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Introduction

The aim of this article is to survey recent work on modular classes in Poisson and Lie algebroid
theory, after briefly recalling basic definitions concerning Poisson manifolds, Lie algebroids and
bialgebroids, and Gerstenhaber algebras.

Poisson manifolds are smooth manifolds with a Poisson bracket on their ring of functions
(see [118] and Section 1.1). Since their introduction by Lichnerowicz in 1977 [88], Poisson
geometry and the cohomology of Poisson manifolds have developed into a wide field of research.
Lie algebroids are vector bundles with a Lie bracket on their space of sections (see [93, 94, 16]
and Section 1.2). Fundamental examples of Lie algebroids include both the tangent bundles of
smooth manifolds with the usual Lie bracket of vector fields, and finite-dimensional Lie algebras,
which can be considered as Lie algebroids over a point. Lie algebroids were first introduced by
Pradines in 1967 [108] as the infinitesimal objects associated with the differentiable groupoids of
Ehresmann [32] later called Lie groupoids. They appear most prominently in Poisson geometry,
as shown by Coste, Dazord and Weinstein [23], in the theory of group actions and in connection
theory [93, 94], in foliation theory [101, 36], in sigma-models (see, e.g., [10, 81, 127, 106]), and in
many other situations. Lie–Rinehart algebras, known under many different names [104, 74, 53],
are algebraic analogues of Lie algebroids.

The definition of the modular class of a Poisson manifold first appeared in 1985 in the
work of Koszul [80], who did not give it a name, and, later, in the work of Weinstein [124]:
he demonstrated the relationship of this notion to the group of modular automorphisms of
von Neumann algebras, whence the name he proposed, proved many properties of the modular
vector fields of Poisson manifolds, and indicated how to generalize the modular class to Lie
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algebroids. The theory was then developed in complex analytic geometry by Brylinski and
Zuckerman [13], in algebraic geometry by Polishchuk [107], in the framework of Lie–Rinehart
algebras by Huebschmann [54, 55], and in that of Lie algebroids by Evens, Lu and Weinstein [34]
who formally defined the modular class of a Lie algebroid, by Ping Xu [125], and by myself [68].
The modular class of a Poisson manifold is the obstruction to the existence of a density invariant
under the flows of all Hamiltonian vector fields. In the case of the Lie algebroid associated with
a foliation with an orientable normal bundle, the modular class is the obstruction to the existence
of an invariant transverse measure1. In the case of a Lie algebra considered as a Lie algebroid over
a point, the modular class is the trace of the adjoint representation, the infinitesimal modular
character. This is another justification for the terminology.

One can consider both the theory of Poisson manifolds and that of Lie algebras with a triangu-
lar r-matrix, i.e., a skew-symmetric solution of the classical Yang–Baxter equation, as particular
cases of the more general notion of Lie algebroid with a Poisson structure. To each of these theo-
ries, there corresponds, more generally, a twisted version. Twisted Poisson manifolds were first
considered in some quantization problems in string theory [22, 105], then they were defined as
geometric objects [62, 113], and finally viewed as particular cases of Lie algebroids with twisted
Poisson structures [111, 72]. Just as a Lie algebra with a triangular r-matrix gives rise to a Lie
bialgebra in the sense of Drinfeld [29], a Lie algebroid with a Poisson structure gives rise to a Lie
bialgebroid in the sense of Mackenzie and Xu [95, 64], while a twisted Poisson structure gives
rise to a quasi-Lie-bialgebroid 2. The problem of defining the modular class of a manifold with
a twisted Poisson structure, and more generally that of a Lie algebroid with a twisted Poisson
structure, was solved in [72]. (See also a different approach in the unpublished manuscript [7].)

For a Poisson manifold, the modular class coincides up to a factor 2 with the modular class of
its cotangent Lie algebroid (Theorem 1 in Section 4.4), and the same is true for a twisted Poisson
manifold (Section 7.2), but this simple relation is no longer valid in general for Poisson or twisted
Poisson structures on Lie algebroids, in particular on Lie algebras. It was the concept of the
modular class of a morphism of Lie algebroids, also called a relative modular class, introduced
in [45] and [77], that provided a key for a result valid in this general case (Theorem 2 in
Section 5.2, and Section 7.2). Further results were established in [78] concerning the case of
the regular Poisson and twisted Poisson structures, whose image remains of constant rank, with
applications to Lie algebra theory (see Section 6).

In Section 1, we recall the main definitions concerning Poisson manifolds and Lie algebroids,
and we show how the two notions are connected (Section 1.4). The modular class of a Poisson
manifold is studied in Section 2, that of a Lie algebroid with a Poisson structure in Section 3,
with further results in Section 5.2. Section 4 deals with the case of Lie algebroids in general,
and Theorem 1 relates the modular class of a Poisson manifold to that of its cotangent Lie
algebroid. In Section 5, we introduce the notion of modular class of a Lie algebroid morphism
which enables us to state Theorem 2, relating the modular class of a Lie algebroid with a Poisson
structure to that of the Lie algebroid morphism defined by the Poisson bivector. In Section 6,
we summarize results pertaining to the case of regular Poisson structures, where simplifications
occur in the computation of the modular class (Theorem 3), and we describe the case of quasi-
Frobenius and Frobenius Lie algebras for which the modular class is computed by a simple

1More generally, to each Lie algebroid is associated a singular foliation whose leaves are integral manifolds of
the image of its anchor – a generalized distribution on the base manifold –, and the vanishing of the modular
class generalizes the existence of an invariant transverse measure. Lie algebroids are the setting in which singular
foliations can be studied: the holonomy and the linear holonomy of Lie algebroids introduced by Fernandes [36, 37]
defined in terms of A-paths, paths whose image under the anchor map is the tangent to their projection on the
base manifold, generalize the holonomy and linear holonomy of foliations.

2The various generalizations of Lie bialgebras were first considered and studied in [63], following the intro-
duction of the Lie-quasi-bialgebras as the semi-classical limits of quasi-Hopf algebras by Drinfeld [30], while the
algebroid generalization is due to Roytenberg [111].
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formula (Theorem 4). In Section 7, we have collected results concerning the twisted case: the
definition of a twisted Poisson structure and its modular class, the statement of Theorem 5
in Section 7.2 which gives an explicit representative of the modular class, the study of the
non-degenerate case with the linearization of the twisted Poisson condition into the twisted
symplectic condition in Section 7.4, and an example of a twisted triangular r-matrix given in
Section 7.5. Section 8 deals with the modular classes of Poisson–Nijenhuis manifolds and their
relation with the bi-Hamiltonian hierarchy of the Poisson–Nijenhuis structure (Theorem 6). In
Section 9, which is the last, we explain another characterization of the modular class that has
recently appeared, the spinor approach to Dirac structures in Courant algebroids. Theorem 7
in Section 9.1 can be viewed as an alternative definition of the modular class in the twisted case
that confirms that the original definition in [72] is the right one. In the Appendix, we indicate
additional references to recent publications and work in progress.

Whereas the computation of the Poisson cohomology ring of a Poisson manifold or the Lie
algebroid cohomology ring of a Lie algebroid is a very difficult task, there are explicit formulas
for computing the modular class which is the subject of this survey. The modular class is but
the first in the sequence of higher characteristic classes of Lie algebroids studied by Kubarski
(see [82]), by Fernandes [35, 36, 37] and by Crainic [24], and in the framework of generalized
gauge theories by Lyakhovich and Sharapov [92]. The generalization of the properties of the
modular class to the higher order classes is an open problem.

Most, but not all, of the results in this survey are to be found in several papers written with
Camille Laurent-Gengoux, Franco Magri, Alan Weinstein and Milen Yakimov. I have tried to
give due credit to them and to the other authors whose work I have consulted. But the literature
has become so vast, that I must be forgiven for not having mentioned all the relevant papers.

Conventions

All manifolds and bundles are assumed to be smooth, and spaces of sections, denoted Γ(·), are
spaces of smooth sections. Forms (resp., multivectors) on a vector bundle E are sections of ∧•E∗
(resp., sections of ∧•E). We use the notations ι and ε for the operators of interior and exterior
multiplication on forms and multivectors, with the convention ιX∧Y = ιX ◦ ιY . A derivation
of a graded algebra means a graded derivation. A biderivation of a bracket means a graded
derivation in each argument.

1 Lie algebroids and Poisson geometry

1.1 Poisson manifolds

Let us recall the definition of a Poisson manifold3. When M is a smooth manifold and π is
a bivector field, i.e., a contravariant, skew-symmetric, 2-tensor field, π ∈ Γ(∧2TM)), define
{f, g} as π(df,dg), for f and g ∈ C∞(M). The pair (M,π) is called a Poisson manifold if
{ , } is an R-Lie bracket. When (M,π) is a Poisson manifold, π is called a Poisson bivector or
a Poisson structure on M and { , } is called the Poisson bracket. Examples are (i) symplectic
structures: if ω is a non-degenerate closed 2-form on M , then its inverse is a Poisson bivector,
and (ii) the duals of Lie algebras: if g is a Lie algebra, then the Poisson bracket on g∗ is defined
by {x, y}(ξ) = 〈ξ, [x, y]〉, where x and y ∈ g are considered as linear forms on g∗, and ξ ∈ g∗.
This linear Poisson structure on g∗ is called the Kirillov–Kostant–Souriau Poisson structure.

3Lie’s function groups, further studied by Carathéodory, were precursors of Poisson manifolds. Poisson mani-
folds, which occur already in [38], were defined by Lichnerowicz in [88]. Closely related notions also appeared in
the work of Berezin, Hermann, Tulczyjew and Kirillov, while Poisson structures on infinite-dimensional manifolds
were introduced under the name Hamiltonian structures by several authors working on integrable systems. For
an exposition of Poisson geometry, see [87, 118, 94].
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We shall call bivector fields simply bivectors, and, more generally, we shall call the sections of
∧•(TM) multivectors. The space of multivectors is an associative, graded commutative algebra
under the exterior multiplication and it is endowed with a graded Lie algebra structure (for
a shifted grading) called the Schouten–Nijenhuis bracket or the Schouten bracket, making it
a Gerstenhaber algebra (see Section 1.3 below). We shall denote the (k + ` − 1)-vector which
is the Schouten–Nijenhuis bracket of a k-vector U and an `-vector V on M by [U, V ]M . The
Schouten–Nijenhuis bracket of multivectors is the extension of the Lie bracket of vector fields
as a biderivation, satisfying [X, f ]M = X · f , for X ∈ Γ(TM), f ∈ C∞(M). The following
fundamental fact is easy to prove.

