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Abstract. We study the contact geometry of scalar second order hyperbolic equations in
the plane of generic type. Following a derivation of parametrized contact-invariants to dis-
tinguish Monge–Ampère (class 6-6), Goursat (class 6-7) and generic (class 7-7) hyperbolic
equations, we use Cartan’s equivalence method to study the generic case. An intriguing
feature of this class of equations is that every generic hyperbolic equation admits at most
a nine-dimensional contact symmetry algebra. The nine-dimensional bound is sharp: normal
forms for the contact-equivalence classes of these maximally symmetric generic hyperbolic
equations are derived and explicit symmetry algebras are presented. Moreover, these maxi-
mally symmetric equations are Darboux integrable. An enumeration of several submaximally
symmetric (eight and seven-dimensional) generic hyperbolic structures is also given.
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1 Introduction

The purpose of this paper is to give a reasonably self-contained account of some key geometric
features of a class of (nonlinear) scalar second order hyperbolic partial differential equations
(PDE) in the plane (i.e. in two independent variables) that has received surprisingly very little
attention in the literature, namely hyperbolic PDE of generic (also known as class 7-7) type.
Even this terminology is not well-known, and so it deserves some clarification.

In the geometric study of differential equations, there is a natural notion of equivalence as-
sociated with the pseudo-group of local point transformations, i.e. local diffeomorphisms which
mix the independent and dependent variables. Another natural (but coarser) notion is to define
equivalence up to the larger pseudo-group of local contact transformations and one of the princi-
pal goals of the geometric theory is to find invariants to distinguish different contact-equivalence
classes. Restricting now (and for the remainder of this paper) to scalar second order PDE in
the plane, we have that given certain nondegeneracy conditions (i.e. one can locally solve the
equation for one of the highest derivatives), there is a contact-invariant trichotomy into equa-
tions of elliptic, parabolic and hyperbolic type. In the quasi-linear case, invariance of these
classes under point transformations appears in [7]. (Inequivalent normal forms are derived
in each case.) An elegant geometric proof of invariance under contact transformations in the
general case was given by R.B. Gardner [9]. In the hyperbolic case, there exist two charac-
teristic subsystems which give rise to a finer contact-invariant trichotomy into equations of
Monge–Ampère (class 6-6), Goursat (class 6-7), and generic (class 7-7) type. While this was
known to Vranceanu and almost certainly to E. Cartan and Lie, a modern exposition of these
ideas first appeared in [11]. To keep our exposition as self-contained as possible, we include
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the details of these classifications in this paper. For hyperbolic equations given in the form
zxx = f(x, y, z, zx, zy, zxy, zyy), the (relative) invariants characterizing the three types of hyper-
bolic equations were calculated parametrically by Vranceanu (c.f. the B, C invariants in [26]).
For a general equation F (x, y, z, zx, zy, zxx, zxy, zyy) = 0, these invariants appeared in Chapter 9
of Juráš’ thesis in his characterization of the Monge–Ampère class (c.f. Mσ, Mτ in [13]). Our
derivation of these invariants (labelled I1, I2 in this article) is quite different and the novelty
in our exposition (see Theorem 3.3) is obtaining simpler expressions expressed in terms of cer-
tain determinants. Moreover, we use these invariants to give general examples of hyperbolic
equations of Goursat and generic type (see Table 3).

Hyperbolic equations of Monge–Ampère type have been well-studied in the literature from a
geometric point of view (e.g. see [16, 17, 19, 4, 5, 15, 2, 14, 18] and references therein). This class
of equations includes the Monge–Ampère, wave, Liouville, Klein–Gordon and general f -Gordon
equations. At the present time and to the best of our knowledge, there exists only one paper
in the literature that has been devoted to the study of hyperbolic equations of generic type.
This paper, “La géométrisation des équations aux dérivées partielles du second ordre” [25], was
published by Vranceanu in 1937. Despite its appearance over 70 years ago, and much attention
having been focused on applications of Cartan’s equivalence method in the geometric theory of
PDE, very few references to [25] exist. Currently, the paper does not appear on MathSciNet;
the only reference to it by internet search engines appears on Zentralblatt Math.

In [25], Vranceanu uses the exterior calculus and Cartan’s method of equivalence to study
generic hyperbolic equations. One of the most intriguing results of the paper is that all equa-
tions of generic type admit at most a nine-dimensional local Lie group of (contact) symmetries.
This is in stark contrast to the Monge–Ampère class, where the wave equation is well-known
to admit an infinite-dimensional symmetry group. Vranceanu is able to isolate the correspon-
ding maximally symmetric structure equations as well as some submaximally symmetric struc-
tures. Furthermore, he is able to integrate these abstract structure equations to obtain an
explicit parametrization of the corresponding coframe, leading to normal forms for the contact-
equivalence classes. As any practitioner of the Cartan equivalence method can probably attest,
this is an impressive computational feat. Nevertheless, as in the style of Cartan’s writings,
Vranceanu’s arguments are at times difficult to decipher, hypotheses are not clearly stated or
are difficult to discern amidst the quite lengthy calculations, and some of his results are not
quite correct. In this paper, we reexamine, clarify, and sharpen some of Vranceanu’s results with
the perspective of our modern understanding of the geometric theory of differential equations
through exterior differential systems and Cartan’s equivalence method. The hope is that this
exposition will provide a clearer understanding of the geometry of this class of equations for
a contemporary audience.

