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Abstract. In this review paper, we treat the topic of fine gradings of Lie algebras. This
concept is important not only for investigating the structural properties of the algebras,
but, on top of that, the fine gradings are often used as the starting point for studying
graded contractions or deformations of the algebras. One basic question tackled in the
work is the relation between the terms ‘grading’ and ‘group grading’. Although these terms
have originally been claimed to coincide for simple Lie algebras, it was revealed later that
the proof of this assertion was incorrect. Therefore, the crucial statements about one-to-one
correspondence between fine gradings and MAD-groups had to be revised and re-formulated
for fine group gradings instead. However, there is still a hypothesis that the terms ‘grading’
and ‘group grading’ coincide for simple complex Lie algebras. We use the MAD-groups as
the main tool for finding fine group gradings of the complex Lie algebras A3

∼= D3, B2
∼= C2,

and D2. Besides, we develop also other methods for finding the fine (group) gradings. They
are useful especially for the real forms of the complex algebras, on which they deliver richer
results than the MAD-groups. Systematic use is made of the faithful representations of the
three Lie algebras by 4 × 4 matrices: A3 = sl(4, C), C2 = sp(4, C), D2 = o(4, C). The
inclusions sl(4, C) ⊃ sp(4, C) and sl(4, C) ⊃ o(4, C) are important in our presentation, since
they allow to employ one of the methods which considerably simplifies the calculations when
finding the fine group gradings of the subalgebras sp(4, C) and o(4, C).
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1 Introduction

Gradings of Lie algebras have been explicitly used for more than fifty years. Probably the most
notorious application is the Z2-grading from the work of E. Inönü and E. Wigner [16]. Another
well known fact is that Z2-gradings play an important role for classification of real forms of
simple Lie algebras.

It was in 1989 that systematic studying of gradings of Lie algebras has started in an article by
J. Patera and H. Zassenhaus [24]. In that article they have introduced the terms of fine grading
and group grading, and investigated the role of automorphisms for construction of gradings.
A number of works followed [8, 9, 10, 11, 12, 13], using the theoretical results of that article
for applications on concrete Lie algebras. In recent years, gradings were intensively studied not
only on the classical finite-dimensional Lie algebras in [1, 2], but also on the exceptional Lie
algebras in [4, 5, 6].
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The area where usage of gradings has led to the most fruitful results is construction of
contractions of Lie algebras [3, 14, 15]. Apart from the classical (i.e. continuous) contractions,
the gradings of Lie algebras enabled to construct new contractions of a different type. These
contractions are called discrete, since they cannot be obtained by means of continuous process.
Interesting results are also obtained when using the fine gradings for construction of deformations
of the algebras.

The main results of that fundamental article by J. Patera and H. Zassenhaus comprise a state-
ment about equivalence of the terms grading and group grading, and a statement about one-
to-one correspondence between fine gradings of finite-dimensional simple complex Lie algebras
and MAD-groups. Therefrom, the crucial consequence was derived that for description of all
fine gradings of a finite-dimensional simple complex Lie algebra it is sufficient to classify all the
MAD-groups, which was done in the article [10] in 1998. On the basis of this classification, fine
gradings for several low-rank Lie algebras were found [19, 20, 21].

A break-through moment has come when A. Elduque revealed that the proof in [24] of the
one-to-one correspondence between fine gradings and MAD-groups was not correct. He gave
an example in [7] of a 16-dimensional complex non-simple Lie algebra whose grading subspaces
cannot be indexed by group neither semigroup elements. It was just the coincidence of the
terms grading and group grading, on which the proof of the one-to-one correspondence between
the fine gradings and the MAD-groups on finite-dimensional simple complex Lie algebras was
based. Therefore, the relation between the MAD-groups and the fine gradings remains an open
problem. Nevertheless, the efforts to find a counterexample on a finite-dimensional simple
complex Lie algebra that would contradict that statement (of one-to-one correspondence) were
unsuccessful so far.

In reaction to this revelation, the results in our articles [19, 20, 21] need to be revised. We
have proved a statement about one-to-one correspondence between the MAD-groups and the
fine group gradings. This statement holds for all finite-dimensional (not only simple) complex
Lie algebras. The results in [19, 20, 21] thus remain valid when we replace the term fine grading
by fine group grading.

In parallel to complex Lie algebras, we have studied also fine gradings of real Lie algebras. For
them, no statement about one-to-one correspondence between the fine gradings and the MAD-
groups has ever been asserted, and therefore the mistake explained above has not affected the
results. The article [22] describes some fine group gradings of real forms of the algebras sl(4, C),
o(4, C), and sp(4, C). We have developed several methods for constructing these gradings, and
we managed to show that there exist fine group gradings of real forms which are not generated
by any MAD-group of the respective real form.

