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Abstract. On the basis of the competing cubic-quintic nonlinearity model, stability (insta-
bility) of continuous waves in nonlocal random non-Kerr nonlinear media is studied analy-
tically and numerically. Fluctuating media parameters are modeled by the Gaussian white
noise. It is shown that for different response functions of a medium nonlocality suppresses,
as a rule, both the growth rate peak and bandwidth of instability caused by random pa-
rameters. At the same time, for a special form of the response functions there can be an
“anomalous” subjection of nonlocality to the instability development which leads to further
increase of the growth rate. Along with the second-order moments of the modulational
amplitude, higher-order moments are taken into account.
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1 Introduction

Modulational instability (MI) is a universal phenomenon arising in many nonlinear systems. It is
closely related to formation of localized wave structures – solitons and considered as a precursor
of this formation. In optics, in case of Kerr-like nonlinear media MI is responsible for formation
of bright solitons and its absence is necessary for dark solitons formation [1]. MI consisting in the
exponential growth of small perturbations in the amplitude or the phase of initial optical waves
leads to the breakup of a beam or a quasi-coherent pulse into filaments that can evolve into
trains of solitons [2]. MI finds its application in plasma [3], hydrodynamics [4], fluids [5], atomic
Bose–Einstein condensates [6, 7]. The realm of applications also includes optical communications
systems, all-optical logical devices [8], and the generation of ultra-high repetition-rate trains of
soliton-like pulses [9].

In the setting of nonlinear optics it was shown that MI is absent for defocusing Kerr-type
media, the medium being described by deterministic parameters. In case of focusing determinis-
tic Kerr media MI presents as the long-wave instability with a finite bandwidth [10]. In frames
of a more realistic approach that implies random behavior of the characteristic parameters of
a medium, that is, they are considered to fluctuate randomly around their mean values, the
region of MI was shown to be extended by stochastic inhomogeneities of a Kerr medium over
the whole spectrum of modulation wave numbers. This is true for both focusing and defocusing
regimes [11].

The next step toward more realistic description implies taking into account nonlocality of
a medium. Moreover, some media manifestly exhibit nonlocal properties [12] and should be
described by appropriate nonlocal models. As a rule, this property is a result of a corresponding
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transport process such as heat conduction in thermal nonlinear media [13], diffusion of atoms in
a gas [14], many-body interaction in Bose–Einstein condensates [15]. Nonlocality, as compared
to local cases, can crucially change the behavior of proceeding in such a medium processes. For
example, it can support the propagation of self-focused beams without collapsing [16, 17]. Dark
solitons interaction [18] is greatly influenced by nonlocal properties of a medium. The investi-
gation of MI in deterministic nonlocal Kerr-type media revealed its absence for the defocusing
case for small and moderate values of the product “modulation amplitude × nonlocality pa-
rameter” [19]. The overview of the modulational instability and beam propagation in nonlocal
nonlinear media can be found in [20].

The incorporation of nonlocality into a model under study is generally accomplished via the
nonlinear refractive index of a material, whose dependence on the intensity is determined by the
chosen model of nonlinearity. Usually, experiments show the deviation from the linear (Kerr)
dependence of the refractive index on the incident intensity for large intensities. This occurs
for a range of materials: semiconductor-doped glasses [21], semiconductor waveguides [22], and
nonlinear polymers [23]. Saturable and cubic-quintic nonlinearities are the most typical for
nonlinear systems.

The objective of this paper is to investigate MI in nonlocal medium with stochastic param-
eters and competing cubic-quintic nonlinearity. The fact that nonlocality spreads out localized
excitations allows to anticipate the decrease of both the growth rate peaks and bandwidths of
instability. Such a situation is valid for the case of stochastic media with the sign-definite Fourier
images of the response functions. However, for nonlocal media with sign-indefinite Fourier image
of the response function MI gain can exceed that of a local stochastic medium. This behavior
can be considered as “anomalous”.

In the present paper the investigation of MI of continuous waves in nonlocal stochastic media
is based on a generalized nonlocal nonlinear Schrödinger equation with random coefficients and
competing nonlinearities. For the illustration of the obtained results we use the white noise
model for parameter fluctuations and response functions of several types.

