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Abstract. Within the framework of generalized Papapetrou method, we derive the effective
equations of motion for a string with two particles attached to its ends, along with appropri-
ate boundary conditions. The equations of motion are the usual Nambu–Goto-like equations,
while boundary conditions turn out to be equations of motion for the particles at the string
ends. Various properties of those equations are discussed, and a simple example is treated in
detail, exhibiting the properties of Neumann and Dirichlet boundary conditions and giving
a small correction term to the law of Regge trajectories due to the nonzero particle mass.
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1 Introduction

The interest in studying extended objects in high energy physics began with the observation that
meson resonances could be viewed as rotating relativistic strings [6, 3]. This model provided
a successful explanation of Regge trajectories. Nevertheless, the model assumes that the two
quarks attached to the string have zero mass and zero angular momentum. The purpose of
this short note is to take into account small mass of the two particles, and exhibit some basic
properties of equations of motion in this case.

In order to do so, one needs to derive the equations of motion for the string with particles
attached to its ends. The general method that lends itself for doing this was developed in [8], and
represents the generalization of the Mathisson–Papapetrou method [5, 7] to include extended
objects.

The layout of the paper is the following. In Section 2 we formulate the stress-energy tensor
for the string with two particles attached in the simplest, single-pole approximation. Then we
utilize its covariant conservation to derive equations of motion and boundary conditions for the
string. It turns out that the boundary conditions are nothing but equations of motion for the
particle residing at the end of the string. We recognize the force that acts upon the particle,
and comment that in case of Nambu–Goto string this force has the form similar to Lorentz force
from electrodynamics. We also comment on the particle mass conservation and the possibility
of writing an action for the system of equations of motion.

In Section 3 we proceed to find an example solution of the equations of motion, where the
string is of Nambu–Goto type and lying along a straight line of constant length L while rotating
with constant angular velocity about its center. The velocity of the particles at the ends turns
out to depend on the length of the string, the mass of the particle and the string tension, in
such a way that it is always less than the velocity of light, as expected. We discuss two limiting
cases – in the limit of zero particle mass, the particle velocity becomes equal to the speed of
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light, and represents the situation analogous to imposing Neumann boundary conditions in usual
string theory. In the limit of infinite particle mass, its velocity equals zero, and represents the
situation analogous to imposing Dirichlet boundary conditions where the string is attached to
a 0-brane, i.e. a particle. Other cases, those with finite particle velocity, do not appear in usual
string theory.

Section 4 is devoted to computing the total energy and angular momentum for the example
system discussed above. By eliminating the string length parameter from the equations, in the
limit of small particle masses one recovers the familiar law of Regge trajectories, but now with a
small correction term due to masses being small but still nonzero. This result is a demonstration
how one can calculate corrections to the Regge law due to the presence of particles at the string
ends.

In Section 5 we give our final comments and conclusions.
Our conventions are the same as in [8], aside from the metric signature, which we now

take to be diag (−,+,+,+). Greek indices µ, ν, . . . are the spacetime indices, and run over
0, 1, . . . , D − 1. Latin indices a, b, . . . are the world sheet indices and run over 0, 1, . . . , p. The
Latin indices i, j, . . . refer to the world sheet boundary and take values 0, 1, . . . , p − 1. The
coordinates of spacetime, world sheet and world sheet boundary are denoted by xµ, ξa and λi,
respectively. The corresponding metric tensors which are used to lower indices are denoted
by gµν(x), γab(ξ) and hij(λ), while the indices are raised by the inverse metrics gµν , γab and hij .
We shall mainly be interested in the realistic case D = 4.

2 Equations of motion

We begin by considering an isolated system consisted of a string with two massive particles
attached to its ends, in Riemannian 4-dimensional spacetime. The basic starting point of the
derivation of equations of motion is the covariant conservation of the symmetric stress-energy
tensor [7, 8]:

∇νT
µν = 0.

