. Section 9).
i) Since 1 —sinh™2¢ +4sinh 2 2t = coth®t = t? — (2/3)t* 4 o(t*) and sinh?t = t? 4 (2/3)t* +
o(t), we have sinh? 2\z + sinh? 2\y — 2 coth? A(z —y) — 2 coth? A(z + y) = 8A\* (22 +52)% +o(\Y).
Hence the potential function

Ao Ao Co
7 T 3T 2
(z—y)3? (z+y)? =«
is an analytic continuation of that of (Trig- B2-S) but this is not a completely integrable potential
function of type By
iii) The dual is indicated by superfix ¢. For example, the dual of (Ellip-Bs) is denoted by

(Ellip?-By) whose potential function is

({p
(g
((
(
(
((
(
((cosh At, cosh 2Xt); (sinh =2 At), (sinh =2 \t)),
(
(
((
(
(
(
((

)
)
)
sinh =2 At), 0; (e 2 e 74AL @2M AAYY (Trig-A;-bry)
)
)
)

(Rat-Dy-S-bry

C
+ % + C1(z? + y?) + A1 (2? + y?)?

3

R(z,y) = Ap(2z) + Ap(2y) + > Cj(p(x
j=0

—y+wj) + (@ +y+w))
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and the dual of (Toda—Cél)) is

(<e—2)\t, 6—4/\t>’ <€2>\t, 64)\t>; 0, <€—4)\t>) (Todad-C’él))
since the dual of (u™(t),u"(¢);v(t), w(t)) is (w(t),v(t);u(2t),u (2t)). Similarly

((p(t; w1, 2wa), p(t; w1, w2)); ((2t; 2w, 2wa), P(2t; w1, 2w2))). (Ellip?-B,-9)

Since 4¢p(2t; 2w1, 2ws) = p(t; w1, ws) etc., (Ellip?-Bs-S) coincides with (Ellip-B-S) by replacing
(w1, ws2) by (2wa,wr).

Then we have the following diagrams and their duals, where the arrows with double lines

represent specializations of parameters. For example, “Trig-Bs 53 Trig-BC5-reg” means that
2 parameters (coupling constants Cy and C3) out of 5 in the potential function (Trig-Bs) are
specialized to get the potential function (Trig-BCsy-reg) with 3 parameters. For the normal cases
see Definition 5 and the diagrams in the last part of the next section (type B,,).

Hierarchy of Normal Integrable Potentials of type B
Trig-BCs-reg  —  Toda-Dsy-bry

Co=C3=0 TT 5:3 Co=C1=0 TT 5:3
. (1) 5:3 (1)
Trig-Bo — Toda-B, ’-bry = Toda-B,
Cp=C1=0
/ / !
Ellip-B, — Toda-D"-bry Toda-C§” 2 Toda-BCh
0=%1=
N\
Trig-Bo —  Trig-Ai-bry 23 Trig-A;-bry-reg
Cy=C3=0
N\ N\
Rat- By — Rat-A;-bry
Hierarchy of Special Integrable Potentials of type B-
Trig®-By-S-reg  — Todal®-Dy-S-bry Rat?- Dy-S-bry
c1=0 T 4:3 co=0 T 4:3 /
Trig@-By-S  — Toda®-Bf)-S-bry = Toda®-B{Y-
Z
/ / |
Ellip-B2-S — Toda@-D{V-S-bry Toda@-C{P-s = Toda(®-By-S
e

N\
Trig(®)-B,-S —  Trig®-A4;-S-bry 04::?0 Trig(®-A;-S-bry-reg
e

N\
Rat—Bg—S

Definition 2. We define some potential functions as specializations.

(Trig-Ba-S-reg) Trigonometric special potential of type By with regular boundary conditions is
(Trig-Bo-S) with C = 0.

(Toda-Ds-S-bry) Toda special potential of type Do with boundary conditions is (Toda—Bél)—S-bry)
with Cy = 0.

(Toda—Bél)—S) Toda special potential of type Bél) is (Toda—Bél)—S—bry) with Cp = 0.
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(Toda-By-S) Toda special potential of type Bsg is (Toda—Cél)—S—bry) with Cp = 0.

(Trig-A1-S-bry-reg) Trigonometric special potential of type Ay with regular boundary conditions
is (Trig-A;-S-bry) with C; = 0.

Remark 7. We have some equivalences as follows:

(Ellip-Bo-S) = (Ellip%-B,-9),
(Rat-By-S) = (Rat?-By-S),
(Trig-BCy-reg) = (Trig’-By-S-reg),
(Trig-A;-bry-reg) = (Todad-Dy-S-bry),
(Toda—Dg bry) = (Trig?-A;-S-bry-reg),
(Toda— ) (Toda® B( ) -S),
(Toda-BCs) = (Toda’-B,-S).

5 Type B, (n > 3)

In this section we construct integrals of the completely integrable systems of type B,, appearing
in the following diagram. The diagram is also given in [8, Figure III.1], where (Toda—BﬁLl)—bry)
is missing. The most general system (Ellip-B,,) is called Inozemtzev model (cf. [12]).

Hierarchy of Integrable Potentials with 5 parameters (n > 2)
Toda—DT(ll)—bry — Toda—Bfll)—bry — Toda—CQ(ll)

/! /!
Ellip-B, — Trig-B, — Rat-B,
N N

Trig-A,—1-bry — Rat-A,_1-bry

5.1 Integrable potentials

Definition 3. The potential functions R(x) of (1.1) are as follows:
Here A, Cy, C1, C3 and C3 are any complex numbers.

(Ellip-B,,) Elliptic potential of type By:

n 3

Z Ap(z; — x5; 2w1, 2wa) + p(x; + x5 2w, 2w2)) + Z Z Cip(zr + wj; 2wi, 2ws),
1<i<j<n k=1 j=0

(Trig-B,,) Trigonometric potential of type By:

Z A(sinh ™ X(z; — ;) + sinh ™2 A(z; + x;))

1<i<j<n
2 Cs 2
+ Z <C’o sinh™2 Azy, + C) cosh™2 Az, + Cy sinh? Axy, + — 1 sinh 2)\ajk>
k=1
(Rat-B;,) Rational potential of type By:
A A -
Z <( + 2> +Z(C0$];2+Cll’z +C2(17% —l—CgﬂZ%),

2 . .
1<i<j<n N\ z5) (i + ) k=1
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(Trig-A,,—1-bry) Trigonometric potential of type A,—1 with boundary conditions:

n
Z Asinh ™ \(z; — xj) + Z(Cbe’*”‘mk + Che M 4 Chre® Mtk 0364)‘”“"’“),
1<i<j<n k=1

(Toda—Bfll)—bry) Toda potential of type B,(ll) with boundary conditions:

n—1
ZAeiZ)‘("“*xi“) + Ae~ 2\ @n—1ten) —l—C’er)‘xl +Cp et +C5 sinh™2 \z,,+C5 sinh ™2 2\ Ty,
=1

(Toda—(b(ll)) Toda potential of type 07(11):

n—1
§ :Ae—2)\(xi—zi+1) + 0062/\:E1 + 0164)\3:1 + 026—2)\337,, + 6136—4/\_%n7
=1

(Toda—Dg)—bry) Toda potential of type DS) with boundary conditions:

n—1
ZA€_2>\($i_$i+1) —|—A€_2>\($”71+m") _|_A62)\($1+:v2)
=1

+ Cpsinh ™2 \zq + C; sinh ™2 2\ + Co sinh ™2 Az, + Csinh ™2 2\xzy,,

(Rat-A,,_1-bry) Rational potential of type A,—1 with boundary conditions:

A n

E — + E (Cgl‘k + Clm% + ngz + ngi).
—_ (@i —x)?

1<i<j<n k=1

Remark 8. In these cases the Schrodinger operator P is of the form

1o 92
P="3 22 TR
7j=1 J
3 . . n .
R(z) = Z (tUe;—e; (T) + Uesye,; (7)) + Z Cjv? (z), v (x) = Zvék (z).
1<i<j<n =0 k=1

Here
Ogua(x) = (91,1)%(36) =0 if  a,beR" satisfy (a,a) = (b, B) = 0.

The complete integrability of the invariant systems (Ellip-B,,), (Trig-B,) and (Rat-B,) is
established by [29]. We review their integrals and then we prove that the other five systems are
also completely integrable by constructing enough integrals, which is announced by [30]. The

complete integrability of (Trig-A,_1-bry), (Toda—C,gl)), (Toda—DS)-bry) and (Rat-A,_1-bry) is
presented as an unknown problem by [8] and then that of (Toda—B,(ll)—bry), (Toda—C,(ll)) and

(Toda—Dg)—bry) are established by [18, 19, 21] using R-matrix method. The compete integra-
bility of (Trig-A,—1-bry) and (Rat-A,_;-bry) seems to have not been proved.