In Section 2 we recall the contact-invariant classification of second order scalar PDE into
elliptic, parabolic, and hyperbolic classes based on invariants of a (conformal class of a) sym-
metric bilinear form, and define the M1 and M2 characteristics in the hyperbolic case. This
leads to a preliminary set of structure equations for hyperbolic equations. In Section 3, the
structure equations are further tightened, and using them we show how the class of M1 and M2

leads to the finer classification into equations of Monge–Ampère, Goursat, and generic types. In
Theorem 3.3, these subclasses of hyperbolic equations are characterized by means of the relative
invariants I1, I2. We then restrict to the generic case and derive the generic hyperbolic structure
equations. We note that in Vranceanu’s derivation of the generic hyperbolic structure equations
(c.f. (3.2) in this paper), the ε = sgn(I1I2) = ±1 contact invariant was overlooked. This carries
through to the normal forms for the contact-equivalence classes. Section 4 formulates the equiv-
alence problem for generic hyperbolic equations and recalls some facts from Cartan’s theory
of G-structures applied to our situation. The structure group that we consider here is strictly
larger than Vranceanu’s, differing by certain discrete components. These naturally arise when
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considering automorphisms which interchange the M1 and M2 characteristics. Both Vranceanu
and Gardner–Kamran consider only automorphisms which preserve each of M1 and M2. The
nine-dimensional bound on the symmetry group of any generic hyperbolic equation is established
in Section 5.

In Section 6, we give a clear enumeration of several generic hyperbolic structures which re-
sult from Vranceanu’s reduction of the structure equations. These include the aforementioned
maximally symmetric (nine-dimensional) structure equations as well as some new submaximally
symmetric (eight and seven-dimensional) structures including some with nonconstant torsion.
(Vranceanu derived two eight-dimensional structures with constant torsion in addition to the
maximally symmetric structures.) Finally, Section 7 gives a detailed account of the maxi-
mally symmetric case. Integration of the abstract maximally symmetric structure equations
leads to the contact-equivalence classes of maximally symmetric generic hyperbolic PDE being
parametrized by (ε, a) ∈ {±1} × (0, 1], with normal forms given by

(ε, a) = (1, 1) : 3zxx(zyy)3 + 1 = 0,

(ε, a) 6= (1, 1) : (ε+ a)2
(
2zxy − (zyy)2

)3 + εa
(
3zxx − 6zxyzyy + 2(zyy)3

)2 = 0.

The isomorphism type of the symmetry algebra for the second equation is independent of (ε, a)
and is non-isomorphic to the symmetry algebra of the first equation. Thus, there are precisely
two non-isomorphic (abstract) symmetry algebras that arise for maximally symmetric generic
hyperbolic equations. These equations are further distinguished in a contact-invariant way using
a contact invariant ∆1 and a relative contact invariant ∆2. Both equations satisfy ∆1 = 0, but
the former satisfies ∆2 = 0 while the latter satisfies ∆2 6= 0.

Let us point out two additional points of discrepancy with Vranceanu’s calculations: (1) the
restriction of the range of the parameter a to (0, 1], and (2) a missing factor of 2 for the zxyzyy

term in the second equation above. The first point is a consequence of the aforementioned larger
structure group used in our formulation of the equivalence problem. The additional discrete
factors lead to identifications of different parameter values. The second point was minor and
the error was only introduced by Vranceanu in the last step of his derivation. To give added
justification to the calculation of the normal forms above, we give explicitly the nine-dimensional
symmetry algebras for the normal forms listed above. Both equations admit the symmetries

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂z
, X4 = x

∂

∂z
, X5 = y

∂

∂z
,

X6 = x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
.

The former admits the additional symmetries

X7 = xy
∂

∂z
, X8 = 2y

∂

∂y
+ 3z

∂

∂z
, X9 = x2 ∂

∂x
+ xz

∂

∂z
,

while the latter admits the additional symmetries

X7 = y
∂

∂y
+ 3z

∂

∂z
, X8 = x

∂

∂y
− 1

2
y2 ∂

∂z
, X9 = x2 ∂

∂x
+ xy

∂

∂y
+
(
xz − 1

6
y3

)
∂

∂z
.

The calculation of these symmetries (especially in the latter case) is in general a nontrivial task
considering the complexity of the equation.

Numerous appendices provide the details of the proofs of the main statements in the body
of this article.

All considerations in this paper are local, and we will work in the smooth category. We
use the Einstein summation convention throughout. We will make the convention of using
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braces enclosing 1-forms to denote the corresponding submodule generated by those 1-forms.
In general, we will abuse notation and not distinguish between a submodule of 1-forms and its
corresponding algebraic ideal (i.e. with respect to the wedge product) in the exterior algebra.
This is useful when stating structure equations, e.g. dω1 ≡ 0 mod IF .