Proposition 1. A bivector π is a Poisson structure on M if and only if [π, π]M = 0.

When π is a bivector, we define π] : T ∗M → TM by

π](α) = ιαπ,

where α ∈ T ∗M , and ια denotes the interior product of multivectors by the 1-form α.
The Hamiltonian vector field associated to f ∈ C∞(M) is

Hπ
f = π](df).

Associated to any Poisson structure π onM , there is a differential, i.e., an operator of degree 1
and square zero, on Γ(∧•TM),

dπ = [π, · ]M ,

called the Lichnerowicz–Poisson differential or the Poisson cohomology operator. The cohomo-
logy of the complex (Γ(∧•TM),dπ) is called the Poisson cohomology of (M,π). In particular,
Hπ
f = −[π, f ]M = −dπf .
We also define the Poisson homology operator on Γ(∧•T ∗M) (also called the Koszul–Brylinski

homology operator) by

∂π = [d, ιπ],

where the bracket is the graded commutator of operators, so that ∂π = d ◦ ιπ − ιπ ◦ d. It is an
operator of degree −1 and square zero. The homology of the complex (Γ(∧•T ∗M), ∂π) is called
the Poisson homology of (M,π).

1.2 Lie algebroids

We now turn to the definition of Lie algebroids4, and in Section 1.4 we shall show how Lie
algebroids appear in Poisson geometry.

A Lie algebroid structure on a real vector bundle A→M is defined by a vector bundle map,
aA : A→TM , called the anchor of A, and an R-Lie algebra bracket on ΓA, [ , ]A, satisfying the
Leibniz rule,

[X, fY ]A = f [X,Y ]A + (aA(X) · f)Y,

for all X, Y ∈ ΓA, f ∈ C∞(M). We shall denote such a Lie algebroid by (A, aA, [ , ]A) or simply
by A, when there is no risk of confusion. It follows from these axioms that the map aA induces
a morphism of Lie algebras from ΓA to Γ(TM), which we denote by the same symbol, i.e.,

aA([X,Y ]A) = [aA(X), aA(Y )]M ,

for all X, Y ∈ ΓA. Fundamental examples of Lie algebroids are the following.
4For an exposition of Lie algebroid theory, see [93, 94] and [16].
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Example 1. Any tangent bundle A = TM of a manifold, M , with aA = IdTM and the usual
Lie bracket of vector fields, is a Lie algebroid.

Example 2. Any Lie algebra, A = g, considered as a vector bundle over the singletonM = {pt},
with trivial anchor aA = 0, is a Lie algebroid.

Example 3. Lie algebra bundles (see [93, 94]) are locally trivial Lie algebroids with vanishing
anchor. The Lie bracket is defined pointwise and varies smoothly with the base point. The
integration of such bundles of Lie algebras into bundles of Lie groups was studied by Douady
and Lazard [28].

Proposition 2. Associated to a given Lie algebroid, (A, aA, [ , ]A), there is a differential, dA,
on Γ(∧•A∗), defined by

(dAα)(X0, . . . , Xk) =
k∑
i=0

(−1)iaA(Xi) · α(X0, . . . , X̂i, . . . , Xk)

+
∑

0≤i<j≤k
(−1)i+jα([Xi, Xj ]A, X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

for α ∈ Γ(∧kA∗), X0, . . . , Xk ∈ ΓA.

The coboundary operator dA is called the Lie algebroid differential of A. The cohomology
of the complex (Γ(∧•A∗),dA), called the Lie algebroid cohomology of A, unifies de Rham and
Chevalley–Eilenberg cohomologies [104] (see also [53]): for a tangent bundle, A = TM , with
aA = IdTM , dA = dM is the de Rham differential, while for a Lie algebra, A = g, considered as
a Lie algebroid over the singleton M = {pt}, dA = dg is the Chevalley–Eilenberg differential.

We call sections of ∧•A (resp., ∧•(A∗)) multivectors (resp., forms) on A.

1.3 Gerstenhaber algebras and Batalin–Vilkovisky algebras

Gerstenhaber showed that there is a graded Lie bracket, since called a Gerstenhaber bracket,
on the Hochschild cohomology of an associative algebra [41]. We recall the definition of a
Gerstenhaber algebra.

A Gerstenhaber algebra is an associative, graded commutative algebra over a field K of cha-
racteristic zero, (A = ⊕k∈ZAk,∧), with a gradedK-Lie algebra structure, [ , ], on (⊕k∈ZAk+1,∧)
such that, for u ∈ Ak, [u, · ] is a derivation of degree k − 1 of (A = ⊕k∈ZAk,∧),

[u, v∧w] = [u, v]∧w + (−1)(k−1)`v∧[u,w],

for u ∈ Ak, v ∈ A`, w ∈ A. The bracket of a Gerstenhaber algebra is also called an odd Poisson
bracket [117, 122] or a Schouten bracket [74].

A linear map, ∂ : A → A, of degree −1, is called a generator of the Gerstenhaber bracket if

[u, v]A = (−1)k(∂(u ∧ v)− ∂u ∧ v − (−1)ku ∧ ∂v), (1.1)

for all u ∈ Ak, v ∈ A. If ∂2 = 0, then (A, ∂) is called a Batalin–Vilkovisky algebra (in short,
BV-algebra).

For a Lie algebroid, A, there is a Gerstenhaber bracket on Γ(∧•A), which generalizes the
Schouten–Nijenhuis bracket of multivectors on a manifold:

Proposition 3. When A is a Lie algebroid, (Γ(∧•A),∧, [ , ]A), where [ , ]A is the extension
of the Lie bracket on ΓA as a biderivation satisfying [X, f ]A = 〈X, dAf〉, for X ∈ ΓA and
f ∈ C∞(M), is a Gerstenhaber algebra.
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When A = TM , for M a manifold, Γ(∧•A) is the exterior algebra of multivectors on M
and the Gerstenhaber bracket on this algebra is the Schouten–Nijenhuis bracket, which we have
introduced in Section 1.1 and denoted there by [ , ]M . When A = g, a Lie algebra, we recover
the algebraic Schouten bracket on ∧•g, denoted [ , ]g, which can be defined as the bracket
induced from the Schouten–Nijenhuis bracket of left-invariant multivectors on a Lie group with
Lie algebra g.

In both cases, the Gerstenhaber bracket is a Batalin–Vilkovisky bracket: for a manifold, M ,
transposing the de Rham differential by means of the isomorphism from forms to multivectors
defined by a top degree density yields a generator of square zero of the Schouten–Nijenhuis
bracket, while the Lie algebra homology operator yields a generator of square zero of the algebraic
Schouten bracket of a Lie algebra.

The problem of identifying which Gerstenhaber algebras are Batalin–Vilkovisky algebras is
the subject of much recent work. See [98] and references therein.

1.4 The cotangent bundle of a Poisson manifold is a Lie algebroid

Let M be a manifold equipped with a bivector π ∈ Γ(∧2TM). Define

[α, β]π = Lπ]αβ − Lπ]βα− d(π(α, β)), (1.2)

for α, β ∈ Γ(T ∗M), where L denotes the Lie derivation. It is easy to show that this skew-
symmetric bracket5 satisfies the Jacobi identity if and only if [π, π]M = 0. Bracket (1.2) satisfies

[df,dg]π = d{f, g}, (1.3)

for all f , g ∈ C∞(M), and it satisfies the Leibniz rule

[α, fβ]π = f [α, β]π + (π]α · f)β, (1.4)

for all α, β ∈ Γ(T ∗M) and f ∈ C∞(M). It was remarked by Huebschmann [53] that these
properties determine the above bracket.

The extension to forms of all degrees on a Poisson manifold of bracket (1.2) is denoted by
the same symbol. It is the Koszul bracket [80], which satisfies the relation

[α, β]π = (−1)k(∂π(α ∧ β)− ∂πα ∧ β − (−1)kα ∧ ∂πβ), (1.5)

for all α ∈ Γ(∧kT ∗M), β ∈ Γ(∧•T ∗M), where ∂π is the Poisson homology operator [d, ιπ]. In
particular, [α, f ]π = (π]α) · f , for α ∈ Γ(T ∗M) and f ∈ C∞(M). The following proposition
follows from [80, 9, 74].

Proposition 4. If (M,π) is a Poisson manifold, (T ∗M,π], [ , ]π) is a Lie algebroid. The
associated Lie algebroid differential is the Lichnerowicz–Poisson differential on the multivectors
on M , dπ = [π, · ]M . The associated Gerstenhaber algebra is the algebra of forms on M with
the Koszul bracket, which is a Batalin–Vilkovisky algebra with generator the Poisson homology
operator ∂π = [d, ιπ].

In fact, more can be said. There is a compatibility condition between the Lie algebroid
structures of TM and T ∗M making the pair (TM,T ∗M) a Lie bialgebroid, a notion which we
now define.

5Formula (1.2) appeared as the bracket of 1-forms on a symplectic manifold in the first edition of the book on
mechanics by Abraham and Marsden [2] in 1967, before anyone spoke about Poisson manifolds, and again in [3];
formula (1.3) below is also stated there. Formula (1.2) was re-discovered as the bracket of 1-forms on a Poisson
manifold by several authors, Fuchssteiner [39], Gelfand and Dorfman [40], Magri and Morosi [96] and Karasëv [61].
In 1987, Weinstein made the connection between this formula and the theory of Lie groupoids and Lie algebroids
(see [23]): the manifold of units Γ0 of a symplectic groupoid Γ is a Poisson manifold, and the Lie algebroid of
such a Lie groupoid is canonically isomorphic to the cotangent bundle of Γ0, so there is a Lie algebroid bracket
on the space of sections of the cotangent bundle of Γ0. A calculation proves that it is given by (1.2), the formula
of Abraham and Marsden.
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1.5 Lie bialgebroids

A Lie bialgebroid [95, 64] is a pair of Lie algebroids in duality (A,A∗) such that dA is a derivation
of [ , ]A∗ . This condition is satisfied if and only if dA∗ is a derivation of [ , ]A. Therefore the
notion of Lie bialgebroid is self-dual: (A,A∗) is a Lie bialgebroid if and only if (A∗, A) is a Lie
bialgebroid.