2 Model

In this paper we consider a medium with nonlinearity that is a nonlocal function of the incident
field. This nonlinearity induced by a wave with the intensity I(x, z) can be presented in general
form

∆n(I) = g(z)
∫ ∞

−∞
dx′R(x− x′)Ia(x′, z) + s(z)

∫ ∞

−∞
dx′L(x− x′)I2a(x′, z), (1)

where x is the transverse coordinate, a is a positive constant, z can be considered as time or
the spatial propagation coordinate depending on the context, nonlinearity coefficients g(z) and
s(z) are considered as stochastic functions which fluctuate around their mean values g0 and s0:

g(z) = g0(1 + mg(z)), s(z) = s0(1 + ms(z)), (2)

Here mg and ms are independent zero-mean random processes of the Gaussian white-noise type,

〈mg〉 = 〈ms〉 = 0, 〈mg(z)mg(z′)〉 = 2σ2
gδ(z − z′), 〈ms(z)ms(z′)〉 = 2σ2

sδ(z − z′).

The angle brackets designate the expectation with respect to the distribution of the correspon-
ding processes. In the imposed phenomenological model (1) the field-intensity dependent change
of the refractive index is characterized by two normalized symmetric response functions R(x)
and L(x),

∫∞
−∞ dxR(x) =

∫∞
−∞ dxL(x) = 1. In case when R(x) = L(x) = δ(x) (local limit) and
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constant nonlinearity coefficients we reproduce the well-known general power-law dependence
on the incident intensity for local models with competing nonlinearities [1]. At the same time,
for equal response functions one can consider the expression as the second-order expansion of
the model with saturable nonlinearity, provided a = 1 and s = −g/Is = −n∞/I2

s , where Is is
the saturation intensity and n∞ corresponds to the maximum change in the refractive index.
The set of the parameters a = 1 and s(z) = 0 is associated with nonlocal Kerr-type media with
random parameters [24].

Thus the propagation of plane waves along the z axis in a stochastic medium with nonlocal
competing nonlinearities is governed by the generalized nonlinear Schrödinger equation

iuz +
1
2
d(z)uxx + u∆n(|u|2) = 0, (3)

where u(x, z) is the complex envelope amplitude, ∆n(|u|2) is defined by (1) and standard dimen-
sionless variables are used. The diffraction coefficient d(z), just as g(z) and s(z), is a stochastic
function with the same properties:

〈md〉 = 0, 〈md(z)md(z′)〉 = 2σ2
dδ(z − z′).

Equation (3) represents the generalization of the Kerr-type nonlocal model considered in [24] for
the case of higher-order nonlinearities. The deterministic variant was comprehensively studied
in [25].

In further considerations we adopt that d0 > 0 and the condition g0 · s0 < 0 stands for the
competition of nonlinearities.

As a solution equation (3) admits a homogeneous plane wave

u0 = A exp
[
iA2a

∫ z

0
dz′

(
g(z′) + A2as(z′)

)]
, (4)

where A is a real amplitude. Proceeding to a linear stability analysis of the solution (4) we
assume that

u(x, z) = (A + v(x, z)) exp
[
iA2a

∫ z

0
dz′

(
g(z′) + A2as(z′)

)]
(5)

is a perturbed solution of equation (3). Here v(x, z) is a small complex modulation. The
substitution of equation (5) into equation (3) and the linearization around the plane wave (4)
provide a linear equation for v(x, z):

ivz +
1
2
d(z)vxx + 2ag(z)A2a

∫
dx′R(x− x′)Re v(x′, z)

+ 4as(z)A4a

∫
dx′L(x− x′)Re v(x′, z) = 0. (6)

Decomposing v into real and imaginary parts, v = vr(x, z) + ivi(x, z), and performing the
Fourier transforms