In this whole work, we only devote our attention to fine gradings, but we do not investigate
their coarsenings. In this context, we appreciate the result of [4], proving a theorem by use of
which all coarsenings of group gradings of finite-dimensional simple complex Lie algebras can
be obtained.

2 Gradings of Lie algebras

2.1 Definition of a grading

A grading of a Lie algebra L is a decomposition Γ of the vector space L into vector subspaces
Lj 6= {0}, j ∈ J such that L is a direct sum of these subspaces Lj , and, for any pair of indices
j, k ∈ J , there exists l ∈ J such that [Lj , Lk] ⊆ Ll. We denote the grading by

Γ : L =
⊕
j∈J

Lj .
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Clearly, for any Lie algebra L 6= {0}, there exists the trivial grading Γ : L = L, i.e. the Lie
algebra is not split up at all. The opposite extreme of splitting the Lie algebra into as many
subspaces Lj as possible is more interesting and useful, though.

We call a grading Γ̃ : L = ⊕j∈J ⊕i∈Jj Lji a refinement of the grading Γ : L = ⊕j∈JLj , when
⊕i∈JjLji = Lj for each j ∈ J . A grading Γ is called fine if each refinement Γ̃ of Γ is equal to Γ
itself (i.e. Γ does not have any proper refinement Γ̃ 6= Γ). A grading is necessarily fine when all
its grading subspaces are one-dimensional. Such gradings are called finest, and they have the
practical effect of defining immediately a basis of the Lie algebra.

In the opposite direction, we can obtain any grading of L from some fine grading of L, by
merging some grading subspaces together. Such process is called a coarsening of the grading.
The relations of refinement and coarsening define an ordering on the set of all gradings of
a given Lie algebra L. Practically, we can illustrate the ordering in a hierarchy, whose bottom
nodes represent the fine gradings of L and whose top node is the trivial grading (the whole Lie
algebra L itself). If a grading Γr is connected in the hierarchy by an edge with a grading Γs on
a lower level, it means that Γs is a refinement of Γr, and that Γr is a coarsening of Γs.

There are three special grading types (Cartan, Pauli, and orthogonal), which are known on
the infinite series of classical complex Lie algebras; Cartan gradings on all of the series An, Bn,
Cn, Dn, Pauli gradings and orthogonal gradings on An only:

• Cartan grading is the most notorious example. It is derived from the theory of root
decomposition, and thus it is often referred to as the root grading.

• Pauli grading is a decomposition into powers of generalized matrices Pm, Qm ∈ Cm×m, as
introduced in [23]:

Qm =

 0 1 0 ... 0
0 0 1 ... 0
...
...
...
. . .

...
0 0 0 ... 1
1 0 0 ... 0

 , Pm = diag
(
1, ω, ω2, . . . , ωm−1

)
, where ω = exp

(
2πi

m

)
.

• The orthogonal grading, introduced in [17], is referred to as orthogonal, since any pair of
the grading subspaces is mutually orthogonal with respect to the scalar product defined
by (A,B) = tr(AB+).

All gradings of these special types are fine, with the only exception of the Cartan grading on
the non-simple algebra D2 = o(4, C).

Let us demonstrate the basic grading terminology on the well explored algebra sl(2, C). This
algebra has four gradings; two of them are fine, and even finest (Υ1 – the Cartan grading, Υ2 –
the Pauli grading coinciding with the orthogonal grading), one is the trivial grading sl(2, C),
and the last one (Υ0) is neither trivial, nor fine:

Υ0 : sl(2, C) = spanC {(
1 0
0 −1

)}
⊕ spanC {( 0 1

0 0 ) , ( 0 0
1 0 )} ,

Υ1 : sl(2, C) = spanC {(
1 0
0 −1

)}
⊕ spanC {( 0 1

0 0 )} ⊕ spanC {( 0 0
1 0 )} ,

Υ2 : sl(2, C) = spanC {(
1 0
0 −1

)}
⊕ spanC {( 0 1

1 0 )} ⊕ spanC {(
0 1
−1 0

)}
.

The notion spanF{M} stands for the linear hull of the set M over the field F.

