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Abstract. A complete and explicit classification of generalized, or local, symmetries of
massless free fields of spin s > 1/2 is carried out. Up to equivalence, these are found to
consists of the conformal symmetries and their duals, new chiral symmetries of order 2s,
and their higher-order extensions obtained by Lie differentiation with respect to confor-
mal Killing vectors. In particular, the results yield a complete classification of generalized
symmetries of the Dirac—Weyl neutrino equation, Maxwell’s equations, and the linearized
gravity equations.
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1 Introduction

Recent years have seen a growing interest in the study of the symmetry structure of the main field
equations originating in mathematical physics. Generalized, or local, symmetries, which arise as
vectors that are tangent to the solution jet space and preserve the contact ideal, are important
for several reasons. Besides their original application to the construction of conservation laws,
they play a central role in various methods, in particular in the classical symmetry reduction [16],
Vessiot’s method of group foliation [12], and separation of variables, for finding exact solutions
to systems of partial differential equations. Generalized symmetries also arise in the study
of infinite dimensional Hamiltonian systems [16] and are, moreover, connected with Backlund
transformations and integrability [11]. In fact, the existence of an infinite number of independent
generalized symmetries has been proposed as a test for complete integrability of a system of
differential equations [13].

For the important examples of the Einstein gravitational field equations and the Yang—
Mills field equations with semi-simple structure group, classifications of their symmetry struc-
tures [4, 19] have shown that, besides the obvious gauge symmetries, these equations essentially
admit no generalized symmetries. In contrast, the linear graviton equations and the linear
Abelian Yang—Mills equations possess a rich structure of generalized symmetries, which to-date
has yet to be fully determined.

*This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in
Nonlinear Mathematical Physics” (June 24-30, 2007, Kyiv, Ukraine). The full collection is available at
http://www.emis.de/journals/SIGMA /symmetry2007.html
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In this paper we present a complete, explicit classification of the generalized symmetries for
the massless field equations of any spin s = %, 1, %, ... on Minkowski spacetime, formulated in
terms of spinor fields. These equations comprise as special cases Maxwell’s equations, i.e., U(1)
Yang-Mills equations for s = 1, and graviton equations, i.e., linearized Einstein equations for
s = 2. Other field equations of physical interest which are included are the Dirac—Weyl, or
massless neutrino equation, and the gravitino equation, corresponding to the spin values s = %
and s = %, respectively.

There are two main results of the classification. First, we obtain spin s generalizations of
constant coefficient linear second order symmetries found some years ago by Fushchich and
Nikitin for Maxwell’s equations [8] and subsequently generalized by Pohjanpelto [18]. The new
second order symmetries for Maxwell’s equations are especially interesting because, under duality
rotations of the electromagnetic spinor, they possess odd parity as opposed to the even parity
of the well-known conformal point symmetries. Consequently, we will refer to the new spin s
generalizations as chiral symmetries. Furthermore, we show that the spacetime symmetries and
chiral symmetries, together with scalings and duality rotations, generate the complete enveloping
algebra of all generalized symmetries for the massless spin s field equations. In particular, these
equations admit no other generalized symmetries apart from the elementary ones arising from
the linearity of the field equations. It is also worth noting that, due to the conformal invariance
of the massless field equations, our results provide as a by-product a complete classification
of generalized symmetries of spin s fields on any locally conformally flat spacetime, extending
earlier results for the electromagnetic field obtained by Kalnins et al. [10].

This classification is a counterpart to our results classifying all local conservation laws for
the massless spin s field equations [1, 2, 3]. We emphasize, however, that there is no immediate
Noether correspondence between conservation laws and symmetries in our situation, as the
formulation of the massless spin s field equations in terms of spinor fields does not admit a local
Lagrangian.

Our paper is organized as follows. First, in Section 2 we cover some background material
on symmetries of differential equations and on spinorial formalism, including a factorization
property of Killing spinors on Minkowski space that is pivotal in the symmetry analysis carried
out in this paper. Then in Section 3 we state and prove our classification theorem for generalized
symmetries of arbitrary order for the massless field equations. These, in particular, include novel
chiral symmetries of order 2s for spin s = %, 1, %, ... fields. As applications, in Section 4 we
transcribe our main result in the spin s = 1 case into tensorial form to derive a complete
classification of generalized symmetries for the vacuum Maxwell’s equations, and, finally, in
Section 5, we employ the methods of Section 3 to carry out a full symmetry analysis of the Weyl
system, or the massless Dirac equation, on Minkowski space. Our results for the Weyl system
complement those found in [5, 7, 15], and, in particular, provide a classification of symmetries
of arbitrarily high order for the massless neutrino equations.