When π is a Poisson bivector on M and T ∗M is equipped with the Lie algebroid structure
defined above, the pair (TM,T ∗M) is a Lie bialgebroid: in fact dT ∗M = dπ = [π, · ]M is clearly
a derivation of the Gerstenhaber bracket, [ , ]M .

When M is a point, the notion of Lie bialgebroid reduces to that of a Lie bialgebra [29] (see
also [86, 63]).

1.6 Lie algebroids with a Poisson structure

Lie algebroids with a Poisson structure generalize Poisson manifolds.
Let (A, aA, [ , ]A) be a Lie algebroid, and assume that π ∈ Γ(∧2A) satisfies [π, π]A = 0. Then

(A, π) is called a Lie algebroid with a Poisson structure.
Let us define

[α, β]π = LAπ]αβ − LAπ]βα− dA(π(α, β)), (1.6)

for α, β ∈ Γ(A∗), where LA denotes the Lie derivation on sections of ∧•(A∗) defined by LAX =
[dA, ιX ], for X ∈ ΓA, and π] : A∗ → A is defined by π]α = ιαπ, and set aA∗ = aA ◦ π].
Then (A∗, aA∗ , [ , ]π) is a Lie algebroid. The associated differential is dπ = [π, · ]A, and the
Gestenhaber bracket on the sections of ∧•(A∗), also denoted by [ , ]π, satisfies relation (1.5),
where ∂π = [dA, ιπ]. It is therefore clear that, when A is a Lie algebroid with a Poisson structure,
the pair (A,A∗) is a Lie bialgebroid.

The Poisson cohomology H•(A,dπ) of a Lie algebroid with a Poisson structure (A, π) is
the cohomology of the complex (Γ(∧•A),dπ) which is the cohomology of the Lie algebroid A∗

with anchor aA ◦ π] and Lie bracket [ , ]π, and which generalizes the Poisson cohomology of
Lichnerowicz for Poisson manifolds [88]. The Poisson homology H•(A, ∂π) of (A, π) is that of
the complex (Γ(∧•A∗), ∂π) which has been studied by Huebschmann [55], and which generalizes
the Poisson homology of Poisson manifolds [80, 12].

If A = g, a Lie algebra, and π = r ∈ ∧2g, the Poisson condition is

[r, r]g = 0. (1.7)

This equation is the classical Yang–Baxter equation (CYBE) which can also be written in tensor
notation ([29] and see [19, 67]),

[r12, r13] + [r12, r23] + [r13, r23] = 0.

If r ∈ ∧2g satisfies the classical Yang–Baxter equation, it is called a triangular r-matrix. As
a particular case of the study of Lie algebroids with a Poisson structure, we recover the fact that
a triangular r-matrix on g defines a Lie algebra structure on g∗, by

[α, β]r = ad∗r]αβ − ad∗r]βα, (1.8)

in fact a Lie bialgebra structure on (g, g∗), called a triangular Lie bialgebra.
In analogy with the case of Lie bialgebras defined by a skew-symmetric solution of the classical

Yang–Baxter equation, a Lie bialgebroid defined by a Poisson bivector is also called a triangular
Lie bialgebroid [90].



8 Y. Kosmann-Schwarzbach

1.7 The big bracket

This section is a very brief summary of parts of several articles [117, 111, 115, 69]. The term
“big bracket” was coined in [63].

Let A be a vector bundle over M . The big bracket is the canonical Poisson bracket on the
cotangent bundle of the supermanifold ΠA, where Π denotes the change of parity [117, 122],
generalizing the bracket of [79, 86, 63]. We shall denote it by { , }.

Let µ denote a Lie algebroid structure of A viewed as a function on T ∗(ΠA). It is a cubic
element of bidegree (1, 2), which is homological, i.e., {µ, µ} = 0. Then

[X,Y ]A = {{X,µ}, Y },

for all X, Y ∈ Γ(∧•A). Thus the Lie algebroid bracket [ , ]A is a derived bracket of the big
bracket in the sense of [66, 69].

A Lie bialgebroid is defined by a homological function with terms of bidegrees (1, 2) and (2, 1).
A Lie-quasi-bialgebroid (resp., quasi-Lie-bialgebroid) is defined by a homological cubic ele-

ment with no term of bidgree (3, 0) (resp., no term of bidegree (0, 3)). Whereas for a Poisson
manifold M , the pair (TM,T ∗M) is a bialgebroid, it is a quasi-Lie-bialgebroid when M is
a twisted Poisson manifold (see Section 7.1).

A proto-bialgebroid is defined by a homological cubic element in the algebra of functions on
T ∗(ΠA) [111] (for the case of Lie algebras, see [63]).

The bracket (1.6) on Γ(A∗) defined by a Poisson bivector π is {π, µ}, and the Gerstenhaber
bracket [ , ]π on Γ(∧A∗) satisfies

[α, β]π = {{α, γ}, β},

for all α, β ∈ Γ(∧•A∗), where γ = {π, µ}. Thus the Gerstenhaber bracket [ , ]π also is a derived
bracket of the big bracket.

2 The modular class of a Poisson manifold

The modular class of a Poisson manifold is a class in the first Poisson cohomology space of the
manifold, i.e., the equivalence class modulo Hamiltonian vector fields of a vector field which is an
infinitesimal Poisson automorphism, called a modular vector field. On an orientable manifold,
there exists a volume form invariant under all Hamiltonian vector fields if and only if there
exists a modular vector field which vanishes.

2.1 Modular vector fields and modular class

We consider a Poisson manifold (M,π). Recall that we denoted the Hamiltonian vector field
with Hamiltonian f by Hπ

f , that the Poisson cohomology operator is dπ = [π, · ]M and that the
Poisson homology operator is ∂π = [d, iπ].

Assuming that M is orientable, we choose a volume form, λ, on M . The divergence, divλY ,
of a vector field Y with respect to λ is defined by LY λ = (divλY )λ. Let us consider the linear
map,

Xλ : f 7→ divλ(Hπ
f ). (2.1)

Then

Proposition 5. • Xλ is a derivation of C∞(M), i.e., a vector field on M ,
• Xλ is a 1-cocycle in the Poisson cohomology of (M,π),
• the Poisson cohomology class of Xλ is independent of the choice of volume form, λ.
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Definition 1. The vector field Xλ is called a modular vector field of (M,π). The dπ-cohomology
class of Xλ is called the modular class of the Poisson manifold (M,π).

We shall denote the modular class of (M,π) by θ(π). The property dπXλ = 0 means that
LXλ

π = 0, i.e., that the modular vector fields are infinitesimal automorphisms of the Poisson
structure.

When M is not orientable, densities are used instead of volume forms in order to define the
modular class.

Example 4. If (M,π) is symplectic, then θ(π) = 0. In fact, the Liouville volume form is
invariant under all Hamiltonian vector fields.

If M = g∗, where g is a Lie algebra, is equipped with the linear Poisson structure (Kirillov–
Kostant–Souriau Poisson structure), the modular vector field associated with the standard
Lebesgue measure, λ, on the vector space, g∗, is the constant vector field on g∗, i.e., linear
form on g, Xλ = Tr(ad). Thus the modular vector field of the Poisson manifold g∗ is the
infinitesimal modular character of g.

Example 5. Consider the 2-dimensional non-Abelian Lie algebra g, with basis (e1, e2) and
commutation relation, [e1, e2] = e2. The trace of the adjoint representation of g is the 1-form
on g, e∗1. In the dual vector space g∗ ' R2, with dual basis (u1, u2), where u1 = e∗1, u2 = e∗2,
and coordinates (ξ1, ξ2), the linear Poisson structure is defined by the bivector π such that
π(ξ1,ξ2) = ξ2 u1 ∧ u2. The constant vector field u1 is the modular vector field of (g∗, π) with
respect to the measure dξ1 ∧ dξ2. Since u1 is not globally Hamiltonian, the modular class of
(R2, π) is non-vanishing.

We have thus given an example of a Poisson structure on R2 whose modular class is non-
vanishing. See [109, 110] for examples of Poisson structures with non-vanishing modular class
on surfaces.

2.2 Properties of modular vector fields

We state without proof the main properties of the modular vector fields of Poisson manifolds
(see [124, 125, 68]). Each of the properties listed below can be adopted as a definition of the
modular vector field, Xλ.
• For all α ∈ Γ(T ∗M),

〈α,Xλ〉λ = Lπ]αλ− (ιπdα)λ, (2.2)

a relation which reduces to (2.1), Xλ(f) = divλ(Hπ
f ), when α = df .

• Let n be the dimension of M . Given a volume form, λ, the isomorphism

∗λ : Γ(∧•TM) → Γ(∧n−•T ∗M)

is defined by ∗λu = ιuλ, for u ∈ Γ(∧•TM).
The modular vector field Xλ is related to the (n− 1)-form, ∂πλ, by

∗λXλ = −∂πλ. (2.3)

• Let us consider the operator on Γ(∧•TM), of degree −1,

∂λ = −(∗λ)−1 ◦ d ◦ ∗λ.
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On vector fields, this operator coincides with −divλ. Applied to the Poisson bivector, it yields
the modular vector field,

Xλ = ∂λπ. (2.4)

Thus the modular vector fieldXλ can be considered as the “divergence” of the Poisson bivector π.
• Let us also consider the operator on Γ(∧•T ∗M), of degree −1,

∂π,λ = − ∗λ ◦dπ ◦ (∗λ)−1.