2.2 Equivalence of gradings

The basic property of each automorphism h ∈ AutL is that it preserves the commutation
relations between the grading subspaces Lj of any grading Γ of L: Clearly, for [Lj , Lk] ⊆ Ll, we
have [h(Lj), h(Lk)] = h([Lj , Lk]) ⊆ h(Ll), and thus the grading Γ : L = ⊕j∈JLj transformed by
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the automorphism h ∈ AutL gives rise to a new grading Γ̃ : L = ⊕j∈J h(Lj). This grading Γ̃ is
generally different from Γ, however, its structure (meaning the commutation relations between
the grading subspaces, dimensions of the grading subspaces, etc.) is the same as in Γ. Therefore,
from the structural perspective, the two gradings Γ̃ and Γ equivalent. More precisely, two
gradings Γ : L = ⊕j∈JLj and Γ̃ : L = ⊕k∈KMk are called equivalent, when there exist an
automorphism h ∈ AutL and a bijection π : J 7→ K such that h(Lj) = Mπ(j) for each j ∈ J .
The equivalence is denoted by Γ ∼= Γ̃.

2.3 Group gradings

Now we describe a specific type of a grading, namely a so-called group grading. The most
notorious case of a group grading is the Z2-grading introduced by E. Inönü and E. Wigner when
decomposing a Lie algebra L into two non-zero grading subspaces L0 and L1, where

[L0, L0] ⊆ L0, [L0, L1] ⊆ L1, [L1, L1] ⊆ L0.

A grading Γ : L = ⊕j∈JLj is called a group grading if the index set J is a subset of an
Abelian group G (whose binary operation is denoted by ∗), and, for any pair of indices j, k ∈ J ,
it holds that

[Lj , Lk] 6= {0} ⇒ [Lj , Lk] ⊆ Lj∗k. (1)

Such group grading is often called a G-grading of the Lie algebra L. If a refinement of a group
grading is again a group grading, then we call it a group refinement.

For a G-grading of a finite-dimensional Lie algebra L, we can assume, without loss of gen-
erality, that the group G is finitely generated. If not, then G can be replaced by its subgroup
generated by the elements of the finite index set J .

Two basic questions arise with respect to the group gradings:

• Does the group G exist for each grading? In other words, is each grading also a group
grading?

• In case the group G exists, is it determined uniquely for the respective group grading?

The latter question has an easy answer: the choice of the group G is not unique. However,
there is one significant case among all the possible index groups generated by J , called the
universal (grading) group. It has the interesting property (shown in [4]) that the index set of
any coarsening of the original grading is embedable into an image of the universal group by some
group epimorphism.

The question whether each grading is also a group grading seemed to be positively answered
in [24]. However, A. Elduque in [7] gave an example of a grading (on a 16-dimensional complex
non-simple algebra), whose grading subspaces cannot be indexed by elements of any Abelian
group neither semigroup while satisfying the commutation relations (1).

The distinction between group and semigroup is important in these considerations. Another
example of a grading whose grading subspaces cannot be indexed by group elements is the
Cartan-graded D2 = o(4, C), in which we further split the two-dimensional Cartan subspace
into two one-dimensional subspaces while retaining the grading properties. This fine grading
cannot be indexed by any group, but it can be indexed by a semigroup. Analogous situation as
in this example would repeat for any semisimple non-simple complex Lie algebra, wherein we
further refine its non-fine Cartan grading into a fine grading, whose grading subspaces can be
indexed by a semigroup, but not by any group.

It has been proved in [4] for gradings of simple complex Lie algebras that if we embed the
grading indices into a semigroup, then they can be also embedded into a group.
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3 Automorphisms and group gradings

In this section we show how group gradings can be constructed by means of automorphisms of
the Lie algebra.

For a diagonalizable automorphism g ∈ AutL, the eigensubspaces Lj corresponding to
different eigenvalues λj of the automorphism g compose a group grading of the algebra L. Indeed,
for Xj ∈ Lj and Xk ∈ Lk, we have g([Xj , Xk]) = [g(Xj), g(Xk)] = [λjXj , λkXk] = λjλk [Xj , Xk].
Thus the commutator of Xj and Xk is either zero, or it lies in the eigensubspace of g correspon-
ding to the eigenvalue λjλk. As g is diagonalizable, the sum of all its eigensubspaces makes up
the whole Lie algebra L, and therefore, the decomposition Γ : L = ⊕jLj into eigensubspaces Lj

of g is a grading of L. We denote Γ = Gr(g). Since each automorphism is a non-singular
mapping, the spectrum of g does not contain 0. Let us define G as the smallest subgroup of
the multiplicative group C \ {0} such that G contains the whole spectrum σ(g) of the automor-
phism g. Then we can take the spectrum of g for the index set J ⊆ G, thus obtaining the group
grading Γ : L = ⊕j∈JLj .