The stress-energy tensor is written as a sum of two terms,

Tµν =
∫
M

d2ξ
√
−γBµν

s

δ(4)(x− z)√
−g

+
∫

∂M
dλ
√
−hBµν

p

δ(4)(x− z)√
−g

,

representing the stress-energy components for the string and the particles at string endpoints,
respectively. We restrict ourselves to the simplest, single-pole approximation, neglecting any
higher terms containing derivatives of the Dirac delta function. The procedure described in [8]
then yields the familiar world sheet equations

∇a

(
mabuµ

b

)
= 0, (1)

as well as expressions that determine the form of the stress-energy tensor:

Bµν
s = mabuµ

auν
b , Bµν

p = mvµvν . (2)

Here the world sheet is described by the parametrized equations xµ = zµ(ξa), where a ∈ {0, 1}.
Similarly, the world sheet boundary is described by the parametrized equations ξa = ζa(λ) or
equivalently xµ = zµ(ζa(λ)). Consequently, we define the notation for the vectors tangent to
the world sheet and a vector tangent to the boundary:

uµ
a ≡

∂zµ

∂ξa
, va ≡ ∂ζa

∂λ
, vµ = uµ

ava.
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Aside from equations of motion, one also gets the appropriate boundary conditions for the string.
The particle part of Tµν is constrained by the requirement that particle trajectories coincide
with the string boundary, so the resulting boundary conditions are:

D

ds
(mvµ) = nam

abuµ
b . (3)

These boundary conditions are written using the parametrization λ = s (where s is the proper
distance parameter), or equivalently fixing the gauge condition h ≡ vµvµ = −1, and are reinter-
preted as the particle equations of motion. The stress-energy tensor of such a system has also
been studied in [2].

The boundary conditions represent the equation determining particle trajectory, and the term
on the right-hand side represents the force that string exerts on the particle. If the boundary ∂M
consists of two disjoint lines, ∂M = ∂M1 ∪ ∂M2 and ∂M1 ∩ ∂M2 = ∅, the masses m of the
two particles may differ.

In general, equations (1) and (3) cannot be derived by extremizing some action if one does
not introduce auxiliary variables in the theory. However, for the case of Nambu–Goto matter
described by the choice

mab = Tγab,

such an action exists, and is of the form

S = T

∫
M

d2ξ
√
−γ −m

∫
∂M

dλ
√
−h.

The information that the particles are attached to string ends is encoded in the requirement
that the domain of integration for the particle action be precisely the boundary of the string
world sheet M. As above, if the boundary consists of two disjoint lines, the particle part of the
action can be split in two independent parts, each containing independent mass parameter, m1

and m2, which need not be equal. This action can be also used to model monopole-antimonopole
pairs connected by Nambu–Goto strings, formed in phase transition in the early universe [1, 4].

There are two other peculiarities of the Nambu–Goto choice of matter, as we shall show.
First, by contracting the equation (3) with vµ, and having in mind the choice mab = Tγab, one
easily derives the law of mass conservation:

dm

ds
= 0.

In the general case of mab this need not hold, because matter may be allowed to flow from the
particle to the interior of the string and vice versa.

Second, denoting the right-hand side of (3) as the force Fµ, we can rewrite it as:

Fµ ≡ Tnµ = TFµ
νv

ν , Fµν ≡ uµ
aeabuν

b .

Here eab is the covariant totally antisymmetric Levi-Civita tensor. In this notation, the equation
of motion for the particle takes the form:

m
D

ds
vµ = TFµνvν ,

which looks identically the same as the well known Lorentz force law from ordinary electrody-
namics:

m
D

ds
vµ = qFµνvν ,

Fµν being the antisymmetric electromagnetic field strength tensor, and q the appropriate charge
of the particle. While the “string field strength tensor” Fµν is also antisymmetric, it is of course
of entirely different nature, but the identical form of the force law nevertheless seems interesting.
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3 Neumann and Dirichlet boundary conditions

In what follows, we shall assume that the string is made of the Nambu–Goto type of matter,
moving in a 4-dimensional flat spacetime:

mab = Tγab, Rµ
νλρ = 0.

Then, the world sheet equations (1) reduce to the familiar Nambu–Goto equations, and the
third term on the right-hand side of (3) becomes Tnµ.

Now, we look for a simple, straight line solution of the equations of motion (1). This has also
been discussed in [4], but for different purpose. Without loss of generality, we put

~z = ~α(τ)σ, z0 = τ,

where ξ0 ≡ τ and ξ1 ≡ σ take values in the intervals (−∞,∞) and [−1, 1], respectively. This
choice represents a string lying along the line of length L, in appropriate coordinates, with its
center point at rest in coordinate origin. Assuming that the string length L = 2|~α|, and the
velocity of the string ends V = |d~α/dτ | are constant, the equation (1) reduces to

d2

dτ2
~α + ω2~α = 0, ω ≡ 2V

L
.

It describes uniform rotation in a plane. Choosing the rotation plane to be the x− y plane, we
get the solution

~α =
L

2
(cos ωτ~ex + sinωτ ~ey) .