2 Preliminaries

Let M be Minkowski space with coordinates z*, 0 < i < 3, and let Fy, s = %, 1, %, ..., stand
for the coordinate bundle

T By = {($z’ ¢A1A2---A25)} - {($z)}7

where ¢4, 4,.-4,, 15 @ type (2s,0) spinor. We denote the kth order jet bundle of local sections
of E, by JF(E,), 0 < k < 0o. Recall that the infinite jet bundle J(FE,) is the coordinate space

JOO(ES) = {(xlv ¢A1A2“‘A237 ¢A1A2-'~A23,j1’ R ¢A1A2"‘A257j1j2"'jp’ s )}7
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where ¢, A,... Ay, j1 jo--j, Stands for the pth order derivative variables. As is customary, we write

B| B} B’ B’ B! . B!
o Bigi2Ba | i Pp
D4, Ay Agé,Ble Bp B9 B, UpBP¢A1A2"’A287-71]2'“]P’

where /g, 0 < j < 3, are, up to a constant factor, the identity matrix and the Pauli spin
matrices. We also write

By~ B,, BB

d)A’A’ AL B ¢A1A2 A257Bl...Bp7

where the bar stands for complex conjugation. Here and in the sequel we employ the Einstein
summation convention in both the space-time and spinorial indices, and we lower and raise
spinorial indices using the spinor metric e4p and its inverse eAB; see [17] for further details.

In order to streamline our notation, we will employ boldface capital letters to designate
spinorial multi-indices. Thus, for example, we will write

B, B! BB
¢A23,Bp ¢A1A2 Azs,BlB;"Bi’

and we will combine multi-indices by the rule B,C, = (B1Bz--- B,C1Ca - - Cy).

We let

000/ = Uéc/a/alﬂi

denote the spinor representative of the coordinate derivative 3/0z'. Moreover, we define partial
derivative operators 8 QS’B” by

" 8 96,00 :{ beeeyy e, ey e P e, rop=r
o if p#r,
3;?237 ¢c’ g:" =0,
and write
82,257]3/ _ aAQS,Bp .

P

Here, in accordance with the standard spinorial notation, we have written e for the Kronecker
delta and we use round brackets to indicate symmetrization in the enclosed indices.
A generalized vector field X on Fs in spinor form is a vector field

! J— 7A/
X:PCC aCC/+QA253$28 +QA/238¢28’ (21)

where the coefficients P¢¢" = PCC’ (27, gb[p]) Qa,, = Qa,, (27, ¢P) are spinor valued functions

in 27 and the derivative variables ¢ Ao, Bq up to some finite order p. An evolutionary vector
field Y, in turn, is a generalized vector field of the form
Al
Y = QAQS * 4+ QA’ 237
where Qa,, is called the characteristic of Y.
Let
B,C' JA2,,B, B,C'sA B’)
p

C/ _ C/ - s
D¢ = 0a +Z(¢A25,BZC 95 "By T Pay B C 8¢2 B
p=>0
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stand for the spinor representative of the standard total derivative operator, which, as is easily
verified, satisfies the commutation formula

Azs,B N C'  (Bp|aA2s,/Bp-1)
055, DE] = e “'ec ( p\ad) By P>l (2.2)

The infinite prolongation pr X of X in (2.1) to a vector field on J*°(Ejs) is given by

B! Aos,B B,— &
pr X = P°C' Do +Z 1'”DB§RAQS)8¢2 )+ (D ---DB:RA/2 )8¢2 B/),
p=0

where Ra,, is the characteristic of the evolutionary form

' — ,— —A
Xev = (Qas, — PY“ dan, 000> + (Qay, — P Pay cc)dy ™

of X.
The massless free field equation of spin s and its differential consequences

As.B),
Ppponr B, =0, P20, (2.3)

determine the infinitely prolonged solution manifold R*°(E,) C J*°(Es) of the equations. Ac-
cording to [17], the symmetrized derivative variables

B/ B/
PasB, = Pasm,) P20,

known as Penrose’s exact sets of fields, together with the independent variables 2’ provide
coordinates for R (Fs). Moreover, as is easily verified, the unsymmetrized and symmetrized
B! B!
variables ¢A287B’;, qugsBI; agree on R (Fy).
A generalized, or local, symmetry of massless free fields is a generalized vector field X
satisfying

prXo,, 4 =0 on R¥(E,). (2.4)

Note that any generalized vector field of the form

U *A/
Tp = P°“ (dcor + quQS,cc' *+ Oar ccDy)

with the prolongation

PCC/

pr1p = Deer

automatically satisfies the determining equations (2.4) for a symmetry. Hence we will call a sym-
metry trivial if its prolongation agrees with a total vector field prTp = pec’ Deer on R (E)
and we call two symmetries equivalent if their difference is a trivial symmetry. See, e.g., [6, 16]
for further details and background material on generalized symmetries.