Definition 4 ([25, 29]). Let u,(z) and T¢(v7) are functions given for o € ¥(D,,) and subsets
I={i1,...,i} C{1,...,n} such that

Ua(x) = u_q(z) and Oytiq =0 for y e R" with (a,y) = 0.



Completely Integrable Systems Associated with Classical Root Systems 25

Define a differential operator

2
Z i)l D (G} (©) - Afuesny. ()
weGS,
by
A = L 5.1
i) = 2 2510k — 2j)! (5.1)
0<5<[%]
X E(w)w(ueil —€iq (x)uei3—€i4 (‘T) U u€i2j—1_6i2j (x) ' 8’i2j+18i2]'+2 e 8Zk)7
k
Gir,nin} (C) = ) > Ty, Ty, (5.2)
v=1 11H~--Hfu:{i17...,ik}
3
Tr = (-1)#! (CS? -> Cszo(vj)> 7 (5.3)
=0
where
1
S«?il,ig,...,ik} = 5 Z w(ueil —€iq (x)u6¢2—613 (x) CrUey, | —eqy (.%')),
wEW(Bk)

55 =0, Sy =1, Stijy = 2ue,—e; (@) + 2Ue,4e; (@),
T%(v7) =0, Tfk}(vj) = 2vgk () for 1 <k<n,
qo =1, qy = Ty, Qivisy = Ly Liny + 1y in) s

In the above, we identify W (By) with the reflection group generated by We, and We,, —c;,
(v=1,...,k—1). The sum in (5.2) runs over all the partitions of the set I and the order of the
subsets I1,..., I, is ignored.

Replacing 0; by §; for j = 1,...,n in the definition of Ay ;4 and P,(C), we define
functions Ay, ;) and P, (C) of (x, &), respectively.

-----

We will define uq(z) and T?(v7) so that

[P.(C),P,(C") =0 for C,C €C. (5.4)
Then putting
ai =€u\c 0
2
Py = P, (0 Z (n—h)l > (@) A1), () (5.5)
k=0 weG,
Po-j = ZZZ' =) (n—k)! > D St STk Durin, oy (56)
1=j k=i weSy NI j=w({1,...,i})

we have P,,(C) = Y. C7P,_; and (1.4) and then
j=0

[PZ-,P‘]:0 for 1<i<j<n,

n 3
Z St 2 (e, (@) F e, (@) + Y Ol (@), (5.7)
= par

J 1<i<j<n
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Remark 9. i) When n = 2, T'(x, y) in the last section corresponds to 772, namely
T(l’l, xg) = T12|C:0'
i) Put

n

U)= Y (uj(wi— ;) +ufi(zi+2;) and  V(z)=) vplax)
1<i<j<n k=1

in (1.3) and let T7(U; V) be the corresponding 77 given by (5.3). Then [29, Remark 4.3] says
Tr(coU;c1V + coW) = c#l_lclTI(U; V) + co#[_lchI(U; W) for ¢ € C. (5.8)
iii) The definition (5.3) may be replaced by
#I 3 '
Tr = (-1)*! (Cz DD CS 2 O VIR AR A ZCJ‘T?(U])> (5.9)
v=1 11111, =T =0

because A can be any complex number in [29, Lemma 5.2 ii)] when v = C. Note that we fixed
A =1 in [29]. Combining (5.9) and (5.8), we may put

3
R Rl CCRE0 Wl VR TRE R SEE )
v>2 LTI, =1 §=0
for any ¢, ¢ € C and hence
3 .
Ty = (—1)#-1 (cs;) +Y e Y. Sp-eSp - chgm)
v>2  LIL-TIL=1 =0
for any c¢y,c3,... € C.
Theorem 4 (Ellip-B,,, [25], [29, Theorem 7.2]). Put

Ue;+e; (T) = Apo(w; £ x5 201, 2wo) for 1<i<j<n,

ng(m):gao(a:k—i—wj;le,ng) for 1<k<n and 0<35<3
and
#I
T =Y S (A = 1)L Sy (o) - S, (), (5.10)

v=1 L1111, =]

S{il,...,ik}(vj) = Z vzv(eil)(x)uw(eil—eiz)(x)uw(ei2—6i3)(x) o 'uw(eik_l—eik)(x)' (511>
wEW(Bk)

Then (5.4) holds.

) ) 3 .

Example 1. Put v}, = v}, , 0 = > Cjv, and w% =u; + u;; Then
3=0

Apy =0,

A{LQ} = 0109 + Upg — u1+2 = 0109 + Wyg,

A{172,3} = 010903 + wl‘283 + w2_381 + wﬁaQ,
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Ag1234) = 01020304 + w340102 + w3, 0103 + wy30104 + w0203 + wi30204

+ w0304 + Wiywsy + WizWay + WiyWs3,
Sy (v7) = 21){,
Spo(v7) = 20]ui, + 2v]ufy + 205ui, + 2vjufy, = 2(v] + 03) (upy + uf),
Stz (V) = 20{uiyug + 20]unyugs + 20futyugs + 20 ufudy + -

= 2(0] + vhwiywdy + 2] + vwdzwly + 204 + vhwiywi,

3
Ty = CSpy — > CiTE, (v7) = C = 20,
=0

3

Ty = —CSY ) + Z CJT{O1,2}(Uj)7
=0

qq1y = Ty
a2y = Ty T2y + Ty
423y = Ty Ty Tisy + Ty Tisy + Ty Ty + Ty Tizsy + Tesy-
If T°(v7) and S;, 4, (v7) are given by (5.10) and (5.11), then
Ty (') = 201,
TP 0y (07) = S0y (v7) — AT Ty, = 2(v] + v])wiy — 4Av]u],
T 2.3} (v') = 5{1,2,3}(Uj) - 214(”{5{2,3} (v7) + UgS{I,B} (v?) + U§S{1,2}(Uj)) +16A%0{vdud.

In particular, if n = 2, then

Po(C) = Ay + a4y Ay + 4@y Ay + a2y = (9102 + upy — ufy)”
3 .
+ T30 + Troy0F + Ty Tay — Oy + Y O oy (v7)
=0

— (0102 + upy — uly)’ + (C = 261)03 + (C — 269)9% + (C — 251)(C — 200)

3
—2C (ugy + ujy) + 2(91 + Do) (upy + ujy) — 4AZ Cjvivy =C* —2P-C + Py
=0

with

1 o
P= —5(8% + 02) + 01 + Do+ upy +ujy,

3

_ 2 - - . - )

Py = (8102 4up,—ufs) — 201 03 — 20907 + 401 D2 +2(01 + o) (uy +ujy) —4A E Cjviv),
=0

which should be compared with (4.2), (4.4) and (4.6).

In general
Pr=) A%y taly) = D Sy =) (-2 -2 Y wf
k=1 1<i<j<n k=1 1<i<j<n
_ 2 o 2 o
Py= Y ALyt Y DdpAhy+ Y dhip
1<i<j<n 1<i<n  j=1 1<i<j<n

1< <n, i#j
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) 2 o 0 o o
- > Sl td) XSSt D Stum

1<i<j<n 1<i<j<n 1<i<j<k<n
1<k<n, k#i,j 1<k<t<n
i#k, £
= (30 +wy)® =Y 20,07 + Y AUy + Y CiTh o (v7)
—22102}(6,3 — 20 +4Zw;;w;}+22w;§wﬁ. (5.12)

Here if (5.10) and (5.11) are valid, then
T (v7) = 2(v] + v7)wily — 440}v;. (5.13)
The commuting operator P of the 6-th order is
_ 2 2 2
Py=Y Afijwy + D0l + 2 diin — 2. Stk Ais
0 0 2 0 o ] 0 o
=2 Stk aly ALy = D STty + D Stikemy + 2 STk Siun
+ Z Sgivjvk}s‘?f:#:”} + Z Sfivjvk}s‘({)f:m}s‘?ﬂ’l’} + Z Sfilﬂ'z}S‘?jl,j2}S€k1,k2}S€41,42}'