Now let us consider a set G = (gp)p∈P of diagonalizable mutually commuting automorphisms
gp ∈ AutL; the set G can be finite or infinite. We can find a basis of L consisting of simulta-
neous eigenvectors of all the automorphisms gp ∈ G. Taking a direct sum of the simultaneous
eigensubspaces of all the automorphisms gp ∈ G, we obtain a group grading of L, which we
denote by Gr(G). The grading subspaces are indexed by eigenvalues corresponding to the au-
tomorphisms gp. Even if the set G is infinite, we can restrict ourselves to a finite number of
elements gp ∈ G, p = 1, . . . , `, which is sufficient for splitting the vector space into the simul-
taneous eigensubspaces, as well as for indexing these (grading) subspaces. (That is thanks to
the finite dimension of L.) Again, the index set is a subset of the smallest subgroup G of the
group (C \ {0})`, such that G contains σ(g1)× · · · × σ(g`). In other words, Gr(G) has the form
Gr(G) = Γ : L = ⊕j1∈J 1 · · · ⊕j`∈J ` (L1

j1 ∩ · · · ∩L`
j`), where Gr(gp) = Γp : L = ⊕jp∈J pLp

jp are the

group gradings of L generated by the individual automorphisms gp. For any subset G̃ ⊂ G, the
group grading Gr(G) is a group refinement of the group grading Gr(G̃).

Having described how a group grading of a Lie algebra L can be obtained by means of
a given set of automorphisms, let us now approach the problem from the opposite direction,
namely investigate the automorphisms related to a given grading. Let Γ : L = ⊕j∈JLj be
a grading of L (not necessarily a group grading). The following notion will play an important
role in our considerations:

Diag(Γ) = {g ∈ AutL | g/Lj = αjId for any j ∈ J }.

Directly from this definition we can derive the following:

• An automorphism g belongs to Diag(Γ) if and only if g(X) = λjX for all X ∈ Lj , j ∈ J ,
where λj 6= 0 depends only on g ∈ AutL and on j ∈ J .

• Diag(Γ) is a subgroup of Aut L, all automorphisms in Diag(Γ) are diagonalizable and
mutually commute.

• For a group grading Γ = Gr(G) generated by an arbitrary set G of mutually commuting
diagonalizable automorphisms in Aut L, it holds that Diag(Γ) ⊇ G.

• Let Γ be a grading of L (not necessarily a group grading). Then either Gr(Diag(Γ)) = Γ,
or Γ is a proper refinement of Gr(Diag(Γ)).

There indeed do exist cases of such grading Γ which is a proper refinement of Gr(Diag(Γ)).
The following theorem proves, however, that this case cannot occur for group gradings of finite-
dimensional complex Lie algebras, and, moreover, that all group gradings of these algebras can
be obtained by means of automorphisms.
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Theorem 1. Let Γ : L = ⊕j∈JLj be a group grading of a finite-dimensional complex Lie algebra.
Then

• there exists a set of automorphisms G ⊆ AutL such that Gr(G) = Γ, and

• Gr(Diag(Γ)) = Γ.

Remark 1. The fact that during the course of the proof of the Theorem 1 in [26] we define
the set G in such a way that it is a group of automorphisms does not mean that we necessarily
need whole groups of automorphisms for splitting the algebra into fine group gradings. On the
contrary, in practice the set G fulfilling the role as stated in the Theorem 1 is a finite set of
automorphisms containing just a very few elements.

Let us now direct our attention to fine group gradings. Remember that we may refine the
grading by enlarging the set of mutually commuting diagonalizable automorphisms applied on
the algebra. That is why we make use of the term MAD-group introduced by J. Patera and
H. Zassenhaus: Let G be a subset of AutL fulfilling the following properties:

• any g ∈ G is diagonalizable,

• fg = gf for any f, g ∈ G,

• if h ∈ AutL is diagonalizable and hg = gh for any g ∈ G, then h ∈ G.

Such G is called a MAD-group in AutL, which is an abbreviation for maximal Abelian group
of diagonalizable automorphisms. (It follows obviously from the defining conditions imposed on
the elements of G that the word ‘group’ in the notion is justified.)

Theorem 2. Let Γ : L = ⊕j∈JLj be a group grading of a finite-dimensional complex Lie
algebra L. Then Γ is a fine group grading if and only if the set Diag(Γ) is a MAD-group in
AutL.

It is this Theorem 2 to which we refer further in the text when talking about one-to-one cor-
respondence between fine group gradings and MAD-groups of finite-dimensional complex Lie
algebras. Both the Theorems 1 and 2 are proved in [26], or previously also in [18].

4 Methods for finding fine group gradings

Our aim is to find fine group gradings of the chosen Lie algebras, which are either complex or
real (real forms of complex Lie algebras). In this process we use several methods, each of them
applicable for the various algebras in a different way, and also with a difference in the strength
of the result. In the sequel, we list all the various methods used and specify their applicability
for the various Lie algebras in question.

4.1 MAD-group method

As stated in Theorem 2, there is a one-to-one correspondence between fine group gradings of
a finite-dimensional complex Lie algebra L and MAD-groups of automorphisms in Aut L.