In this paper we explicitly classify all equivalence classes of generalized symmetries of massless
free fields of spin s = 1 , 1, g, ... on Minkowski space. By the above, in our classification we
only need to consider symmetrles in evolutionary form, and for such a vector field

Ase | 7y AL
Y =Qan 0, +Qay, 05",
the determining equations (2.4) for the characteristic Qa,, become

D97 Qa,. =0  on R®(Ey). (2.5)
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Moreover, after replacing X by an equivalent symmetry, we can always assume that the compo-
nents Qa,, are functions of only the independent variables ' and the symmetrized derivative

variables ¢ggs+q, 0 < g < p, for some p.
Recall that a vector field ¢ = £¥(27)0; on M is conformal Killing provided that

9i&5) = knij (2.6)

for some function k = k(z*), where 7;; stands for the Minkowski metric. As can be verified by
a direct computation, a conformal Killing vector field & gives rise to the symmetry

Z[€] = Za, [00% + Zp, [€]0) (2.7)

of massless free fields of spin s, with the characteristic

1—s
4

which agrees with the conformally weighted Lie derivative

Zas, €] = €Y das.c0r + 500145, 69 Day, 1y F (0o € ) pas,

_ 1 /
52 1)¢A23 = E£¢A2$ + Z(acc,gcc )¢A2$

of the spinor field ¢a,,; see [2, 17].
In the course of the present symmetry classification we will repeatedly use the fact that, on
account of the linearity of the massless free field equations, the componentwise derivative

pr Z[£]Y

of an evolutionary symmetry Y with respect to the prolongation of the vector field Z[¢] is again
a symmetry of the equations; see, e.g., [18].
In spinor form the conformal Killing vector equation (2.6) becomes

a\p &) =o. (2.8)
An obvious generalization of equations (2.8) to spinor fields /i:i = mii (zCC") of type (k,1) is

Aarmal) =0 29)
and symmetric spinor fields mii = IQE::Q) (.CL‘CC/) satisfying these equations are called Killing

spinors of type (k,1). Thus, in particular, a type (1, 1) Killing spinor /iﬁl corresponds to a com-

plex conformal Killing vector. The following Lemma, which is a special case of the well-known
factorization property of Killing spinors on Minkowski space, is pivotal in our classification of
symmetries of massless free fields. For more details, see [17].

! A/ /
Lemma 1. Let 52:, KA:”S be Killing spinors of type (k,k) and (k,k + 2s). Then 52: can

A/
be expressed as a sum of symmetrized products of k Killing spinors of type (1,1), and mA’;”s

can be expressed as a sum of symmetrized products of Killing spinors of type (0,2s) and k
Killing spinors of type (1,1). The dimensions of the complex vector spaces of Killing spinors of
type (k, k) and (k,k + 2s) are

(k4 1)%(k 4+ 2)%(2k + 3) /12 and

(k+1)(k+2)(k+2s+1)(k+2s+2)(2k +2s+ 3)/12,

respectively.
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3 Main results

Let &, Ci,...,(p be real conformal Killing vectors and let 784 be a type (0,4s) Killing spinor.

Let Z[€] be the symmetry associated with £ as in (2.7) and define Z[i&] by

. . — —A’
Z[i€] = iZa,, (€105 —iZa; [€)0,>. (3.1)
Furthermore, let
Wir] = Wi, [1]0A2 + W, )55 (3.2)

be an evolutionary vector field with components

2s
WAQS [’/T] = Z C257P831(A257p+1|8Bé|A2S,p+2‘ e 8BI/)|A257I-BPC457P¢A257P)C£Lsfp’ (33)
p=0
where the coefficients co, ), are given by
4s —p+1(2s
= < p<2s. .
C2s,p is + 1 (p)’ 0<p<32s (3.4)
Moreover, write
Z[§7C177<p] :prZ[Cl]prZ[gp]Z[f], (35
Z[i&;Cr, ..., ) = pr Z[G] - - - pr Z[G) 23], (3.6
WIT; Gy Ggl = prZ[G -+ pr Z[CWIn], (3.7)

for the repeated componentwise derivatives of the vector fields (2.7), (3.1), (3.2) with respect
to conformal symmetries.

Proposition 1. Let &, (1,...,(p be conformal Killing vectors and let wa,, be a Killing spinor
of type (0,4s). Then the evolutionary vector fields

Z[g;CM"')Cp]u Z[1€7C177€p]7 W[W;Cl7"‘7€q]’ p)qz()? (38)

are symmetries of the massless free field equations of spin s of order p+1 and q+2s, respectively.
Moreover, when restricted to the solution manifold R*°(Es), the leading order terms in the

components Za,.[&;C1, -5 Cpl, Zan, 165 C, -+, Cpls Wan, ™5 (1, ..., () of the symmetries (3.8)
reduce to

1@y Co s Cpr1) . Cona
( 1) S(C{Q(Jé CPC;H)(bAzsC

p+1’
1 \p+1:(C1 o Co ~ Cpg1) Chi
(=1) 15(0{ ClC’é CpC,'H_l)QZ)AZstH’

(€1, C Cq) - CB;
(=1)Ceqac) ~Cact ™) 9n0cy

respectively.