In Theorem 4 the Schrédinger operator is

1 n 82 3 n
P==5) 3214 D (plai—a)) +plai+a) +Y C; ) pla +w))
k=0 'k 1<i<j<n j=0 k=1

and the operator P, satisfying [P, P»] = 0 is given by (5.12) and (5.13) with

3
O = ZC’,,p(xk +wy), v], = p(zk + wj), w?;- = A(p(z; — z5) £ p(x; + x5)).

v=0

5.2 Analytic continuation of integrals

Theorem 5 (Toda-D{V-bry). For

e, (1) = {AGM”“) G—i+1),
e;—ej -

0 (I7 =1l >1),
AeP@ite2) (i+3j=3),

Ueyte, () = § Ae™PA@n—1tzn) (5 4 j = 2p — 1), (5.14)
0 (i+7 ¢ {3,2n —1}),

v)(x) = §yp sinh™2 Azq, vi(x) = dyp sinh™2 2y,

v,%(x) = Opp sinh ™2 Az, Uﬁ (z) = Opp sinh ™2 2\zy,,

we have commuting integrals P; by (5.5), (5.1), (5.2), (5.3) and

S’fk,}zl for 1<k<n,

S¢=0 if  IT#{k,k+1,...,0} for 1<k</{<n,
Sf{)k,kﬂ,...,f} _ 2A€—k+1(6—2/\(zk—w) + 51k€2A(z1+u) + 5Zne—2)\(ack+xn))’
Tfk}(vj):2vi(x) for 0<5<3, k=1,...,n,

TP(@°%) =0 if  IT#A{Ll,...,k} for kE=1,...,n,

TP (v*) =0 if  I#{k,...,n} for kE=1,...,n,
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TP =T () =0 if  #I>1,
Ti?l,...,k}(vo) _ 8Ak—1(62)\mk + 5kne—2>\xn) fO’/“ k> 2,
T{On—k+1,...,n} (v%) = 8AF T (e7 Pkt 5y e2AT1) for  k>2.

Proof. Put
_ 1-1 k—1 n—1
T =|x n71w2,...,xk n—lw%”"xn n—le ,
2 w2 /(n—1) i — 1 i1
~ ~ (& ] i
Ue;Fe; (7) = ATWO <331 T 1w2 + <33j - Hw2>§2¢01;2w2>7

i —1)J E—1 _
0.(%) = ( )\2) p0<xk— B +wj;2w1,2w2> for 0<j<3, 1<k<n.

When wy — 00, e, ze,; (Z) and 7, (£ =0,1,2,3) converge to ue,r¢,(z) in (5.14) and

v)(x) = b1 sinh 2 Az, wp(z) = 81y cosh™2 Ay,
v,%(x) = Opp sinh ™2 Az, v,%(:c) = 8,5 cosh™2 Az,
respectively. Under the notation in Theorem 4, let S7(#%) and T9 (%) be the functions defined
in the same way as Sy(v%) and T?(v’), respectively, where (te;Fe; (2), vi(z)) are replaced by
(Te;Fe; (2), ¢ (%)). Then by taking the limits for wy — oo, T¢(#) converge to the following T¢ (v%)
) =T (=0 if T#{1,....,k} for k=1,...,n,
[Y 0 if I#{k,...,n} for k=1,...,n.

If £ > 2, then

. . 1 e2Awa/(n—1)\ v—1 oy C
T{l,...,k}@):wy;an > <—A4/\2> (v =!IS, (07) -+ 51, (07)

v=1 11]_["']_[[1,:[
eZAwg/(nfl) 5 ~
TS{Z,...,k’} (,UO)

— 24K ginh~2Agy (¢~ 2@ ) 4 @M@t | g 2Mm—wa) 4 5 o2\ b))
 2sinh 2 Az - 24K (2T 4 5, o~ 2An) = g AR (20 4 5 oAy
TO (o)) = 245 cosh™2ay (- PNE1 ) 4 (PG | gy Merman) g o~ Parten)
+ 44T cosh=2 Azy (€22 1 Ge AT ) = 8 AR-1(e2Mk 4 g, ~2Aen)
T ity (V) = BAF T (e72ATntt g Gy @220,

T{On—k—l—l,...,n} (U3) = 8Ak71(672)\xnik+1 + 5/67162)\361)'

= lim 5{17_“7;@}(’50)—wliinoog{l}(@o)A

wa—00

Replacing v! and v3 by (1/4)(v" —v1) and (1/4)(v? — v?), respectively, we have the theorem by
the analytic continuation given in Lemma 2. |

As is proved by [29], suitable limits of the functions in Theorem 4 give the following theorem.

Theorem 6 (Trig-B,,, [29, Proposition 6.1]). For complex numbers X\, C, Cy,..., C3 and
A with A # 0, we have (5.7) by putting

Ue+e; (T) = Asinh™2 \(z; £ z3,),
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vgk (z) = sinh™2 Az, v;k (z) = cosh™2 Az,
: 1
v? (x) = sinh® Azy, vl (x) = i sinh? 2)\xy,

and

Tr = (—1D)#=HC89 — CuT?(v°) — CLT? (vY) — CoS1(v?) — C3S1(v®)
+2C5 Y (Sp(0%)SL(0?) + 81, (v)S?, + 57,5, (7)),
L TIx=1

#I
70 =" > (A v = DS, 085, (00),

v=1 11111, =1

#T
)= Y AT (w18, 0" Sp ().

v=1 11111, =1

Theorem 7 (Trig-A,_1-bry). For

Ue;—e; (T) = Asinh ™2 \(z; — ), Ue,te,;(T) = 0,
v((i)k (‘r) = 6_2)\xk7 ’U;k (w) - 6_4Axk7 ng (x) = ezAxk7 ng (.’L') - 64Axk

we have (5.7) by putting

3
Tr=(—1)#-1 (cs;’ > CiSi())+ 2> (C1Sr, ()81, (v°) +C58r, (v*) Sk, (v2))> .

§=0 NIlh=1

Proof. Putting
1
Gie;4e; = Asinh™? A((z; + N) = (z; + N)), 70 = Ze2W sinh™2 Az, + N),

1 1
o = Ze4>‘N sinh™2 2\ (z + N) = 1—664)‘]\[ (sinh_2 2X(zp + N) — cosh™2 2\ (2, + N)),

07 = 4e M sinh? Nz + N), 73 = 4e” WV sinh? 2\ (2, + N),
Z=(r1+ N,z2+N,...,z, + N)
under the notation in Theorem 6, we have
(aei_ej ) ﬂer‘rej ) @27 T)l}:’ 77137 771%) = ]\}Enoo(ﬁei_ej ) ﬁei+ej ) 627 6]17 f)l%? f)l?c’)
=(A sinh—2 Mz — z), 0, e ATk AT 2ATk 64)‘1’“),
Jim_ VTR0 (@) = Si(1°),

lim ie‘lAZ\’(Tf(vo)(:ﬁ) ~ TP (@) =510 ~2 ) S, (0°)55L@°),

LI,=1I
im 4 PVTP)(3) = 55 (62),
lim 4 PVTR) @) = 510D -2 Y 84 (095,07,

L1TI=I

Here S7(0%) are defined by (5.11) with Ue;+e; and vﬁk replaced by te,+e; and Egk, respectively.

Then the theorem is clear. [ |
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Theorem 8 (Toda-B?(Tl)-bry). For the potential function defined by

Ae M @imzivn) g =41,
Ue;—e; (z) = . . .
0 if 1<i<i4+1<j<n,

Ae2M@n—1+z0) 4 i=n—1 P —
(:c)z{ ‘ ¢ i=n-l g=n (5.15)

0 if 1<i<ji<n and i1#En—1,

2 11 1
Y

vp(z) = 5k1€4>\x1,

vp(x) = Gpre
V2 () = Opyp sinh ™2 Ay, V3 () = Opy SInh ™2 2z,

we have (5.7) with
S{Ok}zl for 1<k<n,
S7=0 if I#{kk+1,...,0} for 1<k<t<n,
Sttty = DAL (2N wi—e) | 5, o~ 2Alontan))
T{Ok}(vj):%i(x) for 0<5<3, k=1,...,n,
=0 if IT#{1,....,k}  for k=1,...,n,
TP(v?) =0 if  I#A{k,...,n} for k=1,...,n,
TP =T =0 if #I>1,
T{OL.“’k}(vO) = 241 (A% 4 5y o7 ) for k>2,
T?n—k+1,...,n}<v2) = 8AF e ATt for  k>2

Proof. Suppose Re A > 0. In (Toda—D%l)—bry) put
T=(x1—(n—1)N,...;2x — (n—k)N,...,z, — (n —n)N),

) {A62AN62)\(:):¢(ni)inJrlJr(nil)N) (G=i+1),
Ue;—e; —

0 (|J - Z| > 1)a
A6—2/\N62/\(381—(n—1)N+a:2—(n—2)N) (Z +j= 3)’
Ui 4e; = 4 Ae™AN e=2M@n—1=N+an) (i+j=2n-1),
0 (i+j¢{3,2n—1}),
eQA(n—l)N
Y = 0y, sinh™2 A(z1 — (n — 1)N),
64)\(n—1)N
Up = 61k n sinh™22X\(z1 — (n — 1)N),
17,% = Opk sinh ™2 Azy,, f),i’ = 8, sinh ™2 2\z,,

and we have (5.15) by the limit N — oco. Moreover for k& > 2, it follows from Theorem 5
and (5.8) that

To,. 5y (") =Ty, 5y (5°) =0,

~ 1
T{l,...,k}(ﬁo) _ ZeQA(n—l)N(Ae—Q)\N)k;—l(862>\(a:k—(n—k)N) + 85kne_2’\“)

_ 2Ak71(62)\zk + 5kn672/\xn)’
T{nkarl ) (172) _ (A672AN)k71(8672)\(:rn,k+17(k71)N) + 851k62A(a:17(n71)N))

k—1_—2A\x, _
=8A" e n—ktl

which implies the theorem. |
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Theorem 9 (Toda-CT(zl)). For the potential function defined by

Ae 2 @i—zit1)  4f G =41,
Ue;—e; (z) = . . .