Both operators ∂π and ∂π,λ are generators of square zero of the Gerstenhaber algebra
(Γ(∧•T ∗M), [ , ]π). In view of equation (1.1), the difference ∂π,λ − ∂π is the interior pro-
duct by a vector field. In fact, this vector field is a 1-cocycle in the dπ-cohomology [80, 125, 68],
and it coincides with the modular vector field,

∂π,λ − ∂π = ιXλ
. (2.5)

3 The modular class of a Lie algebroid with a Poisson structure

It is straightforward to generalize the definition of the modular class from the case of the Poisson
manifolds to that of the Lie algebroids with a Poisson structure. Let (A, aA, [ , ]A) be a Lie
algebroid with a Poisson bivector π ∈ Γ(∧2A). Since the exact 1-forms, dAf , f ∈ C∞(M), do
not, in general, span the space of sections of A∗, we cannot rely on the original definition (2.1),
but, assuming that A is orientable, we choose a nowhere-vanishing section λ of ∧top(A∗), and
we consider the expressions in formulas (2.2)–(2.5), where d is replaced by dA, L by LA, where
LAX = [dA, ιX ] for X ∈ ΓA, ∂λ by −(∗λ)−1◦dA◦∗λ, etc. Each of the equations (2.2)–(2.5) defines
uniquely the same section Xλ of A which is a 1-cocycle in the dπ-cohomology. Furthermore, the
class of Xλ is independent of the choice of section of ∧top(A∗). The case of a Poisson manifold M
is recovered when A = TM .

Definition 2. The sectionXλ of A is called a modular section of the Lie algebroid with a Poisson
structure (A, π). The dπ-cohomology class of Xλ is called the modular class of (A, π).

We shall denote the modular class of (A, π) by θ(A, π). When A = TM , the modular class
of (A, π) is the modular class θ(π) of the Poisson manifold (M,π).

The non-orientable case can be dealt with by using densities instead of volume forms.
In the next section, we shall define the modular class, ModE, of a Lie algebroid E, and in

Section 5.2 we shall show how θ(A, π) is related to Mod(A∗) when A∗ is the Lie algebroid with
anchor aA ◦ π] and bracket [ , ]π.

4 The modular class of a Lie algebroid

The modular class of a Lie algebroid was introduced by Weinstein in [124]. This section sum-
marizes some of the results of [34], in which the theory was developed.

4.1 Lie algebroid representations

A representation [93, 94] of a Lie algebroid (E, aE , [ , ]E) with base M in a vector bundle V
with base M is a map D : ΓE × ΓV → ΓV , (u, s) 7→ Dus, such that

Dfus = fDus,

Du(fs) = fDus+ (aE(u) · f)s,
D[u,v]E = [Du, Dv],
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for all u, v ∈ ΓE, s ∈ ΓV and f ∈ C∞(M). A representation of E in V is also called a flat
E-connection [125] on V , and V is called an E-module [117, 36] if there is a representation of E
on V . Clearly, if E = TM , a flat E-connection is a flat connection in the usual sense, and if
M = {pt}, this notion reduces to the Lie algebra representations in vector spaces.

The canonical representation [34] of a Lie algebroid E is the representation DE of E in the
line bundle LE = ∧topE ⊗ ∧top(T ∗M) defined by

DE
u (λ⊗ ν) = LEu λ⊗ ν + λ⊗ LaE(u)ν , (4.1)

where u ∈ ΓE, λ ∈ Γ(∧topE), ν ∈ Γ(∧topT ∗M), and where LEu λ = [u, λ]E .
When E is the integrable sub-bundle of TM defining a foliation F of M , the line bundle LE

is isomorphic to the top exterior power of the conormal bundle to F , and the representation DE

is the top exterior power of the Bott connection of F . When the normal bundle is orientable,
the sections of LE are the tranverse measures to the foliation.

4.2 Characteristic class of a Lie algebroid representation in a line bundle

Let E be a Lie algebroid with a representation D in a line bundle L, and let s be a nowhere-
vanishing section of L. Define θs ∈ Γ(E∗) by the condition

〈θs, u〉s = Dus,

for all u ∈ ΓE. Then θs is a dE-cocycle. Furthermore, the class of θs is independent of the choice
of section s of L, whence the following definition [34].

Definition 3. The section θs of E∗ is called a characteristic cocycle associated with the repre-
sentation D and the section s. Its class is called the characteristic class of the representation D.

If L is not trivial, the class of D is defined as one-half that of the class of the associated
representation of E in the square of L.

4.3 The modular class of a Lie algebroid

Equation (4.1) defines the canonical representation of the Lie algebroid E in the line bundle,
LE = ∧topE ⊗ ∧topT ∗M , which appears in the following definition [34].

Definition 4. The characteristic class of the canonical representation DE of E is called the
modular class of the Lie algebroid E. A cocycle belonging to the modular class of E is callled
a modular cocycle of E.

We shall denote the modular class of E by ModE. Thus, by definition, in the orientable case,
Mod E is the dE-class of the 1-cocycle θ ∈ Γ(E∗), depending on the nowhere-vanishing section
λ⊗ ν of LE , such that

〈θ, u〉λ⊗ ν = LEu λ⊗ ν + λ⊗ LaE(u)ν,

for all u ∈ ΓE.

Example 6. If E = TM , the modular class vanishes, Mod (TM) = 0, since one can choose
λ ∈ Γ(∧topT ∗M) and ν ∈ Γ(∧topTM) such that 〈λ, ν〉 = 1.

If E is a Lie algebra g, then Mod g is the infinitesimal modular character, Tr(ad), of g.
Comparing this fact with the result in Section 2.1, we see that the modular class of g, considered
as a Lie algebroid over a point, is equal to the modular class of the Poisson manifold g∗.
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Example 7. If g is the non-Abelian 2-dimensional Lie algebra with commutation relation
[e1, e2] = e2, then Mod g = e∗1. We saw in Example 5 of Section 2.1 that e∗1 is a modular
vector field of the Poisson manifold g∗.

The preceding property of Lie algebras can be extended to Lie algebroids in the following
way. Let us identify each section of a vector bundle F → M with its vertical lift, which is
a section of the vertical tangent bundle V F → F . This vertical lift, in turn, can be identified
with a vector field on F , tangent to the fibers and invariant by translations along each fiber. In
this way, the modular class of a Lie algebroid E can be identified [124, 103] with the modular
class of the Poisson manifold E∗, when E∗ is equipped with the linear Poisson structure (see,
e.g., [94]) defined by the anchor and bracket of E.

Example 8. When E is the Lie algebroid associated to a foliation F , and the normal bundle
of F is orientable, the sections of LE are the tranverse measures to the foliation. Therefore the
modular class of E is the obstruction to the existence of a transverse measure invariant under
all vector fields tangent to the foliation.

Remark 1. A section of a vector bundle E∗ can be considered as a function on E viewed as
a supermanifold, and a nowhere-vanishing section of LE determines a Berezinian volume on the
supermanifold E. A modular cocycle of a Lie algebroid E is the divergence with respect to such
a Berezinian volume of dE considered as a vector field on the supermanifold E (see [34]).

4.4 The case of Poisson manifolds

If (M,π) is a Poisson manifold, the comparison of the modular class, θ(π), of (M,π) with the
modular class, Mod (T ∗M), of the Lie algebroid (T ∗M,π], [ , ]π) yields the following result
which was proved in [34].

Theorem 1. For a Poisson manifold, (M,π), the modular classes θ(π) and Mod (T ∗M) are
equal, up to a factor 2,

θ(π) =
1
2

Mod (T ∗M). (4.2)

If A is a Lie algebroid with a Poisson structure defined by π ∈ Γ(∧2A), the question arises
whether the cohomology class, θ(A, π), that was defined in Section 3, and Mod(A∗), the modular
class of the Lie algebroid (A∗, aA ◦ π], [ , ]π) satisfy a relation as simple as (4.2). The answer
is no in general, and the correct relation is obtained by the introduction of a new notion, the
modular class of a morphism.

5 The modular class of a Lie algebroid morphism

This section deals first with the modular classes of base-preserving Lie algebroid morphisms
which were introduced in [45] and [77]. In Section 5.4, we shall show how the definition and
properties of these classes can be extended to general morphisms.

5.1 Lie algebroid morphisms

By definition, if E and F are Lie algebroids over the same base, a vector bundle map Φ : E → F
is a Lie algebroid morphism (over the identity of M) if aE = aF ◦Φ and Φ induces a Lie algebra
homomorphism from ΓE to ΓF . It is well known (see, e.g., [74, 53]) that Φ is a morphism if
and only if ∧•(Φ∗) defines a chain map from (Γ(∧•F ∗),dF ) to (Γ(∧•E∗),dE).
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Given a morphism Φ : E → F , let us consider the well-defined class in the Lie algebroid
cohomology of E,

Mod (Φ) = Mod E − Φ∗(Mod F ).

Definition 5. The dE-cohomology class Mod (Φ) is called the modular class of the Lie algebroid
morphism Φ.

The modular class of Φ can be considered as a relative modular class of the pair (E,F ),
whence the terminology adopted in [77]. A representative of the class Mod (Φ) is a section
of E∗. It is clear that the modular class of an isomorphism of Lie algebroids vanishes.

It was proved in [77] that the modular class of a morphism Φ : E → F is the characteristic
class of a representation of E. In fact, set LE,F = ∧topE ⊗ ∧topF ∗ and define the map DΦ by

DΦ
u (λ⊗ ν) = LEu λ⊗ ν + λ⊗ LFΦuν, (5.1)

for u ∈ ΓE and λ⊗ ν ∈ Γ(LE,F ).

Proposition 6. When Φ : E → F is a Lie algebroid morphism, the map DΦ is a representation
of E on the line bundle LE,F , and the modular class of Φ is the characteristic class of this
representation.

5.2 The modular class of a Lie algebroid with a Poisson structure revisited

Let us again consider a Lie algebroid A with a Poisson structure defined by π ∈ Γ(∧2A), as in
Section 3. We can now establish a relation between the cohomology class θ(A, π) and Mod(A∗),
the modular class of the Lie algebroid (A∗, aA ◦π], [ , ]π). (The modular class θ(A, π) is the class
of a section of A, not to be confused with the modular class of A as a Lie algebroid, ModA,
which is the class of a section of A∗.)