Proof. We only need to show that W|r| in (3.2), (3.3) satisfies the symmetry equations (2.4).
First note that due to the Killing spinor equations (2.9) we have that

dccr 0P 7B =0, (3.9)
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and, consequently,

dccrdpp B = 0o p Operm e (3.10)
Write

I A st = 047081 (Ase 110831 Ass sl =1 OBy A ”B;’Ci”*"amsfp)%fp’

H§7A2s—1A’ = aBi(AQS,p+1|aB§|A25,p+2| T aB£|A2sWB;C&SiP&ﬁzzfp)Cﬁspr/’

0 < p < 2s, so that W[n] is a symmetry of massless free field equations provided that

2s

Z CQSvp(H;AQs—lA/ + HZ277A25—1A’) =0. (3.11)
p=0

We compute

H117,A2571A’
= 484—]9— 1 Bi(Azs—p+1|aBé|Azs_p+2\ T 8B,G|A2s (GA’(B;)ang/zr‘WB;_ICQS_Z’)D/)QSAQS_p)Cﬁls_p
= 4311 104 2y 41108 A2e_pra] | 051 140,05 wB%—lCﬁs—pD’EAQS_p)c;ls_p
+ jllzllljaBi(A2sp+l|aBé|A25P+2 Y aB{J"A?S (Q)\AD%S\ ﬂB;CZIS?p?lDlaA%*p)Cﬁls—pﬂA/
4s — p2s —
- 4513r T+ ﬁ 823 : (3.12)
X aBi (A2s—p|aBé|A2s—p+l‘ Y aB;|A2S—18%’|7TB;C£1$7P71D/$A2sfp*1)ci;57p71A,B’
where we used (3.9) and (3.10). On the other hand,
Hll2),A2371A’ = %8D/38B1(A257p+1‘8Bé‘A2sfp+2| T aB;)|A2371WB;C&Sileain—p)Cils_pA/‘ (313)

Now it follows from (3.12), (3.13) that

Hl , = — (48—]))(23—])) H2 ,
p,A2s 1A (48 —p+ 1)(]? + 1) p+1,Azs 1A'

Clearly

1 _ 2 _
H237A23—1A' =0, H07A23—1A/ = 0.

Consequently, by virtue of (3.4), equation (3.11) holds and hence W(r] is a symmetry of the
massless free field equations. |

The massless free field equations of spin s also admit the obvious scaling symmetry S, its
dual symmetry S, and the elementary symmetries E[g| given by

S = ¢a,, 0% + $A/255A/25, S = iga, 082 — i&AéﬁAéS, (3.14)
and
. . 7A/
Ele] = A, (z)0% + Py (a1, (3.15)

where @A, = pa,,(7%) is any solution of (2.3).
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Theorem 1. Let Q be a generalized symmetry of the massless free field equations of spin s =

%, 1, g, ... If the evolutionary form of Q is of order r, then Q is equivalent to a symmetry Q

of order at most r which can be written as
Q=V+Eyl, (3.16)

where YA,, = QA,, (%) is a solution of the massless free field equations of spin s, and where V
is equivalent to a spinorial symmetry that is a linear combination of the symmetries

S, S, ZEC, 6, ZHEC, Gl WIm,. ¢ (3.17)

withp <r—1, g <r—2s.
In particular, the dimension d,. of the real vector space of equivalence classes of spinorial
symmetries of order at most r spanned by the symmetries (3.17) is

dr = (r+ 1)%(r 4+ 2)*(r 4+ 3)%/18, if < 2s,
and

dr = (r+1)%(r +2)%(r + 3)%/18
+ ((r+1)2 =453 ((r +2)% — 453 ((r + 3)* — 45%) /18, if > 2s.

The above result was originally announced without proof in [3].

Proof. Without loss of generality, we can assume that the components O 4,, of Q are functions
. . ; . . . . A/

of the independent variables z' and the symmetrized derivative variables ¢,/ i 0<p<r.

Consequently,

BS,C BS,C Blgvcl 9 B/Sacl
“G Qas, = 0,7 Qnsss 0y Qi = 9, Qa,. (3.18)

It follows from the determining equations for spinorial symmetries that

0 (B%’C”)Dﬁ?s QA,, =0, 3 (B2 )

$ " D4# Qa,, =0 (3.19)

on R*°(Es). By virtue of the commutation formulas (2.2), the above equations with p = r + 1
show that

B 97Cr Aazs aY 57
0, P Gron) =0, 8, =0 (3.20)

identically on J*°(Es). Equations (3.20), in turn, combined with (3.18), imply that

B s, r B B s C'r
8 2 QA2é = €A1( 16A2 B2 €Ans : SC’T)’
7C’ Ao A A Ags 7B5,Ch
a¢ 5 Q 25 = €(Cy_nei1 156%_23.,.2 2... €, 2 ’]‘Ci%)’ (3.21)

Cr+25/

for some spinor valued functions Sg,", T, on J°(Es) symmetric in their indices. Note in
r r—2s

7‘+25

particular that 7 vanishes if r < 2s.