0 if 1<i<i+1<j<n,
Ue;te; () =0 for 1<i<j<n,
vY(z) = O, vt (z) = Opre®,

U%(:L’) = (5kn672)"”", vg(x) = (5;mef4)‘x",

we have (5.7) with

ka}zl for 1<k<n,

S7=0 if I#{kk+1,...,0} for 1<k<it<n,

ST jer1,..0p = 9 AL—k+1 o —2M\ (2 —)

Ty () =20(x)  for 0<j<3,  k=1....n,

)

TP () =0 if  IT#A{1,...,k} for  kE=1,...,n,
TP (v?) =0 if  I#A{k,...,n} for k=1,...,n,

TV =TP(w*) =0  if  #I>1,
T{OLJC} ('UO) — 2Ak—162>\$k fOT k 2 2’
T{On—k+1,...,n} (v*) = 2AF =2 A n—kt1 for k> 2.

Proof. Substituting i by xx + R for £ = 1,...,n and multiplying v,g, v
e~ (1/4)e* M and (1/4)e* | respectively, we have the claim from Theorem 8.

Theorem 10 (Rat-A,,_1-bry). We have (5.7) if

A J+1

Uej—e; () = (@i —2,)% Uete; () = 0, () = a3,

3
T = (=1)#1-1 (CS}’ =D CiSrw) + > Ci(SK (°)SY, + 87,5, (v7))

§=0 N1lL=1

=+ Z 03 Sh SIQ+SII( )SIQ(UO)+S?1512(U1))>'

I1Ix=1

Proof. Put

- 2 . 1 -92 ~
le;—e; = A sinh™= ANz — ), Ue;te; = 0,
1

1 9 i

,Uk — 2)\ ’Uk 2)\:Ck + 6—2/\xk _ 2),

—2A\R

2 3
vi and vy by e ,

1 _ 1 _ .
,U’% (€4>\.Z’k _362)\Jfk —e 2/\xk + 3)7 ,U]% (€4>\.Z‘k +€ 4)\$k _462)\Z‘k —46 2)\Zk +6)

8A3 1624

Then taking A — 0 we have the required potential function.
Owing to (Trig-A,_1-bry) and Remark 9, we have

pySr(22) = (327)
f ¥ g (31 (D7) 8 (S ) - 181,52
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! (sh (S w)57, + 55,5 (o) ).
lim X s w (81 (S0 )31 (32 e ) + 51 (3o e ) 81 (302 ) — 857,53,
-2 (gh (Z xz) S9 + 8y, (Z :zk)512 (Z xk) + 598, (Z xk>)

and thus the theorem. [ |

As is proved by [29], suitable limits of the functions in Theorem 6 give the following theorem.

Theorem 11 (Rat-B,,, [29, Proposition 6.3]). Put

Uer—e () = A U te, () = 4
T (@ ) G (@it ay)?
vp(e) =% uple) =af, vile) =ap, ol(e) =]

Then (5.7) holds with
T; = (—1)#1 (CS}’ — CoT?(v°) — C1S1(v') — CaSy(v?)

+20y Y (S, (v)SE, + 57, 5,(v")) — 2C357(v%)
L1II,=1

+C5 Y (S, (0")Sp (") + 28, (v))S?, + 257, 51, (v?))
IL1II,=1

_2403 Z (S[1<U1)S?QS})3 +S?1SIZ(U1)S(;3 +S})15?2513(’U1>)>7
LTI ITI3=1

H#I
=> > AT =1 S, S (),
v=1 [IL.-11I, =1

Definition 5. We define some potential functions as specializations of potential functions in
Definition 3.

(Trig-A,—1-bry-reg) Trigonometric potential of type A,_1 with reqular boundary conditions is
(Trig-A,,—1-bry) with Co = C3 = 0.

(Trig-A,—1) Trigonometric potential of type Ap—1 is (Trig-A,_1-bry) with Cyp = C; = Cy =
C3=0.

(Trig-BCy-reg) Trigonometric potential of type BC,, with reqular boundary conditions is (Trig-
Bn) with Cy = C3 = 0.

oda-Dy,-bry oda potential of type D, with boundary conditions 1s (loda-bBy, "-bry) wit
(Toda-D,-bry) Tod jal of type Dy with bound ditions is (Toda-BY-bry) with
Co=0C1=0.

oda- oda potential of type By~ 1s (Toda-By, '-bry) wit o =(C3=0.
Toda-BSY) Tod 1 of type BY is (Toda-B-bry) with Cy = C3 = 0

(Toda- Dn1 ) Toda potential of type Dq(ll) is (Toda—Dgl)—bry) with Co =C1 =Cy =C53 =0.
(Toda-A,,—1) Toda potential of type A,—1 is (Toda—Cr(Ll)) with Cop =C1 =Cy = C5 = 0.
(Toda-BCy,) Toda potential of type By, is (Toda—Cy(ll)) with Cy = C; = 0.

(Ellip-D,,) Elliptic potential of type D, is (Ellip-B,,) with Cy = C; = Co = C3 = 0.
(Trig-D,,) Trigonometric potential of type D,, is (Trig-B,,) with Cy = C; = Cy = C3 = 0.
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Rat-D,,) Rational potential of type D,, is (Rat-B,,) with Cp = C; = Cy = C3 = 0.

(
(Toda-D,,) Toda potential of type D,, is (Toda—B,(zl)—bry) with Cp = C1 = Cy = C3 = 0.
(Rat-By-2) Rational potential of type B,-2 is (Rat-B,,) with Cy = C3 = 0.

(

Rat-A,_1-bry2) Rational potential of type A,—1 with 2-boundary conditions is (Rat-A,_1-bry)
with Cy = C3 = 0. In this case, we may assume Cy = 0 or C7 = 0 by the transformation
xp — xp+c (k=1,...,n) with a suitable ¢ € C.

Then we have the following diagrams for n > 3. Note that we don’t write all the arrows in

the diagrams (ex. (Toda-D,-bry) — (Toda-BC,)) and the meaning of the symbol 22 s same
as in the diagram for type Bs. Namely, 5 parameters (coupling constant) in the potential are
reduced to 3 parameters by a certain restriction.

Hierarchy of Elliptic-Trigonometric-Rational Integrable Potentials

Rat-B,-2 Ellip-D,,
fr5:3 l
Rat-B, AN Trig-D,, —  Rat-D,
7 f3:1
Ellip-B, —  Trig-B, 2 Trig-BC)-reg Ellip-A,,_1
! ! !
Trig-A,_1-bry 5:>3 Trig-A,,_1-bry-reg 3:; Trig-Ap—1
! ! !
Rat-A,_1-bry 5:§ Rat-A,,_1-bry2 3:; Rat-A,,_1

Hierarchy of Toda Integrable Potentials

Trig-BC)p,-reg — Toda-D,-bry = Toda-D,
f5:3 5:3 f13:1

o
i

Trig-B, — Toda—Br(ll)—bry 2 Toda—B,(ll)
/! /! N
Ellip-B,, — Toda—D%l)—bry g Toda—Dgll) Toda—Cq(ll)
NGB /! U5:3
Ellip-D,, Trig-A, 1 Toda-BC,,
/! N\ U3
Ellip-4,1 — Toda—Afllzl — Toda-A,,_1

6 Type D, (n > 3)

Theorem 12 (Type D,,). The Schrodinger operators (Ellip-D,,), (Trig-D,,), (Rat-D,,), (Toda-

D,(ll) ) and (Toda-D,,) are in the commutative algebra of differential operators generated by
Py, Py, ..., Py and Ay ) which are the corresponding operators for (Ellip-By), (Trig-B,,),

(Rat-B,,), (Toda—Dy(Ll)—bry), (Toda-D,,-bry) with Cy = C; = Co = C3 = 0, respectively.