One can expect that some subgroups of AutL would generate equivalent gradings. That
would of course be of no interest to us, since we are looking for gradings with different structural
properties, i.e. non-equivalent. Luckily, there is an easy key between equivalent fine group
gradings of L and the MAD-groups of automorphisms in Aut L that generate them; and it uses
the term of conjugate sets: Let G1 and G2 be subsets of Aut L. We call these subsets conjugate
when there exists an automorphism h ∈ AutL such that hG1h

−1 = G2, and we denote conjugate
subsets by G1

∼= G2.
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Theorem 3. Let G1,G2 ∈ AutL be MAD-groups on a finite-dimensional complex Lie algebra L;
let Γ1 = Gr(G1) and Γ2 = Gr(G2) be the fine group gradings of L generated by G1 and G2

respectively. The gradings Γ1 and Γ2 are equivalent if and only if the MAD-groups G1 and G2

are conjugate.

Remark 2. The equivalence in Theorem 3 is valid for fine group gradings and MAD-groups, but
not for group gradings generated by any sets of automorphisms in general. There we would only
have one implication in place, namely that conjugate subsets G1,G2 ⊆ AutL generate equivalent
group gradings Gr(G1) ∼= Gr(G2). However, if we consider the sets Gi not as just general subsets
of AutL, but as the maximal sets of automorphisms that leave the gradings Gr(Gi) invariant –
i.e. Gi = Diag(Gr(Gi)), then we end up with equivalence again; namely that the (fine or non-fine)
group gradings Γi = Gr(Gi) are equivalent if and only if the sets Gi are conjugate.

Now we come to the applicability of this ‘MAD-group’ method for the various Lie algebras in
question (remember that we keep on limiting ourselves only to the finite-dimensional classical
complex Lie algebras and their real forms).

MAD-groups and fine group gradings of the algebras An, Bn, Cn, Dn

This is the most comfortable case, because, with the exception of the algebra D4, the MAD-
groups were fully classified for all the classical complex Lie algebras [10]. Therefore, we are able
to find all the fine group gradings, as explained in Theorem 2. Nevertheless, the main question,
which still remains unsolved, is whether this way leads to all the possible fine gradings.

The algebra D2 is exceptional among the classical complex Lie algebras, because it is not
simple, but only semisimple. It has a fine group grading which is not fine grading.

On simple complex Lie algebras, there has so far not been found any fine group grading,
which would not be fine grading at the same time. That leaves open the hypothesis that for
finite-dimensional simple complex Lie algebras the terms ‘grading’ and ‘group grading’ could
coincide.

MAD-groups and fine group gradings of real forms of the complex Lie algebras

For real algebras, we unfortunately do not possess any analogue to the Theorems 1 and 2.
Nevertheless, as well as for the classical complex Lie algebras An, Bn, Cn, Dn, also for the real
forms of these complex algebras all the MAD-groups were classified [11].

MAD-groups of the real forms can be obtained from MAD-groups of the complex algebras as
follows: Let G be a MAD-group on the complex algebra L, and let GR = {g ∈ G |σ(g) ⊂ R} be its
so-called real part, namely the subgroup of G containing all automorphisms with real spectrum.
This set GR is said to be maximal if there exists no such MAD-group G̃ on L (non-conjugate
to G) that GR is conjugate to some proper subgroup of G̃R. For all the classical complex Lie
algebras L, except for D4, it was proved in [11] that each MAD-group F on a real form LJ

of L is equal to the maximal real part GR of some MAD-group G on L restricted onto the real
form LJ.

For general Lie algebras over R it has not been proved that MAD-groups generate fine group
gradings. However, for real forms of the classical complex Lie algebras, it follows from the
concrete construction of the MAD-groups that the gradings generated by these MAD-groups
are already fine group gradings. The opposite direction is not true, though; i.e. not all of the
fine group gradings of the real forms are generated by MAD-groups of these real forms, and not
even on real forms of the classical simple complex Lie algebras. In [22] we have found several
counterexamples, using some of the methods described below. All of them correspond to the
cases where the universal group of the corresponding complex grading contains factors other
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than Z or Z2 (i.e. it contains e.g. Z3 or Z4 etc.); it is because the eigenvalues of orders higher
than 2 are not elements of R.

4.2 Displayed method

Searching for fine group gradings by means of MAD-groups is a laborious process. For the
algebras sl(m, C) we do not have any easier way, but for the other classical complex Lie algebras
o(m, C) and sp(m, C), which are subalgebras of sl(m, C), we can use the so-called ‘displayed’
method. This method is applicable not only for the complex Lie algebras o(m, C) and sp(m, C),
but also for their real forms (which are subalgebras of the real forms of sl(m, C)).