Next use equatlons (3.19) with p = r together with the commutation formulas (2.2) to
conclude that

D0,P 5 Qa, =0, DA T, — on R®(Ej). (3.22)
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Now substitute expressions (3.21) into (3.22) to deduce that

(Cri1 gCr) _ (Cryze1.7Crias) _ .
DiitSar) =0, DG =0 on R™(E).

Cl
But it is easy to see that the above equations force Sg,f , TC:_ZS to be independent of the
. . . . B/ . -
symmetrized derivative variables (JSBi P2 0, and, consequently, they must satisfy the Killing
spinor equations

a(C;“+ISCT) ~0 a(C;+2s+1TC/r+2s) —0.

(C'r+1 C;«) - ’ (C’I‘—28+1 CT—QS)

Thus

Br—25

o B, B/ B"r+237
Qas. = Sp/ Pa,.B, + 1B, 5, PasB,, T U,

r—2s

Bl
. . . . Al
where Ua,, only involves the derivative variables ¢ A:s+p up to order r — 1.

Now by the factorization property of Lemma 1, the Killing spinors g’f , T]i Tf;j can be

expressed as a sum of symmetrized products of r Killing spinors of type (1,1), and as a sum of
symmetrized products of a Killing spinor of type (0,4s) and r — 2s Killing spinors of type (1,1),
respectively. Thus by Proposition 1 there is a linear combination V. of the basic symmetries

Z[ga Cl?"'aCT—l]v Z[ig;Ch"'aCT—l]v W[T(, Cl?'-'aCT—QS]

so that on R°°(Es), the highest order terms in V, agree with those in Q, and, consequently,
the symmetry Q is equivalent to a linear combination of the basic symmetries (3.5)—(3.7) with
p=1—1,q¢=1r—2s and an evolutionary symmetry of order r — 1.

Now proceed inductively in the order of the symmetry. In the last step the symmetry Q is
equivalent to a linear combination of the symmetries (3.5)—(3.7) with p < r —1, ¢ < r — 2s,
and an evolutionary symmetry V, of order 0. But it is straightforward to solve the determining
equations (2.5) for V, to see that

VO,A25 = a¢A25 + ©Ass

where a € C is a constant and pa,, = @A, (7!) is a solution of the massless free field equations
of spin s. Thus (3.16) holds.

Finally, the above arguments show that the vector space of equivalence classes of symmetries
of order » > 1 modulo symmetries of order r — 1 is isomorphic with the real vector space of
Killing spinors of type (r,7), if r < 2s and with the direct sum of the real vector spaces of
Killing spinors of type (r,r) and (r — 2s,r + 2s) if r > 2s. The dimension of the space spanned
by the spinorial symmetries (3.17) now can be computed by adding up the dimensions given in
Lemma 1. This concludes the proof of the Theorem. |

4 Symmetries of Maxwell’s equations

In this section we transcribe the spinorial symmetries of Theorem 1 for s = 1 to tensorial form
in order to classify generalized symmetries of Maxwell’s equations

Fi;7 =0,  #Fyl=0 (4.1)

on Minkowski space. Here F}; = —F); are the components of the electromagnetic field tensor F'
and * stands for the Hodge dual.
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We write A%2(T*M) — M for the associated bundle with coordinates Fj;, i < j. Then
J®A?(T*M) is the coordinate bundle

1@ Fijy Fijkys Fijkaksy---)} — (")}
For notational convenience, we write Fjj k.., = —Fji ky...k, for i > j.
In spinor form the electromagnetic field tensor F' becomes
oynopgpFij =ecapdap +eapdap,

while Maxwell’s equations (4.1) correspond to the spin s = 1 massless free field equations (2.3)
for the electromagnetic spinor 45 = ¢(4p)-

A generalized symmetry of Maxwell’s equations in evolutionary form is a vector field Y =
Q07 satistying

DIQij =0,  D'xQy=0 (4.2)
on solutions of (4.1). If one defines Q4p by
o0 Qi = earn Qap + €aBQup, (4.3)

then it easily follows from (4.2), (4.3) that Q4p are the components of a generalized symmetry
of the massless field equations of spin s = 1. Thus, by employing the correspondence (4.3), we
can obtain a complete classification of generalized symmetries of Maxwell’s equations from the
classification result in Theorem 1.

Symmetries (3.14), (3.15) clearly correspond to the symmetries

S=Fydl, — S=xF;0d  EF)=TF;00

of Maxwell’s equations, where F is any solution of (4.1) with components F;; = F;;(z¥). Con-
formal symmetries (2.7) and their duals (3.1) in turn give rise to the symmetries

ZIF;e) = Zy[F;0f,  Z[F;€) = 2i[+F;€)0%, (4.4)
with components
Zi[F; €] = E°Fyy g, — 20,6 Fyy,

where £ is a conformal Killing vector on M and where square brackets indicate skew-symmetri-
zation in the enclosed indices.