Proof. This theorem is proved by [29] in the cases (Ellip-D,,), (Trig-D,,), (Rat-D,,). Other two
cases have been defined by suitable analytic continuation and therefore the claim is clear. W
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Remark 10. In the above theorem we have P, = A%l n} because ¢7 = 0 if I # @. Then
[Pj, Pn] =0 implies [Pj, A{l,..‘,n}] =0.
Hierarchy of Integrable Potentials of Type D,, (n > 3)

Toda-DYY — Toda-D,

/! /!
Ellip-D,, — Trig-D,, — Rat-D,

7 Classical limits

For functions f(&,x) and g(§,x) of (§,2) = (&1,...,&n,21,.-.,2y), we define their Poisson
bracket by

df 0Og 0g Of
Vo) =2 (G~ o)
Theorem 13. Put
1 n
0=y 2 g+ R

Then for the integrable potential function R(z) given in this note, the functions Py(&,x) and
A{L“_’n} (&,x) of (§,x) defined by replacing 0, by & (v =1,...,n) in the definitions of Py and
Ay, ny in Sections 3, 4 and 5 satisfy

{Pi(f,x),Pj(g,x)} = {P(f’,x),ﬁk(f,x)} =0 for 1<i<j<n and 1<k<n.

Hence P(&,2) are Hamiltonians of completely integrable dynamical systems.
Moreover if the potential function R(x) is of type Dy, then

{ {1» -1 Pk 5’ } {A{l (6,%),?({,%)} = 0 for 1 S ]{7 S mn.

Proof. If R(x) is a potential function of (Ellip-A,_1), (Ellip-B,,) or (Ellip-D,,), the claim is
proved in [29, 32]. Since the claim keeps valid under suitable holomorphic continuations with
respect to the parameters which are given in the former sections, we have the theorem. |

Remark 11. Since our operators P, are expressed by operators P} = > p} .(x)q} () such that
i b b

the polynomials ¢} ,(0) satisfy [p{,;(x),qf;(0)] = 0, there is no ambiguity in the definition of
the classical limits by replacing 0, by &,. In another word, if we have given the above integrals
Pj(x,€) of the classical limit, we have a natural unique quantization of them.

8 Analogue for one variable

Putting n = 1 for the Schrodinger operator P of type A, in Section 3 or of type B,, in Section 5,
we examine the ordinary differential equation Pu = Cu with C' € C (cf. [41, § 10.6]). We will
write the operators Q = P — C.

(Ellip-B1) The Heun equation (cf. [32, § 8], [41, pp. 576])

1 d?
5@ + ZC’jp(t—l—wj) - C.
7=0
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(Ellip-A;) The Lamé equation

1 d2

“og AR - C

(Trig-BCi-reg) The Gauss hypergeometric equation

1 d? Co Cq
~59st T ot T3 -
2 dt sinh“ A\t  sinh“ 2\t

(Trig-A;) The Legendre equation

1d?_F Co
2dt?  sinh? M\t

(Trig-Bp) with Cp = C1 = C3 = 0. The (Modified) Mathieu equation

1 d2

a2 + C5cosh 22Xt — C.

(Rat-B1-2) Equation of the paraboloid of revolution

1d2 OO 2
2dt2+7+0t -C.

This is the Weber equation if Cy = 0. With s = ¢?> and using the unknown function t%u, the
above equation is reduced to the Whittaker equation:

1d> Gy, Cf
2ds?2 | g2

(Rat—Ao—bry2) with Co = C5 = 0:

-

1 d?

2dt2+00t+01t - C.

If Cy # 0, this is transformed into the Weber equation under the coordinate s =t + Cy/(2C1).
If C1 = 0, this is the Stokes equation which is reduced to the Bessel equation. In particular, the
Airy equation corresponds to C = C = 0.

(Toda-BC)

1 d?

2dt2 + Coe™ 2t—|—016 - C,

which is transformed into (Rat-B;1-2) by putting s = e~t. In particular
(Toda-A;)

1 d?
- C, -2t C
a0
is reduced to the Bessel equation.
(Rat-A1) the Bessel equation

1 d? %

C2dt? —¢
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In fact, the equation —u”/2 + Cou/t*> = Cu is equivalent to

2
<d 1d_2co+1/4+20>t1/2u:0

a2 " tdt 2
since
-1 d? L d? N 1d 1
O ——= O = —F - = —F.
dt? dt? tdt 4¢2

Hence if C # 0, the function v = ¢~ /2y satisfies the following Bessel equation with s = /—2Ct:

d? 1d 1
Y Y (1—0O+ /8>v:0.

a2 Tsds Cs2

Hierarchy of ordinary differential equations

Heun % Lamé —  Legendre
\‘ ﬂ3:2 \
Mathieu 2 TrigB; 28  Gauss Bessel (Stokes) 2L Airy
154 N N 3.2 T2

Rat-Ag-bry Rat-B; 5:> Whittaker 32 Weber

w

9 A classification

We present a conjecture which characterizes the systems listed in this note.
Let P be the Schrédinger operator with the expression (1.1) and consider the condition

Pe (C[Pl,...,Pn],

there exist P, ..., P, such that [P, Pi] =0 (I<i<j<n), (9.1)
o(P) = > ]21 ]2k (1 <k<n).

1<j1 < <Jr<n

Note that all the completely integrable systems given in Sections 3, 4 or 5 satisfy this condition.

Conjecture. Suppose P satisfies (9.1). Under a suitable affine transformation of the coordinate
n n n
x € C" which keeps the algebra C| " 02, Y 8,3, R 8,3”} invariant, P is transformed into an
k=1 = k=1 k=1
integrable Schrédinger operator studied in Sections 3, 4 or 5, (namely ul:-';, v and wy in (1.3) are
suitable analytic continuations of the corresponding functions of the invariant elliptic systems)
or in general a direct sum of such operators and/or trivial operators

2

(A1) )

+v(z)

with arbitrary functions v(x) of one variable.
Here the direct sum of the two operators Pj(z,0;) = Yo aq(x)0
ae{0,1,...}"
J = 1,2 means the operator Pi(z,0;) + P2(y, dy) of (x,y) € C"1"2,
We review known conditions assuring this conjecture and give another condition (cf. Theo-
rem 19 and Remark 17). We also review related results on the classification of completely
integrable quantum systems associated with classical root systems.

> of x € C% for

T
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Remark 12. The condition
there exists P5 such that [P, P»] =0 and o(P) = Z ¢2 §J (9.2)

1<i<j<n
may be sufficient to assure the claim of the conjecture.

Remark 13 (Type Az). If n =2 and if there exists P3 satisfying
o(P3) = &1& + 283 + &€ and [P, Pg} = [(91 + Oy + 05, P] = [81 + Oy + 03, Pg] =0,

then Conjecture is true.
In fact this case is reduced to solving the equation

u(z) o(x) 1
v(y) V'(y) 1]=0 for r+y+2=0 (9.3)
w(z) w'(z) 1

for three unknown functions wu(t), v(t) and w(t), which is solved by [3, 4]. Here u(t) = te,—e, (1),
’U(t) = Ueg—e3 (t) and w(t> = u€1—63(_t)'

9.1 Pairwise interactions and meromorphy

Theorem 14 ([40]). The potential function R(x) of P satisfying (9.1) is of the form
R@)= Y uallos) (9.4
a€X(Bp)t
with meromorphic functions uq(t) of one variable.
Remark 14. i) The condition (9.2) assures
R(x) = Z uq((ov, ) + Z CijrxixjTy
a€X(By)* 1<i<j<k<n

with Cj;, € C and thus the above theorem is proved in the invariant case (cf. Section 9.2) by [32]
or in the case of Type By by [23] or in the case of Type A,,_;. This theorem is proved in [40]
by using [P, P»] = [P, P3] = 0.

ii) Suppose n = 2 and the operators

0? 0?
P = R
<8 5 + 6952) + R(z1,72),
r=3 > o
A — m=i + Ti (w1, x2) P
oz 6 i< 0x' 0,

satisfy [P,T] =0 and 0,,,(T") ¢ Clo(P)]. Here ¢; € C. Then [31, Theorem 8.1] shows that there
exist functions w, ;(t) of one variable such that

L my—l

R(x1,22) E E byx1 + ayxe) i (ayz1 — byxs)
v=1 =0

by putting

0 9 - m—i, i =
<56T—78£>;@£ T = 1;[ ay§ —

Here (ay,b,) € C?\ {(0,0)} and a, by, # a,b, if p # v.
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Definition 6. By the expression (9.4), put
S={aeS(By"sul, #0}
and let W (S) be the Weyl group generated by {w, ; a € S} and moreover put S = W (9)S.