The method consists in the following principle: A subalgebra oK(m, C) or spK(m, C) of the Lie
algebra sl(m, C) is said to be displayed by a grading Γ of sl(m, C), when oK(m, C) or spK(m, C)
respectively is equal to a direct sum of selected grading subspaces from Γ. Then, it necessarily
holds that such a direct sum is also a grading of oK(m, C) or spK(m, C) respectively.

It follows from the classification of MAD-groups on the classical complex Lie algebras that
a fine grading Γ of sl(m, C) displays oK(m, C) or spK(m, C) if and only if the MAD-group
G = Diag(Γ) contains an outer automorphism OutK with K = KT or K = −KT respectively.
Let us explain this statement on the case of o(m, C); the case of sp(m, C) would be just analogous.

• Having the outer automorphism OutK ∈ G with K = KT , the eigensubspace of OutK

corresponding to the eigenvalue +1 is the subalgebra oK(m, C).

• Any other element g ∈ G can then be restricted to oK(m, C) while preserving the Z2-
grading generated by OutK , because g and OutK commute.

• The set {g|oK(m,C) | g ∈ G} is a MAD-group on oK(m, C), since every automorphism on
oK(m, C) can be extended to an automorphism of sl(m, C) commuting with OutK .

• We can express the MAD-group G on sl(m, C) in the form G = H ∪ OutKH, where H
is the set of all inner automorphisms in G. The corresponding MAD-group on oK(m, C)
then has the form {g|oK(m,C) | g ∈ G} = {g|oK(m,C) | g ∈ H}. Thus, the subgroup H, upon
restriction onto oK(m, C), has the same splitting effect on the subalgebra oK(m, C) as the
original group G.

The ‘displayed’ method gives the same result in producing the fine group gradings as the
‘MAD-group’ method in cases of the complex subalgebras of sl(m, C); in other words, we obtain
all the fine group gradings for these complex algebras.

For real forms of o(m, C) and sp(m, C), the ‘displayed’ method in fact turns into making
an intersection of the complex subalgebra o(m, C) and sp(m, C) respectively with a fine group
grading of the relevant real form of sl(m, C). This is a consequence of the fact that real forms
of the subalgebras o(m, C) and sp(m, C) of the complex algebra sl(m, C) are subalgebras of the
real forms of sl(m, C).

The gradings of the real forms of the subalgebras obtained by this ‘displayed’ method are
fine group gradings, however, we have no certainty of getting all the fine group gradings of
the respective real forms. Nevertheless, this method is still quite powerful and provides a high
number of fine group gradings of the real forms.

4.3 Fundamental method

As can be seen from above, the ‘MAD-group’ method and the ‘displayed’ method are excellent
when searching for fine group gradings of the complex Lie algebras, but not so strong in case of
the real forms. Thus, we still need to broaden our scope by another method, which is specialized
on (and applicable only for) the real forms. We call this method ‘fundamental’, because it derives
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directly from the definition of the real form. It assumes that we already dispose of the fine group
gradings of the respective complex algebra.

Theorem 4. Let Γ : L = ⊕j∈JLj be a fine group grading of a classical complex Lie algebra L.
Let J be an involutive antiautomorphism on L, let LJ be the real form of L defined by J, and
let Zj,l be elements of Lj fulfilling the following properties:

• (Zj,1, . . . , Zj,lj ) is a basis of the grading subspace Lj for each j ∈ J ; i.e. Lj = spanC(Zj,1,
. . . , Zj,lj ); and

• J(Zj,l) = Zj,l; i.e. Zj,l ∈ LJ for all Zj,l ∈ Lj for each j ∈ J .

Then the decomposition ΓJ : LJ = ⊕j∈JLR
j into subspaces LR

j = spanR(Zj,1, . . . , Zj,lj ) is a fine
group grading of the real form LJ.

We then say that the fine group grading Γ of the complex Lie algebra L determines the fine
group grading ΓJ of the real form LJ.

This method in practice turns into rather laborious calculations, namely into looking for
a suitable antiautomorphism J and a suitable basis of the complex algebra L, such that the
basis vectors form not only the bases of the grading subspaces Lj of the complex grading Γ of L,
but also lie in (and thus form the basis of) the real form LJ.

Not even this method ensures finding all the fine group gradings of the real forms, however,
we at least get as much as we can from the complex fine group gradings, and it is the strongest
method we dispose of for the real forms. This ‘fundamental’ method as well as the ‘real-basis’
method, which follows below, were in detail described and proved in [25].

4.4 Real basis method

Finally, we describe a simplified version of the ‘fundamental’ method, called the ‘real basis’
method. It applies only for the real forms of the complex Lie algebras sl(m, C), it is less powerful
than the ‘fundamental’ method, but, on the other hand, much easier for practical application.