In order to transcribe the second order chiral symmetries W[r| introduced in (3.2) to sym-
metries of Maxwell’s equations in physical form, we first introduce the following polynomial
tensors on M. Let

p?jkl = a?jkla (4.5)

1 1 1 1 1
Pignt = Tt L0y Ol gm0 2" (4.6)

1

2 2 2

Pijkt = G0 %5) ~ 560 Tm
1 2 2 1 2
+ 5 00 @i %) + M@ )" = G U2 (4.7)

1
3 3 3 3 3
Dijki = (x[iaj]n[kx” + x[kal]n[ixj]):c" + Z(l‘[iaj]kl + x[kal]ij)xnl‘”

1 m_.n 1 m n
5 @iy + i)™ 2" 4 4 (@i )+ W) 7" T02" - (4:8)
| 1

it = (Ui %5 — iail[i\n[knlﬂj]xpxp)xm‘rn - Ea?jkzmeTmﬂ?nxna (4.9)
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0 1 2 .3 4 fo
where ikl @ij> Qijs Qg @y BTE real constants satisfying

a?jkl = al[lkl] [i7]? a}ﬁjkl] =0, a?jk;j =0, h=0,4, (4.10)
agj, = a?[jk]’ a}ﬁjk] =0, a3’ =0, h=1,3, (4.11)
ag; = agy), a;' =0, (4.12)

and where we raise indices using the inverse %/ of the Minkowski metric.
Note that a?jkl, h = 0,4, possesses the symmetries of Weyl’s conformal curvature tensor.
Hence their spinor representatives can be written in the form

h h —h
Arr J I KK'LL — €IJEKLOT jrry + ENNJEK'L'OTTK T, h= 0,4,

where al}, g/ 18 a constant, symmetric spinor. See, for example, [17]. Moreover, it is easy to

verify that by (4.11), (4.12), the spinor representatives of a?j and a?jk, h =1, 3, are given by

Q%I’JJ’ = OZ%JI/J/ and
h h —h
CLII/JJ/KK/:EJKO(II/J/K/+€J/K/OCI/IJK, h:1,3,
1 2 _ =2 3 : :
where Qg Qrgp gy = Q1 gp s Qp g, are symmetric constant spinors.

For 0 <h < 4, let W[F'; p?| denote the evolutionary vector field with components

3 3
WilF;p?] = p}ézm[z‘Fkl ik a[ip?]mkszl,m + 50mp25m[¢F“,j1 + gama[m?]mlekl’ (4.13)

)

where p?]-kl are the polynomials in (4.5)—(4.9), and write
Z[F;§7C17' --va] = prZ[F,Cl] pI‘Z[F,Cq]Z[F,{],
WIF; P G-, Gl = pr 2[F5 G - pr Z[F3 QW [F; p")

for the componentwise Lie derivatives, where Z[F'; (;] stands for the conformal symmetry (4.4)
associated with the conformal Killing vector ¢;.

Lemma 2. Let plz»‘jkl, 0 <h <4, be the polynomials (4.5)—(4.9). Then the spinor representative
of Py, is of the form

Pirsykk Ly = €LIEKLTY g + €n gy eR Ly Ky (4.14)
where

W(I)'J'K'L' = O‘?’J’K’L’a W}'J'K'L' = alL(I/J'K/xff)a

Tk = ia%(L(I’J’mjlg’xﬁ’)v KL = _%aiKL(I’xg’xﬁ’xﬁ’)v (4.15)

1
ﬂ—%’J’K’L’ = ZE%JKLJT{/H?;/QJ%/I'%/.

Moreover, on the solution manifold R>(E1), the spinor representatives of the evolutionary vector
fields W[F;p?] in (4.13) reduce to

WII/JJ/ [F,ph] = GI/J/WIJ [Wh] + GIJWI/J/ [Wh], (416)
where Wy j[n®] are the components (3.3) of chiral symmetries for spin s = 1 fields. Thus
Wi;[F;pP], 0 <h <4, is a symmetry of Mazwell’s equations. Moreover,

« Wi [F;p"] = —Wi[+F; p"). (4.17)
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Proof. The proofs of the equations in the Lemma are based on straightforward albeit lengthy
computations. We will therefore, as an example, derive equation (4.14) for h = 2 and equa-
tion (4.16), and omit the proofs of the remaining equations in the Lemma.

One can check by a direct computation that the polynomials p?jkl possess the symmetries of
Weyl’s conformal curvature tensor, that is,

h h h hoj
Pijkl = Plyfig) Plijky = 0, pz‘jk] =0, 0<h<4
Consequently, we can write the spinor representatives of p?jkl in the form (4.14); see [17]. Then,
in particular,

h _ 1 h P
Tryr'y = 4Ppa JIQIK

@ (4.18)
Thus we can find 7% Kk Dy substituting the spinor representative of the expression on the
right-hand side of equations (4.5)—(4.9) into (4.18) and, in each of the resulting terms, sym-
metrizing over primed indices. The computations can be further simplified by using the ob-
servation that given a tensor f;;;; with the spinor representative frryy kkrrr/, then the spinor
representative hyp yy i rrrr of hijr = f[ij”kl] satisfies