Theorem 2. The modular class of a Lie algebroid with Poisson structure, (A, π), and the
modular class of the morphism π] : A∗ → A are equal up to a factor 2,

θ(A, π) =
1
2

Mod(π]). (5.2)

The equality (5.2) yields the desired relation between θ(A, π) and Mod(A∗),

θ(A, π) =
1
2
(
Mod (A∗)− (π])∗(Mod A)

)
. (5.3)

In particular, if π is non-degenerate, θ(A, π) vanishes.
In the case of a Poisson manifold, A = TM . Since Mod (TM) = 0, (5.3) reduces in this case

to θ(π) = 1
2 Mod (T ∗M), i.e., we recover (4.2), the result of Theorem 1.

If A = g is a Lie algebra equipped with a solution π = r of the classical Yang–Baxter
equation (1.7), then (g, r) can be considered as a Lie algebroid over a point with a Poisson
structure, and as such it has a modular class, θ(g, r).

Example 9. Let g be the 2-dimensional non-Abelian Lie algebra as in Example 5 of Section 2.1.
Then r = e1 ∧ e2 is a solution of the classical Yang–Baxter equation on g. Because r is non-
degenerate, θ(g, r) = 0. On the other hand, the modular class of the Lie algebra g∗ equipped
with the Lie bracket [ , ]r defined by (1.8) can be computed as the trace of the adjoint rep-
resentation of this Lie algebra, yielding Mod (g∗) = −e2. Since Mod g = e∗1, we again obtain
θ(g, r) = 1

2

(
Mod (g∗) + r](Mod g)

)
= 1

2(−e2 + r]e∗1) = 0.
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5.3 Unimodularity

A Lie algebroid or a Lie algebroid morphism is called unimodular if its modular class vanishes.
Examples of unimodular Lie algebroids are tangent bundles and unimodular Lie algebras, and we
have mentioned above in Example 8 of Section 4.3 the meaning of unimodularity in the theory of
foliations. The unimodularity of morphisms also is related to the existence of invariant transverse
measures. For example, if H is a connected, closed subgroup of a connected Lie group G, with
Lie algebras h ⊂ g, the canonical injection i : h ↪→ g is unimodular if and only if there exists
a G-invariant measure on the homogeneous space G/H [77].

Remark 2. When viewed as a supermanifold, an orientable unimodular Lie algebroid is a QS-
manifold in the sense of Schwarz [112] (see [76]).

A Poisson structure, π, on a Lie algebroid, A, is also called unimodular if the class θ(A, π)
vanishes. A Poisson manifold (M,π) is unimodular if θ(π) = 0, i.e., if there exists a vanishing
modular vector field Xλ, i.e., if there exists a density that is invariant under all Hamiltonian
vector fields.

On an orientable Lie algebroid with a Poisson structure, the Poisson cohomology H•(A,dπ)
and the Poisson homology H•(A, ∂π) can be compared. When λ is a volume element on A, ∗λ is
a chain map from the complex (Γ(∧•A∗), ∂π) to the complex (Γ(∧n−•A),dπ + εXλ

), where n is
the rank of A and εX is the exterior product of multivectors by the section X of A. In fact, in
view of equation (2.5), ∂π = ∂π,λ− ιXλ

= −∗λ ◦ (dπ + εXλ
) ◦ (∗λ)−1. Therefore, the homology of

the complex (Γ(∧•A∗), ∂π) is isomorphic to the cohomology of the complex (Γ(∧•A),dπ + εXλ
)

[54, 55, 125, 68]. In particular,

Proposition 7. When the Poisson structure, π, of an orientable Lie algebroid, A, is unimodular,
its Poisson homology and Poisson cohomology are isomorphic,

H•(A, ∂π) ' Htop−•(A,dπ).

Remark 3. More general pairings between Lie algebroid cohomology and homology are to be
found in [55, 34, 125]. In [45], Grabowski, Marmo and Michor use odd volume forms to define
generating operators of square zero of the Gerstenhaber algebra Γ(∧•A) for an arbitrary Lie
algebroid A, and they show that the associated homology is independent of the choice of odd
volume form and that, when the Lie algebroid is orientable, there is a Poincaré duality between
this homology and the Lie algebroid cohomology.

5.4 General morphisms of Lie algebroids

The extension of the definition and properties of the modular class to the case of Lie algebroid
morphisms that are not necessarily base-preserving is the subject of the article [73]. Let us
briefly review this general case. When Φ is a vector bundle map from E → M to F → N
over a map φ : M → N , there is a map Φ̃∗ from the sections of F ∗ → N to the sections of
E∗ → M , induced from the base-preserving vector bundle morphism Φ∗ : φ!F ∗ → E∗, where
φ!F ∗ is the pull-back of F ∗ under φ. Then Φ̃∗ is extended as an exterior algebra homomorphism
∧•Φ̃∗ : Γ(∧•F ∗) → Γ(∧•E∗). Let E → M and F → N be Lie algebroids. By definition, Φ is
a Lie algebroid morphism if ∧•Φ̃∗ is a chain map from (Γ(∧•F ∗),dF ) to (Γ(∧•E∗),dE).

Remark 4. It was proved by Chen and Liu [20] that this definition is equivalent to the original
definition of morphism in [49, 93, 94]. In fact, it is also equivalent to the definition in [117]:
Φ maps the homological vector field dE on the supermanifold E to dF .
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It follows from the chain map property that the dE-cohomology class,

Mod(Φ) = ModE − Φ̃∗(ModF ),

is well-defined. It is called the modular class of the morphism Φ, a definition that generalizes
Definition 5.

That this class is the characteristic class of a representation of E is proved using the non-
trivial fact that the pull-back of a Lie algebroid representation by a morphism exists. Another
theorem in [73] states that the pull-back of a Lie algebroid by a transverse map, in particular
by a submersion, gives rise to a morphism with vanishing modular class.

6 The regular case and triangular Lie bialgebras

A Lie algebroid A over M is called regular if the image of its anchor map is of constant rank, and
thus a sub-bundle of TM . The Lie algebroids associated to foliations are an important example
of regular Lie algebroids. The modular classes of regular Lie algebroids were considered in
[24, 35, 36].

A Poisson manifold (M,π) is called regular if its cotangent Lie algebroid T ∗M is regular,
i.e., if the image of the map π] : T ∗M → TM is of constant rank. By extension, a Poisson
structure, π, on a Lie algebroid, A, is called regular if the image of π] is of constant rank, and
thus a Lie subalgebroid of A. We now summarize results on the modular class of Lie algebroids
with a regular Poisson structure obtained in [78].

6.1 The regular case

Let (A, π) be a Lie algebroid with a regular Poisson structure. Let B = π](A∗) and let us denote
the Lie algebroid morphism π] considered as a submersion onto B by π]B. There is an exact
sequence of Lie algebroids over the same base,

0 → Kerπ] → A∗
π]

B−→ B → 0.

The canonical representation of B on Kerπ] is obtained by factoring the adjoint action of Γ(A∗),
with respect to the Lie bracket [ , ]π defined by (1.2), on Γ(Kerπ]) through the submersion
π]B : A∗ → B. (The existence of this representation follows from [94], Proposition 3.3.20.)
Explicitly,

X · γ = LAXγ,

for X ∈ ΓB, γ ∈ Γ(Kerπ]).

Theorem 3. The modular class, θ(A, π), of a Lie algebroid with a regular Poisson structure,
(A, π), satisf ies

θ(A, π) = (π]B)∗(θB), (6.1)

where θB is the characteristic class of the representation of B in ∧top(Kerπ]) induced from the
canonical representation.

This theorem permits an efficient computation of a representative of the modular class,
avoiding the computation of terms which mutually cancel in equation (5.3).

Remark 5. Formula (6.1) can also be obtained from the more general computation of the
modular class of a Lie algebroid morphism with constant rank and unimodular kernel in [73].
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6.2 Triangular Lie bialgebras

This section summarizes some of the results of [78] concerning finite-dimensional real or complex
Lie algebras with a triangular r-matrix, the definition of which was recalled in Section 1.6.

Let g be a Lie algebra considered as a Lie algebroid over a point, and let r ∈ ∧2g be
a triangular r-matrix on g, defining a triangular Lie bialgebra structure on (g, g∗). The image
of r] : g∗ → g is called the carrier of r. We set p = Im r]. In this case, the canonical
representation of p on Ker r] coincides with the restriction of the coadjoint representation of g,
and it is dual to the representation of p on g/p induced from the adjoint action of g. Therefore,
as a conseqeunce of Theorem 3, we obtain the following proposition, where χp,V denotes the
infinitesimal character of a representation V of Lie algebra p, and r](p) denotes r] considered as
a skew-symmetric isomorphism from p∗ = g∗/Ker r] to p.

Proposition 8. Let r be a triangular r-matrix on a Lie algebra g. The modular class of (g, r)
is the element θ(g, r) of g such that

θ(g, r) = −r](p)(χp,Ker (r])) = r](p)(χp,g/p).

6.3 Frobenius Lie algebras

The following proposition was proved by Stolin [114] (see also [42, 52]).

Proposition 9. Let ω ∈ ∧2(p∗) be a non-degenerate 2-form on a Lie algebra p, and let r ∈ ∧2p

be the inverse of ω. Then dpω = 0 if and only if [r, r]g = 0.

A Lie algebra p is called a quasi-Frobenius (resp., Frobenius) Lie algebra if there exists a non-
degenerate 2-cocyle (resp., 2-coboundary) on p. A Lie algebra p is called Frobenius with respect
to ξ ∈ p∗ if ω = −dpξ is a non-degenerate 2-form.

From this definition and from Proposition 9, we obtain:

Proposition 10. Let g be a Lie algebra, and let p be a Lie subalgebra of g. Assume that p is
Frobenius with respect to ξ ∈ p∗. Then r = −(dpξ)−1 ∈ ∧2p is a triangular r-matrix on g, i.e.,
a solution of the classical Yang–Baxter equation.

When the carrier of a triangular r-matrix is a Frobenius Lie algebra, Proposition 8 yields the
following result.

Theorem 4. Let r be a triangular r-matrix on a Lie algebra g. Assume that p = Im r] is
Frobenius with respect to ξ ∈ p∗. Then θ(g, r) is the unique element X ∈ g such that

ad∗X ξ = χp,g/p. (6.2)

Example 10. We illustrate this theorem with the example where p ⊂ sl3(R) is the Lie algebra

of traceless matrices of the form

• • •
0 • •
0 • •

. It is Frobenius with respect to ξ = e∗12 + e∗23.