ρ(k, z) =
1
2π

∫ ∞

−∞
dx vr(x, z)eikx, σ(k, z) =

1
2π

∫ ∞

−∞
dx vi(x, z)eikx,

R̂(k, z) =
1
2π

∫ ∞

−∞
dxR(x, z)eikx, L̂(k, z) =

1
2π

∫ ∞

−∞
dxL(x, z)eikx,

we convert equation (6) to a system of linear equations for ρ and σ:

d
dz

(
ρ
σ

)
=

(
0 1

2d(z)k2

−1
2d(z)k2 + 2ag(z)A2aR̂ + 4as(z)A4aL̂ 0

) (
ρ
σ

)
. (7)
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Equation (7) is sufficient for the investigation of MI for a deterministic medium with the
parameters d0, g0, and s0. In contrast, for stochastic systems one should consider the second
moments 〈ρ2〉, 〈ρσ〉 and 〈σ2〉 providing the minimal nontrivial information about MI induced
by random fluctuations.

3 The second-order moment MI gain

3.1 Theoretical approach

We consider the vector of the second moments

X(2) =
(
〈ρ2〉, 〈ρσ〉, 〈σ2〉

)T
. (8)

The Furutsu–Novikov formula [26]

〈ui(r)F [r]〉 =
∑

j

∫
dr′Bij(r− r′)

〈
δF [u]
δuj(r′)

〉
, (9)

where u is an arbitrary zero-mean Gaussian field with the covariance function Bij(r), F [u] is
a functional, allows to express products like 〈mdρ

2〉 in terms of components of X(2). As a result,
X(2) is subject to the evolution equation (d/dz) X(2) = M (2)X(2), where M (2) is the 3×3 matrix
of the form

M (2) =

 −1
2A B 1

2A

C − 1
2B −A 1

2B
1
2 (D + A) 2

(
C − 1

2B
)

−1
2A

 , (10)

where

A = σ2
dd

2
0k

4, B = d0k
2, C = 2ag0A

2aR̂ + 4as0A
4aL̂,

D = 64a2σ2
ss

2
0A

8aL̂2 + 16a2σ2
gg

2
0A

4aR̂2.

Instability occurs for positive real parts of the eigenvalues of M (2). MI gain G2(k) is determined
by the largest positive value. We will illustrate the results by means of the exponential response
function with the sign-definite Fourier image

Re(x) =
1
2λ

exp
(
−|x|

λ

)
, R̂e(k) =

1
1 + λ2k2

(11)

and as an example of the sign-indefinite Fourier transform response function we will take the
rectangular response function

Rr(x) =


1
2λ

for |x| ≤ λ,

0 for |x| > λ,

R̂r(k) =
sin(λk)

λk
, (12)

where λ is the nonlocality parameter. Below we will study in detail the case of competing cubic-
quintic nonlinearity, that is, a = 1, g0 > 0 and s0 < 0 and the response functions are assumed
to be equal. For analysis purposes it is convenient to introduce a quantity

χ =
g0

2|s0|A2

with the help of what we will discriminate between the focusing and the defocusing regimes.
The inequality χ > 1 corresponds to the predominance of the cubic nonlinearity term over the
defocusing one, χ < 1 determines the defocusing regime when the quintic term prevails.
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(a) (b) (c)

Figure 1. Plots of the MI gain G2(k) for: (a) local stochastic media (solid lines) and nonlocal stochastic
media with the exponential response function (dashed lines) for different values of the parameter χ: the
pair of red curves corresponds to χ = 2, blue ones – to χ = 1, green ones – to χ = 0.8, here λ = 1; (b):
local stochastic media (blue line) and nonlocal stochastic media with the exponential response function
for χ = 0.8: λ2 = 1 (red line), λ2 = 18 (green line); (c): local deterministic media with competing
cubic-quintic nonlinearity (yellow line), local stochastic media (blue line), and nonlocal stochastic media
with the exponential response function for χ = 1.4: λ2 = 1 (red line), λ2 = 18 (green line). On all plots:
d0 = 2, g0A

2 = 1, σ2
d = σ2

g = σ2
s = 0.1.

(a) (b)

Figure 2. Plots of the MI gain G2(k) for local stochastic media (blue lines) and nonlocal stochastic
media with the rectangular response function: (a) χ = 0.8, (b) χ = 1.4. On both plots λ = 2 (red lines),
λ = 6 (green lines), λ = 25 (yellow lines), d0 = 2, g0A

2 = 1, σ2
d = σ2

g = σ2
s = 0.1.