Q

hert yor = fraan” o ©.- (4.19)

Now insert the spinor representative of the right-hand side of the equation (4.7) into (4.18).
Then by virtue of (4.19), the first term yields the expression

1
2 K L
ZOKKL(I/J/.’IIK/.TL/)-

The spinor forms of each of the remaining terms on the right-hand side of (4.7) contain an
instance of the conjugate of the epsilon tensor, and, consequently, upon symmetrization over
primed indices these terms vanish. Hence we have that

1
2 K L
7TI/J/K/L/ = ZaKL(I’J/xK’xL’)7

as required.
In order to derive (4.16), we first write

1 . 1 .
Fry = §(Fkl — ixFpy), WHF, p°) = §(Wz‘j[F,ph] — iW;[*F, p")),

so that

Kl
ks a[ip?]mklp o

kl
W GIE ] = g B :

)

3 om 3 am Kl
+ 20 p*,;lm[iF““,ﬂJrga 0P i - (4.20)

We also have that F+KK’LL’ = €KL$K’L’-
Note that by virtue of the Killing spinor equations

4 /
aﬁﬂl}/K/L/M/ = —gﬁjl(J/({?PP W}II(’L’M/)P"

Hence

—K'M'P 3, p y

- K'L'pP
8P([/7le/)K/L/M/ = g P WK/L/P/(I/¢J/) . (421>
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Consider, for example, the spinor representative of the second term on the right-hand side of
equation (4.20). On the solution manifold R*°(E7) we have
; i +kl
U}I’U]JJ’a[ip?]mle S

h - K'L'M’ h - K'L'M’
= —a[[/WJ/K/L/M/¢J + aJJ/WI/K/L/M/QSI

nK'L/M'P' ZK'L'M'P

(4.22)

h
= 6]/]/813/([71' JK'L'M’ — EIJaP([/T('J/)K/L/M/

WK'L'M'P' 3 P’ _h - K'L'P
= 6[/J/8Pl(]7r ¢J)K’L/M/ - gﬁjjap WK’L’P’(I'¢J’) B

where we used (4.21). Similarly, on R*°(F7), we see that

K'L'M'P’

kl _
T M) = €T prbrg ) and (4.23)

i g h
011977 Pkimli

+kl 1IN Pl —
ﬂ_hKLMqu

11070 Pl F ) = €0 Opin J)K'L M (4.24)

/

— e10pp ™Y 1@ gy e T
Moreover, by virtue of (3.9),

h +kl

P _nh K'L'M'7

hK/L,MIP,aK/L/ - €]J8PM/8(I/7TJ/) ¢K’L’ (425)

=epyOn10pT

hK'L'M'P'

=epyOm10yp T G

on R*(Ey).
Now equations (4.22)-(4.25) together show that the spinor form of W™ ;[F,p"] is

+ h WKL M'P' %
W g [FpY = epp (m brix L mp

hK/L/M,PEJ) hK/L’M’P’a

8
+ gapl(jﬂ' K'L'M’' —+ gaM/]aJP/ﬂ' K’L/)

= e g Wiglr",
which immediately yields equation (4.16). [

Theorem 2. The space of equivalence classes of symmetries of Mazwell’s equations of order r,
r > 2, 1s spanned by the symmetries

EF), S, S,
Z[F;§7<17"'7Cq]7 Z[*F;§7<17"'7Cq]7 qér_lv
W[F;ph;é_l...,é_q], W[*F;pQ;Cla"'ch]a 0§h§47 Q§7“—2>
where F is an arbitrary solution of Maxwell’s equations, &, (1,...,(., are conformal Killing

vectors and p?jkl’ 0 < h < 4, are the polynomials given in (4.5)—(4.9). Apart from the trivial
symmetries E(F), there are

dp = (r+1)(r+3)(r* +8° +17r° + 4r +6)/9
independent symmetries of Maxwell’s equations of order r > 2.

Proof. First note that if ¥ = Qijﬁg is a symmetry of Maxwell’s equations in evolutionary
form with the spinor representative Q determined by (4.3) then the spinor representative of the
symmetry pr Z[F;C]Y is pr Z[¢]Q. Thus, in light of Theorem 1 and by linearity, it suffices to
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show that the spinorial symmetries £(¢), S, S, Z[¢], Z[i¢], W[r], where ¢ is a real conformal
Killing vector and 7 is a type (0,4) Killing spinor, are contained in the span of the spinorial
symmetries corresponding to

EF), S, S, Z[F;&), *Z[F;€), *W[F;p?, WIF;pY], 0<n<4,

under the identification (4.3).

Obviously the symmetries £(F), S, g’, Z[F; €], xZ[F;&] correspond via (4.3) to the spinorial
symmetries £(¢), S, S Z[¢], Z[i€], where ¢ is the spinorial counterpart of the solution F of
Maxwell’s equations.