Theorem 5. Let G be a MAD-group on the complex Lie algebra sl(m, C) and let Γ : sl(m, C) =
⊕j∈JLj be the fine group grading of sl(m, C) generated by G, such that all the subspaces Lj =
spanC(Xj,1, . . . , Xj,lj ) have real basis vectors Xj,l ∈ sl(m, R). Let h be an automorphism in
Aut sl(m, C), such that J = J0h, where J0 acts as complex conjugation on elements of sl(m, C),
is an involutive antiautomorphism on sl(m, C). Then the fine group grading Γ of sl(m, C)
determines a fine group grading of the real form LJ = LJ0h if and only if the automorphism h
is an element of the MAD-group G.

The simplicity of using this method follows from the fact that we do not have to occupy
ourselves with the elements of the Lie algebra, but we only investigate the MAD-group G, in
order to find out whether it contains a convenient automorphism h. Obviously, the set of
solutions provided by this method is generally not complete.

Throughout the task to find the fine group gradings of complex Lie algebras and of their real
forms, we use the above mentioned methods alternatively, depending on their applicability and
strength for the respective algebra. The concrete results are summarized in Section 5.

5 Results

As announced earlier, our main aim was to find fine group gradings of certain classical complex
Lie algebras and their real forms. Naturally, one proceeds from those with the lowest ranks, since
low rank implies low dimension of the algebra, and thus (relative) simplicity in the calculations.
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Table 1. Fine group gradings of o(5, C) ∼= sp(4, C) and of their real forms.

complex algebras B2
∼= C2

Γ1: 1× 2-dim + 8× 1-dim (Cartan)
o(5, C) ∼= sp(4, C) Γ2: 10× 1-dim

Γ3: 10× 1-dim
real forms

so(5, 0) ∼= usp(4, 0) ΓR
3

so(4, 1) ∼= usp(2, 2) ΓR
1 , ΓR

2 , ΓR
3

so(3, 2) ∼= sp(4, R) ΓR
1 , ΓR

2 , ΓR
3

And last but not least argument is the fact that the low-rank Lie algebras are most widely used
in the practice of physics.

On A1 = sl(2, C) the two fine group gradings (Cartan and Pauli) have been known for long
time already. The four fine group gradings of the Lie algebra A2 = sl(3, C) were firstly published
in [9], together with the fine group gradings of its three real forms.

In our work from the area of fine gradings, we have naturally started with the lowest rank
where the results were missing, namely rank two and algebras B2, C2, and D2. The two algebras
B2 = o(5, C) and C2 = sp(4, C) are isomorphic, and thus their grading properties are the
same. Then we continue with the algebra D2 = o(4, C), the only non-simple classical complex
Lie algebra. Lastly, we move to the algebras of rank three, namely two isomorphic algebras
A3 = sl(4, C) and D3 = o(6, C).

We have tried to combine all the various methods described in Section 4, in order to find as
many fine group gradings as possible. The isomorphisms B2

∼= C2 and A3
∼= D3 are not the

only auxiliary relations we dispose of. Additionally, we were able to benefit from the fact that
C2 = sp(4, C) and D2 = o(4, C) are subalgebras of A3 = sl(4, C). That allows us to use the
‘displayed’ method, which is especially effective in the case of real forms.

The results were published in a series of articles [19, 20, 21, 22]. Let us recall that, in all
these works, the lists of fine group gradings of the complex Lie algebras are complete (according
to our Theorem 2), whereas for real forms, where no such statement has been proved, we cannot
claim our results to be exhaustive solutions to the problem of fine group gradings.

B2 = o(5, C), C2 = sp(4, C)

These (mutually isomorphic) algebras are 10-dimensional. There are three non-conjugate MAD-
groups on the complex algebras, and thus three non-equivalent fine group gradings, which were
found by the ‘MAD-group’ method in [19] and then confirmed for C2 = sp(4, C) also by the
‘displayed’ method in [20] (where several representations with different defining matrices K of
spK(4, C) appear).

Through coincidence, the number of real forms of these algebras is three, too. The detailed
results on the real forms are in both the articles [19] and [22]; found by means of the ‘MAD-
group’ method in the former and by means of the ‘displayed’ method in the latter. Both of the
methods by definition have to provide the same result, only in different representations. It is
only by mistake that the Cartan fine group grading of usp(2, 2) is missing in [19] – the respective
MAD-group was forgotten there; hence the result in [22] is richer by this one fine group grading.