Theorem 15 ([23] for Type Bz, [40] in general). If the root system S has no irreducible
component of rank one, then (9.2) assures that any function uy(t) extends to a meromorphic
function on C.

Remark 15 ([32, (6.4)—(6.5)], [40, § 3]). The condition (9.2) is equivalent to
S =81 (1<i<j<n) (9.5)
with

i — <8i2vi(a:i)+ Z 02 (u (zi + ) + uyy (i —$V))>( ufi (i + w5) — ug (v — ;)

vel(i,j)

+3 (81'%'(1'1‘) + Y 0w (s + @) + ujy (@ — :Bu))> (O (@i + ) — Oyug(w; — )

vel(ij)

+2(vz~<xz~>+ > (ud (@i + 2y) + up (2 — 3y )))(83 g (w; +ag) — Ofug(w; — )

vel(i,g)

+ Z 812 jz_/ 'rl + xl’) 812 w( - xl/))(ujy(x] + xl’) - u]_zz(x] - xl/))
vel(i,j)

Here I(Z7]) = {1727-'-777‘} \ {17.7}
Lemma 5. Suppose P satisfies (9.2) and (9.4). Let Sy be a subset of S such that
Sy C ZRGZ' and S \ Sy C Z Re;
= i=m+1
with a suitable m. Then the Schrodinger operator

P=s3 i+ Y ulfam)
=1

aESyNS

m
on R™ admits a differential operator Py on R™ satisfying [P',Py] =0 and o(P}) = >, & ]2,
1<i<j<n
that is, the condition (9.2) with replacing P by P’.

Proof. This lemma clearly follows from the equivalent condition (9.5) given in Remark 15. B

9.2 Invariant case

Theorem 16 ([24, 25, 29, 32]). Assume that P in (1.1) is invariant under the Weyl group
W =W(A,-1), W(By) or W(D,,) withn >3, or W = W(B3). If we have (1.2) with

P1:81+82++8n lf W:W(An—1)7
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> Ei&in--E if W =W(A4,_1) and 1<k<n,

1<j1<je < <jp<n

o(Py) = Yo g if W=W(B,) ad 1<k<n,

1<j1<je<-<jp<n
Z 5316322 €7 if W= W(Dn) and 1<k <n,

Jk
1<j1<ge << <n

U(Pn) 25152"'571 Z'f W:W(Dn)a

Conjecture is true.
Remark 16. The condition
[P,P)|=[P,P3]=0 if W =W(An-1),
[P,P]=0 if W=W(B,) or W =W (D)

together with (9.4) is sufficient for the proof of this theorem.

9.3 Enough singularities
Put 2 = {a € X(B,,)"; uu(t) is not entire}.

Theorem 17. i) ([23]) Suppose n = 2 and let S be of type By. If #Z > 2, then Conjecture is
true.

i) ([40]) If S is of type An—1 or of type By, and moreover the reflections w,, for a € = generate
W(An—1) or W(By,), respectively, then Conjecture is true.

This theorem follows from the following key Lemma.

Lemma 6 ([23, 37, 40]). Suppose (9.1) and moreover that there exist o and [ in S such that
a # B, (o, B) # 0 and us(t) has a singularity at t = to. Then uq(t — to) is an even function
with a pole of order two at the origin and

U () (t— 210 éjjli) —up(t) i wa(B) € S(By),
U (9 (—t + 2t 53; Zi) —up(t) if —wa(B) € X(B.)". (9.6)

Corollary 1. Suppose the assumption in Lemma 6.
i) If un(t) has another singularity at t1 # to, then

U,y (t 2t — to) éz li) —u,(t) for ~y€ES. (9.7)
ii) Assume that u, has poles at 0, to and t1 such that ty and t1 are linearly independent
over R. Then ug(t) is a doubly periodic function and therefore ug(t) has poles and hence uq/(t)
is also a doubly periodic function. We may moreover assume that ug has a pole at 0 by a parallel
transformation of the variable x.
Case I: Suppose o =e; —ej, B=e; —ep with1 <i<j<k<n.

Uey—e; (t) = Ue;—cy (t) = Ue;—e, () = Cp(t; 2w1, 2wr) 4+ C

with suitable C, C' € C, which corresponds to (Ellip-As).
Case II: Suppose o =e; —e; and 3 =e; with 1 <i < j < n.
Then, (te;—e, (t), e, e, (), te, (t), e, (t)) is (Ellip-B), (Ellip-Ba-S) or (Ellip?-By).
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iii) If S is of type A,_1 or B, or D, and one of u,(t) is a doubly periodic function with
poles, then P transforms into (Ellip-A,,_;) or (Ellip-B,,) or (Ellip-D,,) under a suitable parallel
transformation on C".

Proof of Corollary 1. i) is a direct consequence of Lemma 6. iii) follows from ii). We have
only to show ii).
Case I: It follows from (9.6) that us(t) = ug(t) = ue,—¢, (t) and they are even functions. Let
Fow, 20 = {2miwyr + 2mows ; my, mg € Z}

be the set of poles of u,. Then (9.7) implies ug(t + 2w1) = ug(t + 2w2) = ug(t). Since 2w; and
2ws are periods of () and there exists only one double pole in the fundamental domain defined
by these periods, we have the claim.

Case II: It follows from (9.6) that ue, e, (t) = te,+e, (t) and ue,(t) = ue, (t) and they are even
functions. Let "o, 2w, be the poles of ue, ¢;(t). Then (9.7) means wue, (t +2w1) = ue, (t +2w2) =
Ue, (t). Considering the poles of ue, ¢, (t) with (9.7), we have four possibilities of poles of w.,:

(Case 11-0): T'ow; 20,
(Case 11—1)1 F2w1,2w2 U(wl + F2w1,2w2)a
(Case 11—2): Fle72wQ U(CUQ + FQthwQ),
(Case II-3): Dowy, 20, Ulwr + F2w1,2w2) Ulws + F2w172w2)'
Here we note that (Case II-1) changes into (Case 11-2) if we exchange w; and wo. Then we have
(Case 11-0): e, —e; (t + 4w1) = Ue;—e, (t + 4w2) = u(t),
(Case I1-2): e, —e; (t + 4w1) = Ue;—e, (t + 2w2) = u(t),
(Case 11-3): e, —e; (t + 2w1) = Ue;—e, (t + 2w2) = u(t).
Thus (Case 11-0), (Case II-2) and (Case 11-3) are reduced to (Ellip?-Bsy), (Ellip-Bs-S) and

(Ellip-Bs), respectively. |
Let 'H be a finite set of mutually non-parallel vectors in R and suppose
1 = 2 <Oé, Oé> D
P:_Q;aj + R(z), R(x):%Ca<a’m>2 + R(z).

Here C,, are nonzero complex numbers and R(ac) is real analytic at the origin. We assume that
‘H is irreducible, namely,

R" = > Ra,

a€H
G#EVH GH=>3aecH and I8 e€ H\'H with {(a, B) # 0.

Definition 7. The potential function R(z) of a Schrodinger operator is reducible if R(x) and
R™ is decomposed as R(x) = Ry(z) + Ra(z) and R™ =V} @ V5 such that

0CVICR", Vo=Vi", 0,Ri(x) =0y Re(x) =0 for VYwa€Vp and Yoy € V.
If R(z) is not reducible, R(z) is called to be irreducible.
Theorem 18 ([37]). Suppose n > 2 and there exists a differential operator @ with [P,Q] = 0
whose principal symbol does not depend on x and is not a polynomial of Zn: 2. Put W =
{wa; a0 € H}. If =

2C, #k(k+1) for kelZ and aeH, (9.8)

then W is a finite reflection group and o(Q) is W -invariant.
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9.4 Periodic potentials

The following theorem is a generalization of the result in [30].

Theorem 19. Assume R(x) is of the form (9.4) with meromorphic functions uq(t) on C and

R<$+27za\/,j;a

and moreover assume that

> “R(z) for acX(By) (9.9)

the root system S does not contain an irreducible component of

type By or even if S contains an irreducible component

Sy = {xe; tej,Le;, te;} of type Ba, the origin s = 0 is not an isolated
essential singularity of us(logs) for a € So(X(Dy) 7.

Then Conjecture is true.

Remark 17. i) The integrable systems classified in this note which satisfy the assumption of
Theorem 19 under a suitable coordinate system are (Ellip-*) and (Trig-*) and (Toda-*), which
are the systems given in this note whose potential functions are not rational.

ii) The assumption (9.9) implies that u,(log s) is a meromorphic function on C\ {0} for any
a € ¥(B,)". It means that the corresponding Schrédinger operator is naturally defined on the
Cartan subgroup of Sp(n,C) with a meromorphic potential function.