Next, by (4.15), the spinor fields 7} 1, corresponding to the polynomials pf;,; span the
space of Killing spinors of type (0,4) provided that we allow oz% g also to take complex values.
Thus, in light of (4.16), the first part of the Theorem now follows from the observation that
if W[n] is the spinorial symmetry corresponding to W[F';p"|, then W([ir| corresponds to the
symmetry W[F;ph] = —xWI[F;p"].

Finally, the dimension count follows from the dimension count in Theorem 1. This concludes
the proof of the Theorem. [ |

Remark 1. The new chiral symmetries W[F'; p*] are physically interesting since, as evidenced
by equation (4.17), they possess odd parity, i.e., chirality, under the duality transformation
interchanging the electric and magnetic fields. Hence, in a marked contrast to the conformal
symmetries Z[F’; €], which behave equivariantly under the duality transformation, the new sec-
ond order symmetries, when regarded as differential operators acting on solutions of Maxwell’s
equations, map self-dual electromagnetic fields to anti-self-dual fields and vice versa.

5 Applications to the Dirac operator on Minkowski space

Recall that a Dirac spinor consists of a pair

v~ (%)
PA

of spinor fields of type (0,1) and (1,0) (see, e.g., [20]), with the conjugate spinor ¥* given by

. go”)
¥ "(wA |

A vector v' € M determines a linear transformation ¥ on Dirac spinors given by
Vo o,
7/@ — i Al .
v'oiaap

Then the Dirac y-matrices are defined by the condition

Ul’YZ‘IJ = ’¢5\II7
so that
0 alAlB> .
e , 0< <3,
i (UiAB’ 0

Moreover, as is customary, we will write

_ (I 0
7= 0B =g )
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The Weyl system, or the massless Dirac equation, is given by
¥ =0, (5.1)
where

0
P=7

oz’

is the Dirac operator. As an application of the methods developed in Section 3 we present here
a complete classification of generalized symmetries of the Weyl system on Minkowski space.
Evidently, the Weyl system is equivalent to the decoupled pair

‘PA,AA/ =0, Y aw =0

of spin s = % massless free field equation and its conjugate equation, and, consequently, we will
be able to analyze symmetries of (5.1) by the methods employed in the proof of the classification
result in Theorem 1.

Now an evolutionary vector field takes the form

X = QA'awA/ + @A@M + Ru0y, + Rar0, ,,,

where the characteristic

o— (¢
Ra
can be assumed to depend on the spacetime variables z¢ and the exact sets of fields, that is, the

symmetrized derivatives

A'AL (ATAD) Al A
VoA, =Y A Pan, = PaA,)

of the components of the Dirac spinor.
As in the case of massless free fields, the Weyl system obviously admits scaling, conformal and
chiral symmetries and their duals. The scaling symmetry and its dual possess the characteristics

S[®] =®,  S[i¥]=iv.

Let £9C" be a real conformal Killing vector, 78°C" a type (0,2) Killing spinor. We write
€ s + SO € Yor + 5(B0cre Y
Z[¥;¢] = ;
£ pacer + *(aAC'fcc e + 8(300/500 )
B(J%g'c + aA 7BCop
W ] =

! BI !’
Capcr + 3 8AC’7T g

for the characteristics of the basic conformal and chiral symmetries of the Weyl system (5.1).
Moreover, we define Z[i¥; ] in the obvious fashion, and denote the componentwise Lie deriva-
tives of Z[W;¢], Z[i¥; €], W[¥; n] with respect to the conformal symmetries corresponding to

Cla' .. 7<p by

Z[ql;é.aCh'"?Cp]v Z[i‘Il;§7C17"'7CpL W[‘I’77T7C177Cp]



16 J. Pohjanpelto and S.C. Anco

Theorem 3. Let Q be a generalized symmetry of order r of the Weyl system (5.1) in evolutionary
form. Then Q is equivalent to a symmetry Q of order at most r in evolutionary form which can
be written as

O=V+ &V,

where E[WV] is an elementary symmetry corresponding to a solution ¥ = W(x') of the Weyl
system, and where V is equivalent to a symmetry that is a linear combination of the symmetries

S[¥], S[iv], ¥5S[¥], Y5S[1¥],

S[er],  SEv, S[P],  sS[EET,

Z[W58,¢1,- -5 Gl V5 Z2[W;5€,C1, - -5 Gl

Z[iW;&, (1505 Gl V5 2[5 €, Gy Gl (5.2)
Z[W*5E,C1, 5 Gl V5 Z[P*5E, (-, Gl

ZHPSE Gy Gl 2PN G Gl

W5 G- Gl YW 75 Cyeees Gl

WO (., Gl YW[E* T3¢y, Gl

where p < r — 1. In particular, the dimension d,. of the real vector space of equivalence classes
of spinorial symmetries of order at most r spanned by the symmetries (5.2) is

dr=Z[r+12(r+22(r+3)+ (r+ 12 = 1)((r+2)> = 1)((r +3)*> = 1)], for r>1.

Ol N

Proof. The proof of Theorem 3 follows very much the same lines as the proof of Theorem 1,
and we can safely omit the details. |
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