D2 = o(4, C)

The six-dimensional algebra D2 = o(4, C) is the only non-simple case among the classical com-
plex Lie algebras. It has six non-conjugate MAD-groups, one of them (Cartan) generating
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Table 2. Fine group gradings of o(4, C) and of its real forms.

complex algebra D2

Γ1: 1× 2-dim + 4× 1-dim (Cartan × Cartan)
o(4, C) Γ2: 6× 1-dim (Cartan × Pauli)

Γ3: 6× 1-dim (Pauli × Pauli)
Γ4: 6× 1-dim
Γ5: 6× 1-dim
Γ6: 6× 1-dim

real forms

so∗(4) ΓR
2 , ΓR

3 , ΓR
6

so(4, 0) ΓR
3 , ΓR

4

so(3, 1) ΓR
4 , ΓR

5 , ΓR
6

so(2, 2) ΓR
1 , ΓR

2 , ΓR
3 , ΓR

4 , ΓR
5 , ΓR

6

Table 3. Fine group gradings of sl(4, C) ∼= o(6, C) and of their real forms.

complex algebras A3
∼= D3

Γ1: 1× 3-dim + 12× 1-dim (Cartan)
sl(4, C) ∼= o(6, C) Γ2: 15× 1-dim (Pauli)

Γ3: 1× 3-dim + 12× 1-dim (orthogonal)
Γ4: 1× 2-dim + 13× 1-dim
Γ5: 1× 2-dim + 13× 1-dim
Γ6: 15× 1-dim
Γ7: 15× 1-dim
Γ8: 1× 2-dim + 13× 1-dim

real forms

sl(4, R) ∼= so(3, 3) ΓR
1 , ΓR

3 , ΓR
4 , ΓR

5 , ΓR
6 , ΓR

7 , ΓR
8

su∗(4) ∼= so(5, 1) ΓR
6 , ΓR

7 , ΓR
8

su(4, 0) ∼= so(6, 0) ΓR
3 , ΓR

7

su(3, 1) ∼= so∗(6) ΓR
2 , ΓR

3 , ΓR
4 , ΓR

8

su(2, 2) ∼= so(4, 2) ΓR
2 , ΓR

3 , ΓR
4 , ΓR

5 , ΓR
6 , ΓR

7 , ΓR
8

a fine group grading, which is not fine grading. It splits the complex algebra into four one-
dimensional grading subspaces and one two-dimensional subspace (the Cartan subalgebra). On
simple classical complex Lie algebras of rank r, the r-dimensional Cartan subspace cannot be
decomposed any further while preserving the grading properties within the Cartan grading. But
the non-simple algebra D2 = o(4, C) is composed of two instances of sl(2, C), and a direct sum
of two instances of the Cartan-graded sl(2, C) is a fine grading of o(4, C), which is a non-group
refinement of the group grading generated by the Cartan MAD-group on o(4, C).

Note that also another two of the fine group gradings of o(4, C) are composed of two fine
group gradings of the algebra sl(2, C), one is made up of two instances of the Pauli-graded
sl(2, C), and the other one consists of one Cartan-graded sl(2, C) and one Pauli-graded sl(2, C).
The remaining three fine group gradings of o(4, C) cannot be expressed in terms of fine group
gradings of sl(2, C). The full list of fine group gradings of the complex algebra D2 are in [21].

The algebra D2 = o(4, C) has four real forms and we derive their fine group gradings by
means of the ‘displayed’ method from the real forms of sl(4, C), this set of solutions (provided
in [22]) is not proved to be exhaustive, though.
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A3 = sl(4, C), D3 = o(6, C)

The last algebra whose fine gradings we have investigated is already of rank three and of dimen-
sion fifteen. We deal in fact again with two algebras that are isomorphic, namely A3 = sl(4, C)
and D3 = o(6, C). The complex algebra has eight non-conjugate MAD-groups, and thus eight
non-equivalent fine group gradings [20].

The number of real forms of the algebra sl(4, C) is five, and again, we also try to deliver
as many fine group gradings as possible for them. We apply all the methods we dispose of as
explained in Section 4, starting from the easiest ‘MAD-group’ method, continuing with the ‘real
basis’ method, and, lastly, turning to the ‘fundamental’ method. Each of these methods brings
in additional results (see [22]), and those then enable, via the ‘displayed’ method, to obtain the
richest possible results for the real forms of the subalgebras sp(4, C) and o(4, C).

6 Concluding remarks

Let us conclude by the open problems and hypotheses which need to be subject of further
studies:

• The main question is the relationship between gradings and group gradings. Our hypo-
thesis is that for finite-dimensional simple complex Lie algebras these two terms coincide.

• For the real forms of complex Lie algebras, it is to be clarified whether the ‘fundamental’
method provides all the fine group gradings. No counterexample has been found so far
against this assumption.
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