The coboundary of −ξ is −dpξ = 2(e∗11∧e∗12 + e∗12∧e∗22 + e∗13∧e∗32 + e∗22∧e∗23 + e∗23∧e∗33), and the
corresponding triangular r-matrix is

rGG = (
2
3
e11 −

1
3
(e22 + e33))∧e12 +

(
1
3
(e11 + e22)−

2
3
e33

)
∧e23 + e13∧e32.

The image of r]GG is p and its kernel is generated by e∗21 and e∗31. Computing the character
χp,g/p = −2e∗11 + e∗22 + e∗33, and solving equation (6.2), we obtain θ(sl3(R), rGG) = −2e12 + e23.
The r-matrix rGG is the Gerstenhaber–Giaquinto generalized Jordanian r-matrix [42] on sl3(R).
See [78] for the computation of the modular class in the general case of sln(R).



Poisson Manifolds, Lie Algebroids, Modular Classes: a Survey 17

7 The modular class of a twisted Poisson structure

Twisted Poisson structures on manifolds were studied by Ševera and Weinstein [113] and such
structures on Lie algebroids were subsequently defined by Roytenberg in [111]. It was proved
there that a twisted Poisson structure on A corresponds to a quasi-Lie-bialgebroid structure
on (A,A∗), generalizing the triangular Lie bialgebroids defined by Poisson structures. The
closed 3-form which we denote by ψ below, to conform with the notation in [63] and subsequent
publications, plays an important role in generalized complex geometry [48] and, consequently,
in recent studies on sigma-models, where it is usually denoted by H, and sometimes called an
H-flux.

7.1 Twisted Poisson structures

A twisted Poisson structure on a Lie algebroid A is a pair (π, ψ), where π ∈ Γ(∧2A) and ψ is
a dA-closed form on A satisfying

1
2
[π, π]A = (∧3π])ψ. (7.1)

When a twisted Poisson structure is defined on the Lie algebroid TM , the manifold M is called
a twisted Poisson manifold.

Example 11. There is no genuine twisted Poisson structure on a Poisson manifold of dimension
≤ 3, since the image of π] is then of dimension at most 2. We give an example [50] of a twisted
Poisson structure on an open subset of R4, M = {(x1, x2, x3, x4) ∈ R4 |x1 6= 0 and x3 6= 0}.
Denote ∂

∂xi
by ∂i. Let π = x3∂1 ∧ ∂2 + x1∂3 ∧ ∂4 and ψ = ((x1)−2dx4 − (x3)−2dx2) ∧ dx1 ∧ dx3.

Then (π, ψ) is a twisted Poisson structure on the manifold M .

When (A, π, ψ) is a Lie algebroid with a twisted Poisson structure, the bracket defined by

[α, β]π,ψ = LAπ]αβ − LAπ]βα− dA(π(α, β)) + ψ(π]α, π]β, ·),

for α and β ∈ Γ(A∗), satisfies the Jacobi identity. With the anchor aA ◦ π] and the bracket
[ , ]π,ψ, A∗ is a Lie algebroid, and the map π] is a Lie algebroid morphism from A∗ to A.

There is an associated Gerstenhaber bracket on Γ(∧•A∗), also denoted by [ , ]π,ψ, and an
associated differential on Γ(∧•A), dπ,ψ = [π, · ]A + d, where d is the interior product of sections
of ∧•A by the bivector-valued 1-form, (α, β) 7→ ψ(π]α, π]β, ·).

Remark 6. The pair (A,A∗) is not in general a Lie bialgebroid. However, when A is equipped
with the bracket defined by [X,Y ]A,ψ = [X,Y ]A + ψ(π]( · ), X, Y ), for X and Y ∈ ΓA, the pair
(A,A∗) becomes a quasi-Lie-bialgebroid. In terms of the big bracket [111, 71],

[X,Y ]A,ψ = {{X,µψ}, Y }, where µψ = µ− {ψ, π},

[α, β]π,ψ = {{α, γψ}, β}, where γψ = −{µ, π}+
1
2
{{ψ, π}, π}.

7.2 The modular class in the twisted case

The modular class of a twisted Poisson structure (A, π, ψ) was first defined in [72] as the dπ,ψ-
cohomology class of a section of A depending on the choice of a volume form (for the case where
A = TM , see also [7]). Then in [77], it was shown to be the modular class of the morphism
π] : A∗ → A, up to a factor 2. Here we proceed somewhat differently.
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Definition 6. The modular class, θ(A, π, ψ), of the twisted Poisson structure (π, ψ) on A is

θ(A, π, ψ) =
1
2

Mod(π]) .

A dπ,ψ-cocycle in the modular class θ(A, π, ψ) is called a modular section of (A, π, ψ).

Thus, we take (5.2) to be the definition of the modular class, and it is clear, because of
Theorem 2, that Definition 6 generalizes Definition 2.

Example 12. When π] : A∗ → A is an isomorphism of vector bundles, the modular class
vanishes. For instance, the modular class of the twisted Poisson structure (π, ψ) of Example 11
of Section 7.1 above vanishes.

In the case where A = TM , the modular class of the morphism π] is that of the Lie algeb-
roid T ∗M . Therefore, Theorem 1 remains valid in the twisted case: The modular class of
a twisted Poisson manifold is equal to one-half of the modular class of its cotangent bundle Lie
algebroid.

The problem that arises is to determine a section of A which is a representative of the modular
class thus defined. Assume that A is orientable, and let λ ∈ Γ(∧topA∗) be a volume form on A.
Define sections Xλ and Y of A by

∗λXλ = −∂πλ, Y = π]ιπψ,

and set Zλ = Xλ + Y . In [72], it was proved that Zλ satisfies the relation

∂π,ψ,λ − ∂ = ιZλ
,

where ∂π,ψ,λ = −∗λ ◦dπ,ψ ◦ (∗λ)−1 and ∂ = ∂π + ∂+ ιY , the operator ∂ being the dual of d, and
also that both operators ∂π,ψ,λ and ∂ are generators of square zero of the Gerstenhaber bracket
[ , ]π,ψ. This implies that Zλ is a dπ,ψ-cocycle. It is then proved that Zλ is a characteristic cocycle
of the representation D(∂) of A∗ on ∧top(A∗) defined by D(∂)

α (µ) = −α∧∂µ, for α ∈ Γ(A∗) and
µ ∈ Γ(∧topA∗). It was further remarked in [77] that, for Φ = π], the representation DΦ defined
by (5.1) is the square of the representation D(∂), Dπ]

(µ⊗µ) = D(∂)µ⊗µ+µ⊗D(∂)µ. Applying
Proposition 6 to the morphism π] proves the following theorem.

Theorem 5. The section Zλ = Xλ + Y of A is a modular section of (A, π, ψ).

We see that in the Poisson case, the modular section Zλ reduces to the modular section Xλ.
See [72] for the description of a unimodular twisted Poisson structure on a dense open set of

a semi-simple Lie group. In this example the 3-form ψ is the Cartan 3-form.

7.3 The regular twisted case

The formula for the modular class θ(A, π) of a regular Poisson structure given in Theorem 3 is
valid for the modular class of a regular twisted Poisson structure [78]:

θ(A, π, ψ) = (π]B)∗(θB).

7.4 Non-degenerate twisted Poisson structures

It is well-known that the inverse of a non-degenerate Poisson structure, π, on a Lie algebroid is
a symplectic structure, i.e., a non-degenerate 2-form, ω ∈ Γ(∧2A∗). Recall that ω is defined by
ιX(ω) = −ω[(X), for all X ∈ ΓA, where ω[ = (π])−1.
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When a twisted Poisson structure (A, π, ψ) is such that π] is invertible, the inverse of π is
a 2-form which is not dA-closed, but satisfies

dAω = −ψ, (7.2)

and, conversely, equation (7.2) implies that (ω−1, ψ) is a twisted Poisson structure. The non-
degenerate 2-form ω is then called twisted symplectic. (See [113, 78], and, for a generalization of
this correspondence, see [71].) It is easy to construct non-degenerate twisted Poisson structures
using this result.

Example 13. We shall show that Example 11 of Section 7.1 arises in this way, when A is the
tangent bundle of the manifold, M , and dA is the de Rham differential, d. We keep the notations
of 7.1. Consider the non-degenerate 2-form on M , ω = (x3)−1dx1∧dx2 +(x1)−1dx3∧dx4. Then
−dω = ((x1)−2dx4 − (x3)−2dx2) ∧ dx1 ∧ dx3. The inverse of ω is the non-degenerate bivector
π = x3 ∂1 ∧ ∂2 + x1∂3 ∧ ∂4. So it follows without computations that the pair (π, ψ), where
ψ = −dω, satisfies (7.1).

Let us consider a Lie algebroid, A, with a regular twisted Poisson structure, (π, ψ), and let
B = π](A∗) be the image of π]. The morphism π] defines a skew-symmetric isomorphism from
B∗ = A∗/Kerπ] to B. We denote the section of ∧2B∗ defined by the inverse of this isomorphism
by ω(B). If ψ(B) is the pull-back of ψ to the sub-bundle B of A, then dB(ω(B)) = −ψ(B).
These considerations lead to the following proposition from [78] which describes a method for
constructing twisted Poisson structures that uses the linearized form (7.2) of the twisted Poisson
condition (7.1).

Proposition 11. Let ω be a 2-form on a Lie algebroid A whose restriction ω|B to a Lie sub-
algebroid B of A is non-degenerate. Then the inverse of ω|B and ψ = −dAω define a regular
twisted Poisson structure on A.

The bivector π of this twisted Poisson structure is such that π] : A∗ → B is the composition
of the canonical projection of A∗ onto B∗ with the inverse of ω|B.

Example 14. On M = {(x1, x2, x3, x4, x5) ∈ R5 |x1 6= 0 and x5 6= 0}, consider the 2-form,
ω = x5dx1 ∧ dx2 + x1dx3 ∧ dx4. The restriction of ω to the sub-bundle B of TM generated
by ∂1, ∂2, ∂3 and ∂4 is non-degenerate, with inverse π = (x5)−1∂1 ∧ ∂2 + (x1)−1∂3 ∧ ∂4. Then
(π,−dω) is a twisted Poisson structure on M . Here dω = dx1 ∧dx2 ∧dx5 +dx1 ∧dx3 ∧dx4 and
a computation yields 1

2 [π, π] = −(∧3π])(dω) = (x1)−2(x5)−1∂2 ∧ ∂3 ∧ ∂4.