Next we consider the boundary equation (3). Omitting the details of the calculation, we find
that the particle velocity becomes

V =
1√

1 + 2m
TL

. (4)

Of course, our assumption that the velocities of two ends are equal implies that in this case
masses of two particles must be equal.

By inspecting the expression (4), we see that V < 1, as it should be. In the limit m → 0, the
string ends move with the speed of light, representing the Nambu–Goto dynamics with Neumann
boundary conditions, i.e. a free string. When m →∞, the string ends do not move. This is an
example of Dirichlet boundary conditions, where string ends are attached to a fixed p-brane, in
our case p being equal to zero, i.e. the particle. All other choices for m represent cases outside
these two, and do not appear in ordinary string theory.

4 Regge trajectories law

The total angular momentum and energy of the example system considered in previous section
are calculated using the usual definitions:

E =
∫

d3xT 00, Jµν =
∫

d3xx[µT ν]0.

Substituting the appropriate solution into the expressions (2) and back into the stress-energy
tensor, after integration one easily finds

E = TL
arcsin V

V
+

2m√
1− V 2

, J =
TL2

4

(
arcsin V

V 2
−
√

1− V 2

V

)
+

2m√
1− V 2

LV

2
.
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These equations have obvious interpretation. The total energy of the system consists of the
string energy and the kinetic energy of the two particles, while the total angular momentum
is the sum of the string orbital angular momentum and orbital angular momenta of the two
particles.

In the limit of small particle masses, the free parameter L can be eliminated in favour of E,
which leads to

J =
E2

2πT
− 4

3T

√
E

π
m

3
2 +O(m2).

The first term on the right-hand side defines the known Regge trajectory, while the second
represents a small correction due to the presence of massive particles at the string ends. As
we can see, the unique Regge trajectory of the ordinary string theory splits into a family of
distinctive trajectories, and that J becomes nonlinear in E2.

Of course, this result is specific to the particular example discussed above, but it shows
that one can in principle calculate corrections to the law of Regge trajectories by allowing the
end-point particles to have nonzero mass.

5 Concluding remarks

In this paper we have analyzed the system consisting of a string with two particles attached
to its ends. The method we use is a generalization of the Mathisson–Papapetrou method for
pointlike matter [5, 7]. It has already been used in [8] for the derivation of equations of motion
of extended objects. Using those results, we have derived the equations of motion for the string
along with the appropriate boundary conditions. These boundary conditions turn out to be the
equations of motion for the two particles attached to the string ends.

These equations of motion display the string force acting on the particle. In some cases they
imply that the mass of the particle is conserved, and the force term can be rewritten in the
form that is formally identical to Lorentz force law of electrodynamics. Also, in general case
the equations of motion for the string and the particle do not allow themselves to be derived
by extremizing some action, without introduction of auxiliary variables. However, in the special
case of Nambu–Goto matter for the string, such an action does exist.

Next we specialized to the case of the usual Nambu–Goto string with two massive particles
at its ends. The equations of motion can be solved exactly for the case of a straight line string
rotating around its center. It turns out that the velocity of the string ends is less than the
velocity of light, and is dependent on the masses of the particles. In this way, one is provided
a way to describe both Neumann and Dirichlet boundary conditions for the Nambu–Goto string
in the limits where the masses of the two particles approach zero or infinity, respectively.

Finally, given this solution, one can calculate the total energy and angular momentum of the
system, and in the limit of small particle masses derive the relation connecting the total angular
momentum with the total energy of the string and the particles. This relation represents the
law of Regge trajectories, with a correction term due to the particle masses. In this setting,
there is not only one Regge trajectory, but a whole family, due to arbitrariness in choice of mass
parameters for the constituent particles. Also, the Regge trajectory ceases to be linear in E2 in
the limit of small but nonzero particle masses.

We remark at the end that more general configurations can also be treated using this forma-
lism. It is an open question, however, whether the equations of motion of those configurations
are integrable for some special case of motion. Also, the whole treatment presented in this paper
is entirely classical, and one could in principle study the quantum theory of strings with particles
attached to its ends. The spectra of perturbations of such strings is also an open question. Both
these questions represent possible topics for future research.
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[8] Vasilić M., Vojinović M., Classical string in curved backgrounds, Phys. Rev. D 73 (2006), 124013, 12 pages,
gr-qc/0610014.

http://arxiv.org/abs/astro-ph/9703077
http://arxiv.org/abs/gr-qc/0610014

	1 Introduction
	2 Equations of motion
	3 Neumann and Dirichlet boundary conditions
	4 Regge trajectories law
	5 Concluding remarks
	References