Lemma 7. Assumen =2, (9.2), (9.9), S is of type Bs and moreover uq(log s) are holomorphic
for o € £(Ba)t and 0 < |s| < 1. If the origin is at most a pole of ug(logs) for 8 € X(D2)*,
the origin is also at most a pole of uq(logs) for a € X(By)™.

Proof. Use the notation as in (4.2). Put

o o
u (logs) =Uj + ZI/UV_SV, ut(logs) = Uy + Z vUfs”,
v=r v=m
[e.9] o0
v(logs) = Vo + Z vV,s", w(logs) = Wy + Z vW,s".
V=—00 v=—00

with U, Uf, V,,, W, € C, rm # 0 and (U,”,U,}) # 0. Then as is shown in [30] the condition
for the existence of T'(z,y) in (4.3) is equivalent to

pq(2p — q)(p — q)(Vgp_qU;_p + VoU,_, + Wq_ng; -W,U,)=0 for p,q € Z. (9.10)
Hence if p < r and p < m,
p(p— k) + k)k(Vppo Ut + VU ) =0 for ke Z.

Case U, # 0: Put &k = r. Suppose ¢ is negative with a sufficiently large absolute value.
oo

Then V, = (—UZ, /U )V 42, which implies V, = 0 since Y. vV, s” converges for 0 < |s| < 1.
V=—00

Suppose ¢ is negative with a sufficiently large absolute value compared to p. Then by the
relation Wq_ng; — W,U, = 0 we similarly conclude W, = 0.

Case U,! # 0: Putting k = —m, we have the same conclusion as above in the same way. W
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Proof of Theorem 19. Lemma 5 assures that we may assume S is an irreducible root system.
We may moreover assume that the rank of S is greater than one.

Suppose that there exists v € S such that the origin is neither a removable singularity nor
an isolated singularity of u,(logs). Then wu,(t) is a doubly periodic function with poles. Owing
to Corollary 1, > wuq({c,x)) is reduced to the potential function of (Ellip-A,_1) or (Ellip-B,,)

QES|
or (Ellip-Dy,). ’

Thus we may assume that the origin is a removable singularity or an isolated singularity of
uq(log s) for any o € S.

Let a, 8 € SO X(D,,) with a # [ and (o, ) # 0. Put v = wef or v = —w,f so that
v € X(Dy)*. Then [30] shows that u(t) = ua(t), v(t) = ug(t) and w(t) = u,(—t) satisfy (9.3).
Then Remark 13 says that the origin is at most a pole of u(log s), v(logs) and w(log s).

Let « € SO X(Dy,) and f € S\ X(D,,) with (o, 5) # 0. Let W be the reflection group
generated by w, and wg and put S° = W{a, 8} () 2(By). Then [30] also shows that

R(z) =) usy((y.))

yeS°

defines an integrable potential function of type By. Hence Lemma 7 assures that the origin is
at most a pole of u,(logs) for a € S°.

Since S is irreducible, the origin is at most a pole of u,(logs) for & € S. Then Theorem 19
follows from [30]. |

9.5 Uniqueness

We give some remarks on the operator which commutes with the Schrodinger operator P.

Remark 18 ([32, Lemma 3.1 ii)]). If differential operators @ and Q' satisfy [Q,Q'] = 0,
a(@)=>" ﬁjN and ord(Q) < N — 2, then @ has a constant principal symbol, that is, 0(Q) does
j=1

not depend on x.

Hence if there exist differential operators Q1,...,Q, with constant principal symbols such
that 0(Q1),...,0(Qpn) are algebraically independent and moreover they satisfy [Q;, Q;] = 0 for
1 <i < j < n, then any operator @ satisfying [@Q,Q;] = 0 for j = 1,...,n has a constant
principal symbol. In particular, if a differential operator @ satisfies [@Q, P;] = 0 for Py in (1.2)
and (1.4) with k =1,...,n, then 0(Q) does not depend on z.

Remark 19. Assume that a differential operator () commutes with a Schrédinger operator P
and moreover assume that there exist linearly independent vectors ¢; € C™ for j = 1,...,n such
that the operator is invariant under the parallel transformations  — x +¢; for j = 1,...,n.
Then o(Q) does not depend on z (cf. [32, Lemma 3.1 i)]).

Furthermore assume that P is of type (Ellip-F') or (Trig-F') or (Rat-F) with F' = A,,_; or B,
or D,,. If the condition (9.8) holds or @ is W (F')-invariant, it follows from Theorem 18 or [29,
Proposition 3.6] that @ is in the ring C[Py, ..., P,| generated by the W (F')-invariant commuting
differential operators. If the condition (8.11) is not valid, o(Q) is not necessarily W (F')-invariant
(cf. [7, 35, 39]).

Remark 20 ([32, Theorem 3.2]). Let P be the Schrédinger operator in Theorem 16. Un-
der the notation in Theorem 16 suppose P are W-invariant for 1 < k < n. Then the ring
C[Py, ..., P,] is uniquely determined by P and @, where Q = P3 if W = W(A,_1) and Q = P,
it W=W(B,) or W(D,,).
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J
¢ € C such that P, admits a non-trivial commuting differential operator Q. of order four for any

c € C, then the operator P. may be a system stated in Conjecture under a suitable coordinate
system.

The following example satisfies neither this condition nor the condition (9.8). It does not
admit commuting differential operators (1.2) satisfying (1.4) if m # 0, —1.

n
Remark 21. If P. = —(1/2) 8} + cR(x) is a Schrodinger operator with a coupling constant
=1

Example 2. It is shown in [6, 35] that the Schrédinger operator
1 9? m(m + 1) — m—+1
Pean i ¥ mmen S
2 j=1 0z; 1<i<j<n (25 — ;) i1 (i — vmay)

is completely integrable for any m and algebraically integrable if m is an integer.

The following example shows that the Schrodinger operator P does not necessarily determine
the commuting system C[Py,..., P,].

Example 3. Let «, 3, v and A be complex numbers. Put (A4g, A1, Co, C1) = (o, v/2—A/2,5,A)
for (Rat-B2-S) in Theorem 3 (cf. [32, Remark 3.7]). Then the Schrédinger operator

1( 02 0? 2a 15}
P — _ = o 2 2
i 2 <8x2 - 8y2> * (x v )<(x2 - y2)2 * x2y2 " 7)

commutes with

0? dazxy 2 Ié] 5\ 0 3 5\ 02

& 2\ [ B ) 16a z?y? + 16a3 5 o
4 £+ 2 Z 4 8A(v — A
+ <m2 + Az 7 + Ay | + @2 — g2 + 8A(y Yzy

for any A € C. Note that [Qa,gy2 Qagyx] # 0if A # X and these operators are W (Bs)-
invariant. The half of the coefficient of the term A of (), ., considered as a polynomial
function of A is

A xy y y o 29
Supy=—(y— —2— | +2 - 26( Lo+ L) + dya?y?.
o <y0x xﬁ.v) i Oé((ﬂb‘—y)2 (ﬂc‘+1/)2>+ ﬁ<w2+y2>+ fa
In particular, P = —(1/2)(82 + 92) 4+ v(z* 4 y*) commutes with 9,9, — 2yxy and 20, — yd,.
Note that if R(x) is a polynomial function on C", the condition [—(1/2) > 97+ R(x), Q} =0
j=1

for a differential operator @) implies that the coefficients of @ are polynomial functions (cf. [32,
Lemma 3.4]).

9.6 Regular singularities

Definition 8 ([16]). Put ¥, = ¢,0/0t; and Yy = {t = (t1,...,t,) € C";tx = 0}. Then
a differential operator () of the variable ¢ is said to have regular singularities along the set of
walls {Y7,...,Y,} if

Q=q(¥r,....0n) + > Qu(t, V).

k=1
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Here g is a polynomial of n variables and Q) are differential operators with the form

Q(t,0) = aa(t)dg--- 99"
and a,(t) are analytic at ¢ = 0. In this case we define

0:(Q) = q(&1, - -, &n)
and 0,(Q) is called the indicial polynomial of Q.

Theorem 20. Let R(t) be a holomorphic function defined on a neighborhood of the origin of C™.
Let Q1 and Q9 be differential operators of t which have reqular singularities along the set of walls
{Y1,...,Y,}. Suppose 0.(Q1) = 0.(Q2) and [Q1, P] = [Q2, P] = 0 with the Schriodinger operator

n—1
1 2
P=-—7 (ﬁi + ;:l(ﬁm — ;) > + R().

Then Ql = QQ.

Proof. Put t; = e~@i=zit1) for j=1,...,n —1 and t, = e . Then 0j =Vj41 — 0 for j =
1,...,n—1 and 9, = —¥,. Under the coordinate system = = (z1,...,x,) Remark 19 says that
@1 — Q2 has a constant principal symbol, which implies @1 = Q2 because 0.(Q1 — Q2) =0. N

A more general result than this theorem is given in [31]. The following corollary is a direct
consequence of this theorem.