7.5 Twisted triangular r-matrices

When A = g is a Lie algebra, and π = r ∈ ∧2g and ψ ∈ ∧3(g∗) satisfy relation (7.1), (r, ψ) is
called a twisted triangular structure, and r is called a twisted triangular r-matrix. The formulas
in Proposition 8 remain valid for the modular class of a Lie algebra with a twisted triangular
r-matrix [78]:

θ(g, r, ψ) = −r](p)(χp,Ker r]) = r](p)(χp,g/p) .

Example 15. Examples of twisted triangular r-matrices are given in [78]. They can be con-
structed as indicated in Proposition 11. We quote the simplest example with a non-vanishing
modular class. Let p be the Lie subalgebra of g = gl3(R) with zeros on the third line, which
is the Lie algebra of the group of affine transformations of R2. Consider the 2-cochain on the
Lie algebra g, ω = e∗12∧e∗21 + e∗11∧e∗13 + e∗22∧e∗23. The restriction of ω to p is invertible and its
inverse is r = e12∧e21 + e11∧e13 + e22∧e23. Then (r, ψ), with ψ = −dgω, is a twisted triangular
structure on g. In this case, χp,g/p = −(e∗11 + e∗22) and θ(g, r, ψ) = −(e13 + e23).
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7.6 Twisted quasi-Frobenius Lie algebras

There is a twisted version of the quasi-Frobenius Lie algebras. A pair (ω, ψ) is called a twisted
quasi-Frobenius structure on a Lie algebra p if ω is a non-degenerate 2-cochain on p and ψ is
a 3-cocycle on p such that dpω = −ψ. Then [78],

Proposition 12. The pair (ω, ψ) is a twisted quasi-Frobenius structure on a Lie algebra, g, if
and only if (ω−1, ψ) is a twisted triangular structure on g.

In this correspondence, quasi-Frobenius structures correspond to triangular structures, so
this proposition extends Proposition 9.

8 Modular classes of Poisson–Nijenhuis structures

The modular classes of Poisson–Nijenhuis manifolds were introduced in [25] and further studied
in [75]. The extension of the definition and properties of the modular classes to the case of
Poisson–Nijenhuis structures on Lie algebroids was carried out by Caseiro [17]. Applications to
the classical integrable systems, the Toda lattice among them, are to be found in [25, 4, 17].

8.1 Nijenhuis structures

The Nijenhuis torsion of a (1, 1)-tensor, N ∈ Γ(TM ⊗ T ∗M), on a manifold M , is the (1, 2)-
tensor [N,N ]Fr−Nij defined by

1
2
[N,N ]Fr−Nij(X,Y ) = [NX,NY ]−N [NX,Y ]−N [X,NY ] +N2[X,Y ],

for X and Y ∈ Γ(TM). A (1, 1)-tensor is called a Nijenhuis tensor if its Nijenhuis torsion
vanishes. It is well known that powers (with respect to composition) of Nijenhuis tensors,
considered as endomorphisms of the tangent bundle, are Nijenhuis tensors. When N is a (1, 1)-
tensor, set

[X,Y ]N = [NX,Y ] + [X,NY ]−N [X,Y ], (8.1)

for X and Y ∈ Γ(TM).

Proposition 13. If N is a Nijenhuis tensor on a manifold, M , the bracket [ , ]N defined by (8.1)
is a Lie bracket on Γ(TM), and the vector bundle TM with anchor N : TM → TM and Lie
bracket of sections [ , ]N is a Lie algebroid.

Let us denote the Lie algebroid (TM,N, [ , ]N ) by TMN . The Lie algebroid differential
of TMN on Γ(∧•T ∗M) is dN = [d, ιN ], where d is the de Rham differential and ιN is the
interior product of 1-forms by the (1, 1)-tensor N [74]. The following proposition is from [25]
(see also [75]).

Proposition 14. The modular class of the Lie algebroid TMN is the class of the 1-form dTrN
in the dN -cohomology.

It follows either from the relation [N,N ]Fr−Nij = 0, or from the fact that N is the anchor
of TMN , that N is a Lie algebroid morphism from TMN to TM . Since the modular class of TM
vanishes, the modular class of the Lie algebroid TMN is equal to the modular class of the Lie
algebroid morphism N .
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8.2 Poisson–Nijenhuis structures

If π is a Poisson bivector on M , we denote the Lie algebroid (T ∗M,π], [ , ]π) by T ∗M[0].
A Nijenhuis tensor N and a Poisson tensor π on M are called compatible if (TMN , T

∗M[0]) is
a Lie bialgebroid. The pair (π,N) is then called a Poisson–Nijenhuis structure (or PN-structure
for short) on M , and M is called a Poisson–Nijenhuis manifold .

This characterization of Poisson–Nijenhuis structures [65] is equivalent to the original de-
finition [96, 74]: π]N∗ = Nπ] and C(π,N) = 0, where N∗ : T ∗M → T ∗M is the dual of
N : TM → TM , and C(π,N) is a (2, 1)-tensor defined by C(π,N)(α, β) = [α, β]Nπ−([α, β]π)N∗ ,
for α and β ∈ Γ(T ∗M).

The main consequence of the compatibility of π and N is that all the bivectors in the sequence
πk = Nkπ, k ∈ N, are Poisson bivectors. In addition, (πk) constitutes a hierarchy of pairwise
compatible Poisson structures in the sense that, for any k, k′ ∈ N, πk+πk′ is a Poisson bivector.

Define

Ik =
1
k
TrNk,

for each k ≥ 1. The functions Ik are pairwise in involution with respect to any of the Poisson
structures π` [96], and they are called the fundamental functions in involution of the Poisson–
Nijenhuis structure [96]. The corresponding Hamiltonian vector fields,

Hπ
Ik

=
1
k
π](dTrNk),

are bi-Hamiltonian for k ≥ 2 with respect to any pair of Poisson structures in the hierarchy,
and they commute pairwise. The sequence of vector fields (Hπ

Ik
) is called the bi-Hamiltonian

hierarchy of the Poisson–Nijenhuis structure.
When (π,N) is a Poisson–Nijenhuis structure on M , the vector bundle T ∗M with anchor

(πk)] and bracket [ , ]πk
is a Lie algebroid which we denote by T ∗M[k]. We then denote N∗,

considered as a map from T ∗M[k] to T ∗M[k−1], by N∗
[k], for each k ≥ 1.

Proposition 15. Let (π,N) be a Poisson–Nijenhuis structure on M . Then, for all k ≥ 1,
N∗

[k] : T ∗M[k] → T ∗M[k−1] is a Lie algebroid morphism.

8.3 The modular classes of a Poisson–Nijenhuis manifold

Definition 7. For k ≥ 1, the k-th modular class of a Poisson–Nijenhuis manifold (M,π,N) is
one-half of the modular class of the Lie algebroid morphism N∗

[k].

We denote the k-th modular class of (M,π,N) by θ(k). We recall that, corresponding to each
Poisson structure πk on M and consequently to each Lie algebroid T ∗M[k], there is associated
a differential on Γ(∧•TM), denoted by dπk

. The k-th modular class is a class in the first
cohomology space of the complex (Γ(∧•TM),dπk

).
Assume that M is orientable, and let λ be a volume form on M . For each k ∈ N, let Xk

λ be
the modular vector field of the Poisson manifold (M,πk) which is a dπk

-cocycle. Then [25],

Theorem 6. Let (M,π,N) be an orientable Poisson–Nijenhuis manifold. Set

X(k) = Xk
λ −N(Xk−1

λ ),

for each k ≥ 1. Then,
• X(k) is a dπk

-cocycle, independent of the choice of the volume form, λ,
• the class of X(k) in the dπk

-cohomology of Γ(∧•TM) is θ(k), the k-th modular class of
(M,π,N),

• X(k+1) = N(X(k)),
• X(k) = −1

2H
π
Ik

.
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The vector fields X(k) can therefore be called the modular vector fields of the Poisson–
Nijenhuis structure (π,N) on M . The sequence of modular vector fields (X(k))k≥2 coincides,
up to sign and a factor 2, with the bi-Hamiltonian hierarchy of the Poisson–Nijenhuis structure.
Under the additional assumption that N is invertible, each X(k) is bi-Hamiltonian, not only for
k ≥ 2, but also for k = 1 with I0 = ln|detN | (see [25]).

Remark 7. A proof of Theorem 6 is also in [75], based on the fact that C(π,N) = 0 implies
ιπ(dNdf) = −1

2H
π
I1

(f) which fact is a corollary of a theorem of Beltrán and Monterde [8].

The vector field X(1) = XNπ
λ −N(Xπ

λ ) is called the modular vector field of (M,π,N). Its class
in the dNπ-cohomology is θ(1) = 1

2 Mod(N∗), called the modular class of (M,π,N). Each X(k),
for k ≥ 2, is obtained from X(1) by the relation,

X(k) = Nk−1X(1).

Let TM[k] be the Lie algebroid (TM,Nk, [ , ]Nk), and let N[k] be N considered as a Lie
algebroid morphism from TM[k] to TM[k−1]. There is a simple relation between the modular
classes of the Lie algebroid morphisms N∗

[k] : T ∗M[k] → T ∗M[k−1] and N[k] : TM[k] → TM[k−1].

Proposition 16. When (π,N) is a Poisson–Nijenhuis structure on M ,

Mod(N∗
[k]) = −(π])∗(Mod(N[k])),

for all k ≥ 1.

8.4 Poisson–Nijenhuis structures on Lie algebroids

It is straightforward to extend the notion of Poisson–Nijenhuis manifold to that of Poisson–
Nijenhuis structure on a Lie algebroid [74, 47], more generally on Gelfand–Dorfman complexes
[40, 27, 119, 120], and the results concerning the modular classes are readily extended [17]. For
a Nijenhuis tensor on a Lie algebroid A, the modular class of the morphismN from A with anchor
aA◦N and deformed bracket [ , ]A,N to (A, aA, [ , ]A) is the class of the 1-form dATrN (cf. Propo-
sition 14). For a Poisson–Nijenhuis structure on A, there is a sequence of bi-Hamiltonian modular
sections (cf. Theorem 6), and a multi-Hamiltonian system on the base manifold. In [17], Caseiro
defines a Poisson–Nijenhuis structure on a Lie algebroid, whose hierarchy of Poisson structures
projects onto the known hierarchy of multi-Hamiltonian structures for the Toda lattice.