3.2 Numerical results

In Fig. 1(a) we demonstrate the influence of the transition from the focusing regime (χ > 1)
to the defocusing one (χ < 1) on the MI bandwidth and the MI gain peak for media with
cubic-quintic nonlinearity as the intensity of the incident field is increased. This transition is
accompanied by the pronounced enhancement of the MI bandwidth. At the same time the MI
gain peak is decreased. For the defocusing regime the matrix (10) possesses one real eigenvalue λ1

that is positive for all k and two complex conjugate ones λ2 and λ3 with negative real parts
in the case of the exponential response function. The growth rate peak of G2(k) ≡ λ1 and MI
bandwidth are suppressed by nonlocality. The growth of the nonlocality parameter λ results in
the amplification of the suppression effect (Fig. 1(b)). The situation for the rectangular response
function (12) is different. For sufficiently high nonlocality MI gain maximum for a given wave
number k can exceed the corresponding value of G2 for a local random medium with cubic-quintic
nonlinearity (left panel of Fig. 2). At the same time, the MI bandwidth becomes strictly finite
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in this limit A local deterministic medium with the competing cubic-quintic nonlocality in the
focusing regime (χ > 1) (Fig. 1(c)) produces the long-wave instability with a finite bandwidth.
The bandwidth is extended by stochasticity of medium parameters to the whole spectrum of
modulation wave numbers. Corresponding calculation of eigenvalues of the matrix M2 (10) for
the case of χ > 1 demonstrates the suppression the MI gain and bandwidth for media with both
sigh-definite and sign-indefinite response functions (Fig. 2(b)). The positions of the MI gains
shift toward smaller wave numbers k under nonlocality growth, producing finite bandwidth.

4 Higher-order moments

4.1 Theoretical approach

Evidently, in frames of the second-order moments analysis (8) it is impossible to characterize
in full detail the dynamics of a stochastic system. For example, featured points of MI gain
(maximum position, bandwidth, etc.) calculated from the second moments could fluctuate
when accounting for higher-order moments. More detailed information about MI is provided by
the higher-order moments

X(2n) =
{
〈ρ(2n−j)σj〉

}
, j = 0, . . . , 2n. (13)

As before, applying the Furutsu–Novikov formula, we obtain a matrix M (2n) in the form

M (2n) = d0k
2A(2n) +

(
2ag0A

2aR̂ + 4as0A
4aL̂− 1

2d0k
2
)
B(2n)

+ d2
0k

4σ2
dC

(2n) +
(
64a2s2

0A
8aL̂σ2

s + 16a2g2
0A

4aR̂2σ2
g

)
D(2n) (14)

with the following non-zero entries of the matrices A(2n), B(2n), C(2n) and D(2n)

A
(2n)
j,j+1 = n− j

2
, B

(2n)
j,j−1 = j, C

(2n)
jj = −1

2
(n + 2nj − j2),

C
(2n)
j,j+2 =

(
n− j

2

) (
n− j + 1

2

)
, C

(2n)
j,j−2 = D

(2n)
j,j−2 =

1
4
j(j − 1), j = 0, . . . , 2n.

Then among the roots of the characteristic polynomial det |M (2n)−λI| the maximal real part
will determine nG2n(k). The fact that the characteristic polynomial is of the odd degree and all
the matrix elements of M (2n) are real ensures at least one real eigenvalue of M (2n), the others
being mutually complex conjugate. Below the analysis of the 4-th and 6-th moments is given.