Corollary 2. Put t; = e M#i=%i11) for j = 1,...,n — 1 and t, = e . Suppose P is
the Schrédinger operator of type (Trig-An—1), (Trig-A,—1-bry-reg), (Trig-BC),-reg), (Trig-D,,),
(Toda-A,—1), (Toda-BC,,) or (Toda-D,,).

i) P and Py for k =1,...,n have regular singularities along the set of walls {Y1,...,Yn}.

ii) Let Q be a differential operator which has regular singularities along the set of walls
{Y1,...,Ya} and satisfies [Q, P] = 0. If 0.(Q) = 0+(Q) for an operator Q € C[Py,..., P, then
Q=0Q.

Remark 22. i) This corollary assures that certain radial parts of invariant differential operators
on a symmetric space correspond to our completely integrable systems with regular singularities
and the map o, corresponds to the Harish-Chandra isomorphism (cf. [31]).

ii) The system (Trig- BC,,-reg) is Heckman—Opdam’s hypergeometric system [11] of type BC,.
Since (Trig-BC)-reg) is a generalization of Gauss hypergeometric system related to the root
system X(B),), the systems in the following diagram are considered to be generalizations of Gauss
hypergeometric system and its limits (cf. Section 8). They form a class whose eigenfunctions
should be easier to be analyzed than those of other systems in this note.

Hierarchy starting from (Trig-BC,-reg)

Toda-A,,_1
/
Rat-D,, Trig-A,_1 — Rat-A,_1
3.1 3.1 3.1
Rat-B,-2 Trig-A,,_1-bry-reg — Rat-A,_1-bry2
i /!
Trig-BC),-reg — Toda-D,-bry — Toda-BC),
U3:1 V31 U3
Trig-D,, — Toda-D,, — Toda-A,_1
! N

Trig-A, 1 Rat-D,
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9.7 Other forms

If a Schrodinger operator P is in the commutative algebra D = C[Py,. .., P,], then the differential
operator P := t(z)"'P o (x) with a function (x) is in the commutative algebra D =
Clp(z)™tP o w(x), o, (x) 7P, 0 9(x)] of differential operators. Then

n

P= Z aj(z R(z), (9.11)
J 1 j
agﬂéf) = a;(z) for j=1,...,n (9.12)

Conversely, if a function (x) satisfies (9.12) for a differential operator P of the form (9.11),
then P = (x)P o 4(x)~" is of the form (1.1), which we have studied in this note.
If ¢(z) is a function satisfying

1 0%

o) 20 52 ) = RO,
then

3 -1 ~ 0 1 Q- 2 LI

P=y(@) 5 D00+ R@) | ovle) = —5 30— p() D 2L ()0

j=1 j=1 j=1 "7
Note that
Ll IC) ST S LGN - (aqs( >>
T o 2 2 .
Ox; Ox; = Ox; = Ox; = Ox;j
Putting
o(x) =m Z log sinh A(z; — ),
1<i<j<n

we have

8;)(56) =m Z coth A\(zy — z;),

Tk 1<i<n, i#k
n_ 52
0 ¢ -|- Z( o ) = —2\’m Z sinh ™2 \(x; — ;)
j=1 k 1<i<j<n
+ 2X%m? Z coth? M(w; — z;) + A\?m? nin = 1?))(71 )
1<i<j<n
2 _
=2\2m(m — 1) Z sinh ™2 \(z; — x;) + )\2m2n(n31)
1<i<j<n

since

cotha - coth 8 + coth 3 - cothy + coth~y - cotha = —1 if a+pB+v=0.

Hence

]5:— Z f—m Z Acoth AN(z; — z;)(0; — 95),

1<i<j<n
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H A" sinh™ Az — x5),

1<i<j<n

Hoepov o=} Sote X it

1<i<j<n

—1)\? N m2n(n? — 1)\2

:IZ —a;j) 6

(9.13)

and P is transformed into the Schrédinger operator of type (Trig-A,_1).
Now we put

o(x) = my Z (logsinh A(z; — x;) + logsinh A(x; + x;)) + my Z log sinh Axy,

1<i<j<n 1<k<n
+ meo Z log sinh 2 Az,
1<k<n
and we have
0p(x) \ Z
= Amy (coth A(zg + ;) + coth A(z, — x;)) + Amy coth Axy, + 2Amgy coth 2Axy,

ox
k 1<i<n, itk

1
coth Az, coth2\x, =1 + 3 sinh™2 \zy,
Z (2 coth A(zy, + x;) coth A(xg, — ;) + 2 coth A(xy, + ;) coth A(zy, — x5)

{i,g.k}=1
+ coth A(xy, + x;) coth A(z, + ;) + coth A(xy, — x;) coth A(zy, — x5))

= Z (coth A(zg, + ;) coth A(x + x) + coth A(z; — x;) coth A(z; + x)

{i.g.k}=1
+ coth A(x; — x;) coth M(z; + xp)) + Z (coth A(zy, — x;) coth Az, — x5)) =8
{igk}=I
for Ic{l,...,n} with #I =3,
sinh 2z}
th A i th \(z — x;) = — . ;

coth Ay + i) + coth Alzy — i) sinh A(zg + x;) sinh Az — ;)

cosh 2 \x;. — cosh 2\x; 2 cosh? \xj, — 2 cosh? \z;

= = 2
sinh A(xg 4+ ;) sinh Mz — ;) sinh A(zg + x;) sinh A(z — ;) ’

n 2
Z<8¢(x)) =2Mmg Y (coth® A(w; — 2;) + coth? A(; + ;)

ox
k=1 k 1<i<j<n

n n n
+A°m7 > coth? Azy, +4X%m3 Y ~ coth? 2Azy, + 2X*mymg Y sinh™? Ay

k=1 k=1 k=1
4ANm3n(n —1)(n — 2
+ mon(n3 )(n—2) + 2X2mg(mq + 2ma)n(n — 1) + 4\2miman,
n 2 n 2
SO S (0N o2 my — 1) 3 (sinh Az —z;) + sinh 2 Az 7))
. ox= oxy e
j=1 J k=1 I<i<j<n

n n
+ )\le(ml +2mg — 1) Z sinh™2 \xy, + 4)\2m2(m2 -1) Z sinh ™2 2z,
k=1 k=1

2
+ /\2<<3m0(2n —1)+2m; + 4m2>m0(n - 1)+ (m1+ 2m2)2>n.
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R 1 n n
P = -3 o2 — 1)\< Z mo(coth A(z; — xx) + coth A(z; + z))

j=1 k= 1<i<j<n
+ m1 coth Az 4+ 2mo coth 2)\mk> O,
P(x) = H (sinh™® X(x; — ;) sinh™ A(z; + x5)) H sinh™ Az, H sinh™? 2z (9.14)
1<i<j<n k1 k1

and P is transformed into the Schrédinger operator of type (Trig-BC),-reg):

. 1S A2 A
Y(z)o Poyp (z) = D) 2832 +mo(mo — 1) Z (sinh2 Azi—z;) +sinh2 )\(xi+xj)>

j=1 1<i<j<n

- +2ms — D2 2 —1))\2
+Zm1 m m2 ) +Z ma(ma )

2 sinh? Az, P sinh? 2z,

2
+ )\2< 3 0(2n — 1)(n — 1) + mo(mq + 2ma)(n — 1) + (7711+22n12)>n
Remark 23. Asis shown in [15, Theorem 5.24 in Ch. II], the operator (9.13) or (9.14) gives the
radial part of the differential equation satisfied by the zonal spherical function of a Riemannian
symmetric space G/K of the non-compact type which corresponds to the Laplace—Beltrami
operator on G/K. Here G is a real connected semisimple Lie group with a finite center, K is
a maximal compact subgroup of G and the numbers 2m, 2mg, 2m; and 2msy correspond to the
multiplicities of the roots of the restricted root system for G.

Similarly the following operator P is used to characterize the K-fixed Whittaker vector v on

G =GL(n,R)

. n—1
1 Z Z 1 > 5 (i/2-n+1/4)a;
=1 J=1 j=1
2
2 _ I 2ej-aj40) 4 U = 1)
W(z)o Po §a+c§ejf —

Namely v is a simultaneous eigenfunction of the invariant differential operators on G/K and
satisfies v(nz) = x(n)v(z) with n € N and x € G/K. Here G = KAN is an Iwasawa de-
composition of G and x is a nonsingular character of the nilpotent Lie group N. Then v|xg
is a simultaneous eigenfunction of the commuting algebra of differential operators determined
by P.
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