9 The spinor approach to the modular class

The spinor approach to Poisson geometry stems from Hitchin’s introduction of the generalized
geometry using the Courant bracket on the direct sum TM ⊕ T ∗M [51]. It was developed by
Gualtieri [48], and, more recently by Alekseev, Bursztyn and Meinrenken [97, 5], and many
others. Here we show how the modular class appears in this approach.

9.1 The modular class and pure spinors

The title of this section will be explained in the next section.
We first make two definitions. If π is a bivector on a vector bundle, E, we denote by e−ιπ

the operator Id− ιπ + 1
2! ιπ ◦ ιπ − · · ·+ (−1)k 1

k!(ιπ)
k + · · · , whose evaluation on a given form is

a finite sum, and, for λ a form of top degree on E, let us set

λ(π) = e−ιπλ.
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Next, we define, for ψ a dA-closed 3-form on a Lie algebroid A, the operator on forms,

dψ = dA + εψ,

where εψ denotes the exterior product by ψ. This operator is of square zero since ψ is dA-closed.
Such a closed 3-form is usually considered as a background 3-form [62, 113, 48], and dψ is called
the ψ-twisted differential associated to (A,ψ). We now show the relationship of these objects
with the modular class.

Let π be a bivector, ψ a dA-closed 3-form, and λ a volume form on an orientable Lie algeb-
roid, A, and let Xλ and Y be defined as in Section 7.2, ∗λXλ = −∂πλ and Y = π]ιπψ. Then,

dA(λ(π)) = ι− 1
2
[π,π]A+Xλ

(λ(π)), (9.1)

and

εψ(λ(π)) = ι(∧3π])ψ+Y (λ(π)).

Setting φπ = 1
2 [π, π]A − (∧3π])ψ and Zλ = Xλ + Y , we obtain

dψ(λ(π)) = ι−φπ+Zλ
(λ(π)). (9.2)

These formulas are results of Meinrenken [97], themselves based on formulas of Evens and Lu [33].
(See also [7].) Since φπ = 0 is the condition for (π, ψ) to define a twisted Poisson structure on A,
the following theorem is a direct consequence of (9.2).

Theorem 7. Let (A, π, ψ) be an orientable Lie algebroid with a twisted Poisson structure, and
let λ be a volume form on A. The modular section associated to λ is the unique section Zλ of A
such that

dψ(λ(π)) = ιZλ
(λ(π)). (9.3)

An orientable Lie algebroid with a twisted Poisson structure, (A, π, ψ), is unimodular if and only
if there exists a volume form, λ, on A such that λ(π) is a dψ-closed form.

If, in particular, ψ = 0, equation (9.2) reduces to (9.1), and the theorem states that, for (A, π)
an orientable Lie algebroid with a Poisson structure, dA(λ(π)) = ιXλ

(λ(π)), so that the unimod-
ularity corresponds to the existence of a volume form, λ, such that λ(π) is dA-closed.

Remark 8. In terms of the big bracket, if we again denote the Lie algebroid structure of A by µ,
relation (9.3) becomes {µ, λ(π)} + εψ(λ(π)) = {Zλ, λ(π)}, and in the Poisson case, it takes the
simple form, {µ, λ(π)} = {Xλ, λ

(π)}. Thus, for a Lie algebroid with a twisted Poisson structure,
the modular section associated to the volume form λ is the unique section, Z, of A satisfying
the equation,

{µ, λ(π)}+ εψ(λ(π)) = {Z, λ(π)},

and, for a Poisson structure, this equation takes the simple form, {µ, λ(π)} = {X,λ(π)}.

9.2 Pure spinors

When the sections of ∧•(E⊕E∗) act on the sections of ∧•(E∗) by interior and exterior products,
Γ(∧•E∗) appears as a spinor bundle of the Clifford algebra of E ⊕ E∗, because of the relation
ιXεξ+εξιX = 〈ξ,X〉, forX ∈ ΓE and ξ ∈ Γ(E∗). If π is a bivector on E, its graph is a Lagrangian
sub-bundle of E ⊕ E∗, i.e., a maximal isotropic sub-bundle with respect to the bilinear form
defined by the pairing of E with E∗. A Lagrangian sub-bundle L of E ⊕ E∗ is determined by
a form, κ ∈ Γ(∧•E∗), unique up to a multiplicative constant, such that L is the annihilator of κ
under the Clifford action [21]. Such a form is called a pure spinor. It can de deduced from
a theorem of Chevalley [21] that the graph of π is the annihilator of the pure spinor λ(π). Thus,
in the spinor approach to Poisson and twisted Poisson structures, the inhomogeneous form λ(π)

is viewed as a pure spinor defining the graph of π.



24 Y. Kosmann-Schwarzbach

9.3 Courant algebroids and Dirac structures

When A is a Lie algebroid, the vector bundle A ⊕ A∗ becomes a Courant algebroid with the
non-skewsymmetric bracket defined as a derived bracket of the big bracket by

[X + ξ, Y + η] = {{X + ξ, dA}, Y + η},

for X, Y ∈ ΓA and ξ, η ∈ Γ(A∗), and, more generally, if ψ is a dA-closed 3-form on A, the vector
bundle A⊕A∗ is a Courant algebroid with the non-skewsymmetric bracket,

[X + ξ, Y + η]ψ = {{X + ξ, dψ}, Y + η}, (9.4)

called the Courant bracket with background ψ, or the ψ-twisted Courant bracket (see [111, 69, 70]
and, for further developments, [115, 71]).

A Lagrangian sub-bundle of a Courant algebroid whose sections are closed under the Courant
bracket is called a Dirac structure.

By (9.2), requiring that φπ = 0, the condition for (π, ψ) to be a twisted Poisson structure,
is equivalent to the condition that there exist a section U of A such that the pure spinor λ(π)

satisfy

dψ(λ(π)) = ιUλ
(π) . (9.5)

This condition, in turn, is equivalent to the condition that the annihilator of λ(π), a Lagrangian
sub-bundle of A ⊕ A∗, be closed under the Courant bracket with background ψ [48, 97]. Since
the annihilator of λ(π) is the graph of π, these considerations imply the following proposition.

Proposition 17. The pair (π, ψ) is a twisted Poisson structure on A if and only if the graph
of π is a Dirac sub-bundle of A⊕A∗ with the ψ-twisted Courant bracket.

This proposition is well-known and can be proved without any appeal to spinors (see [113,
111, 115]). Here, we emphasize that the modular field appears as the section U such that the
ψ-twisted differential of λ(π) satisfies (9.5), which ensures that the graph of π is closed under
the ψ-twisted Courant bracket (9.4).

Appendix: additional references and conclusion

In this Appendix, we review some recent publications and the direction of work in progress.
Many lines of research that touch upon the subject of this survey have been or are being

developed. In the early 90’s, the modular vector fields were a tool in the classification of Poisson
structures, in particular of the quadratic Poisson structures on the plane [31, 89, 46]. Work on the
classification of Poisson structures on surfaces using the periods of a modular vector field along
the singular set of the Poisson bivector has been carried out by Radko [109, 110]. Starting in
2000, results have been published on the relation of the modular class of a Poisson manifold and
the holonomy of its symplectic foliation [44], the Godbillon–Vey class of the symplectic foliation
in the regular case [99] and its Reeb class [1], and on the invariance of the modular class under
Morita equivalence [43, 14]. In [59], Ibort and Mart́ınez Torres study the unimodularity of some
Poisson manifolds constructed by surgery. In [100], Mitric and Vaisman compute the modular
class of the complete lift of the Poisson bivector of a manifold to its tangent bundle. In [126],
Ping Xu determines how the modular class of a Dirac submanifold of a Poisson manifold is
related to that of the ambient Poisson manifold. J.-H. Lu recently described the modular classes
of Poisson homogeneous spaces [91], generalizing a result of [34].

At the same time many generalizations of the notion of modular class have appeared. The
modular classes of Leibniz algebroids [58, 123], of Nambu–Poisson structures [57, 56], of Jacobi
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manifolds [121] and Jacobi algebroids (also called generalized Lie algebroids) [60] have been
defined, their unimodularity implying a homology/cohomology duality, as well as those of symp-
lectic supermanifolds [102]. The modular class of quasi-Poisson G-manifolds was defined by
Alekseev et al. in [6].

Many further developments are in progress. To name just a few, work on the various genera-
lizations continues, for example on Jacobi–Nijenhuis algebroids [18], while the implications of
the properties of the modular classes of Poisson–Nijenhuis structures on manifolds and on Lie
algebroids for the theory of integrable systems are being studied [4]. Closely related works are
those of Launois and Richard on Poisson algebras [83], that of Dolgushev [26] on the exponen-
tiation of the modular class into an automorphism of an associative, non-commutative algebra,
quantizing a Poisson algebra, and that of Neumaier and Waldmann on the relationship between
unimodularity and the existence of a trace in a quantized algebra [103]. The relationship between
unimodularity and the existence of a trace on non-commutative algebras was already stressed
by Weinstein in [124] and should be the subject of further work.

There are at least three directions in which the theory will surely expand: the definition and
study of the modular classes of Lie groupoids and their behaviour under Morita equivalence,
more generally introducing stacks and 2-categories (following, e.g., [15, 85, 116]), applications
to sigma-models, and the determination of the relationship with generalized complex structures.
The number of papers on sigma-models in which Lie algebroids and twisted Poisson structures
appear is extremely large. In [11], Bonechi and Zabzine introduce the modular class of the target
manifold of the Poisson sigma-model on the sphere: the unimodularity appears as a condition
for the quantization to be well-defined. There is new work [84] on holomorphic Lie algebroids,
and problems such as the relation between unimodularity and the generalized Calabi–Yau mani-
folds [51] remain to be studied.
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