4.2 Numerical results

Fig. 3 presents the results of calculating MI gains G2, G4 and G6 for the exponential response
function. In case of the focusing regime as well for the defocusing one nonlocality suppresses
the higher-order moments. For the focusing regime the maxima of MI gains of higher orders are
shifted to higher wave numbers k. The opposite shift direction occurs for the defocusing regime.
As compared to the case of Kerr-type media [24], this apparently exhibits the stochastic origin of
the MI gains. The similar situation takes place for media with the rectangular response function
(Fig. 4(a)). Fig. 4(b) provides the dependence of the maximum of the main MI gain peak on
the nonlocality parameter λ for the case when the quintic nonlinearity term dominates (χ < 1).
Such a dependence reflects the possibility for MI gain maximum to exceed the corresponding
value of MI gain for a local random medium in a narrow domain of wave numbers k (see
Fig. 2(a)). At the same time Fig. 4(b) depicts the closing in of MI gains of different orders as
the nonlocality is increased, that is, high nonlocality smooths the fluctuations of the modulation
amplitude growth. This is valid irrespectively of the response properties of the media regarded
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(a) (b)

Figure 3. Plots of the MI gains G6(k) (solid lines), G4 (dashed lines), and G2 (dash-dotted lines) for
local stochastic media (red curves on both plots) and nonlocal stochastic media with the exponential
response function; (a): χ = 2, λ = 2 (yellow curves), λ = 4 (green curves); (b): χ = 0.9, λ =

√
2 (yellow

curves), λ = 4 (green curves). On both plots d0 = 2, g0A
2 = 1, σ2

d = σ2
g = σ2

s = 0.1.

λ

(a) (b)

Figure 4. (a) Plots of the MI gains G6(k) (solid lines), G4 (dashed lines), and G2 (dash-dotted lines) for
local stochastic media (blue curves) and nonlocal stochastic media with the rectangular response function
(red curves); here λ = 1. (b) Plots of the maximum of the main peak of the MI gains G6(k) (green line),
G4 (red line), and G2 (yellow line) versus nonlocality parameter λ. On both plots χ = 0.8, d0 = 2,
g0A

2 = 1, σ2
d = σ2

g = σ2
s = 0.1.

and regimes of cubic-quintic nonlinearity. In Fig. 5 we demonstrate MI gains G2, G4 and G6 for
the exponential response function for the regimes with diverse signs of nonlinearity coefficients
than considered above and compare them with the competing cubic-quintic nonlinearity regime.
For focusing cubic and quintic nonlinearities (g0 > 0, s0 > 0) one observes the same characteristic
pattern consisting in the suppression MI gains, at the same time as compared to competing
nonlinearity MI gains are less suppressed (Fig. 5(a)). The opposite situation takes place for the
case of defocusing cubic and focusing quintic nonlinearities (g0 < 0, s0 > 0). The MI gain peaks
are suppressed more than their competing cubic-quintic nonlinearity counterparts (Fig. 5(b)).
In both cases one can see the transition from the initial regime (initially defocusing regime on
Fig. 5(a) and focusing one on Fig. 5(b)) as one changes the chosen set of signs of nonlinearity
coefficients.
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(a) (b)

Figure 5. Plots of the MI gains G6(k) (solid lines), G4 (dashed lines), and G2 (dash-dotted lines) for
nonlocal stochastic media with the exponential response function for competing cubic-quintic nonlinearity
with g0 > 0 and s0 < 0 (red curves on both plots) and: (a) g0 > 0 and s0 > 0 (green curves), here χ = 0.9;
(b) g0 < 0 and s0 > 0 (green curves), here χ = 2. On both plots d0 = 2, g0A

2 = 1, σ2
d = σ2

g = σ2
s = 0.1,

λ = 1.

5 Conclusion

In this paper for the phenomenological model supporting two regimes of the wave propagation,
applying the linear stability analysis we have investigated the MI of a homogeneous wave in
a nonlocal non-Kerr medium with cubic-quintic nonlinearity and random parameters. Adopting
a white-noise model for parameter fluctuations, we have obtained the equations determining the
dependence of the MI gain on the modulation wave number. Nonlocality was proved to suppress
considerably the stochasticity-induced MI growth rate for media with the sign-definite Fourier
images of the response functions. At the same time, it was shown that for the nonlocal media
with the sign-indefinite Fourier images of the response functions MI gain can exceed that for
local media for some wave number intervals. Some attention was paid to the cases of focusing
cubic and quintic nonlinearities and defocusing cubic and focusing quintic nonlinearities.
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