2 Contact-equivalence of PDE

Consider a scalar second order PDE

F

(
x, y, z,

∂z

∂x
,
∂z

∂y
,
∂2z

∂x2
,
∂2z

∂x∂y
,
∂2z

∂y2

)
= 0 (2.1)

in two independent variables x, y and one dependent variable z. A natural geometrical set-
ting for (2.1) is the space of 2-jets J2(R2,R) with standard local coordinates (x, y, z, p, q, r, s, t)
(Monge coordinates), and the equation above yields a locus

LF =
{
(x, y, z, p, q, r, s, t) ∈ J2(R2,R) : F (x, y, z, p, q, r, s, t) = 0

}
.

We assume that LF is the image of an open subset Σ7 ⊂ R7 under a smooth map iF : Σ7 →
J2(R2,R).

Definition 2.1. We will say that iF is a nondegenerate parametrization of the equation F = 0
if iF has maximal rank and LF is everywhere transverse to the fibers of the natural projection

π2
1 : J2(R2,R) → J1(R2,R),

i.e. im(iF∗) + ker(π2
1 ∗) = TJ2(R2,R).

We will always work with nondegenerate parametrizations in this paper. By the transversality
assumption (Fr, Fs, Ft) 6= 0, and so by the implicit function theorem, one can locally solve (2.1)
for one of the highest-order derivatives. Since im((π2

1 ◦ iF )∗) = TJ1(R2,R), then (π2
1 ◦ iF )∗(dx∧

dy∧ dz ∧ dp∧ dq) 6= 0 and so the standard coordinates (x, y, z, p, q) on J1(R2,R) along with two
additional coordinates u, v may be taken as coordinates on Σ7. Thus, without loss of generality,
we may assume the parametrization iF has the form iF (x, y, z, p, q, u, v) = (x, y, z, p, q, r, s, t),
expressing r, s, t as functions of (x, y, z, p, q, u, v).

The contact system C(2) on J2(R2,R) is generated by the standard contact forms

θ1 = dz − pdx− qdy, θ2 = dp− rdx− sdy, θ3 = dq − sdx− tdy

and pulling back by iF , we obtain a Pfaffian system (i.e. generated by 1-forms) IF on Σ7,

IF = i∗F (C(2)) = {ω1, ω2, ω3},

where ωα = i∗F θ
α. There is a correspondence between local solutions of (2.1) and local integral

manifolds of IF .

Definition 2.2. The equations (2.1) and

F̄

(
x̄, ȳ, z̄,

∂z̄

∂x̄
,
∂z̄

∂ȳ
,
∂2z̄

∂x̄2
,
∂2z̄

∂x̄∂ȳ
,
∂2z̄

∂ȳ2

)
= 0, (with iF̄ : Σ̄7 → J2(R2,R)) (2.2)

are contact-equivalent if there exists a local diffeomorphism φ : Σ7 → Σ̄7 such that φ∗IF̄ = IF .
The collection of all such maps will be denoted Contact(Σ7, Σ̄7). A contact symmetry is a self-
equivalence.
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Remark 2.1. More precisely, the above definition refers to internal contact-equivalence. There
is another natural notion of equivalence: namely, (2.1) and (2.2) are externally contact-equivalent
if there exists a local diffeomorphism ρ : J2(R2,R) → J2(R2,R) that restricts to a local
diffeomorphism ρ̃ : iF (Σ7) → iF̄ (Σ̄7) and preserves the contact system, i.e. ρ∗(C(2)) = C(2).
It is clear that any external equivalence induces a corresponding internal equivalence, but in
general the converse need not hold. The difference between these two natural notions of equiv-
alence is in general quite subtle and has been investigated in detail in [1]. A corollary of their
results (c.f. Theorem 18 therein) is that for (2.1), under the maximal rank and transversality
conditions, any internal equivalence extends to an external equivalence, and thus the correspon-
dence is one-to-one.

As shown by Gardner [9], the (pointwise) classification of (2.1) into mutually exclusive elliptic,
parabolic and hyperbolic classes is in fact a contact-invariant classification which arises through
invariants (i.e. rank and index) of a (conformal class of a) symmetric C∞(Σ7)-bilinear form 〈·, ·〉7
on IF , namely

〈ϕ,ψ〉7VolΣ7 := dϕ ∧ dψ ∧ ω1 ∧ ω2 ∧ ω3, (2.3)

where VolΣ7 denotes any volume form on Σ7. Since i∗F is surjective, there exists a 7-form ν on
J2(R2,R) such that i∗F ν = VolΣ7 , and so

〈ϕ,ψ〉7i∗F ν = i∗F (dϕ̃ ∧ dψ̃ ∧ θ1 ∧ θ2 ∧ θ3),

where ϕ̃ and ψ̃ are any forms on J2(R2,R) such that ϕ = i∗F ϕ̃ and ψ = i∗F ψ̃. Since iF∗ : TΣ7 →
TJ2(R2,R) is rank 7 (as is i∗F : T ∗J2(R2,R) → T ∗Σ7) and i∗FdF = 0, then ker(i∗F ) = {dF}, and

i∗F η = 0 iff η ∧ dF = 0, ∀ η ∈ Ω∗(J2(R2,R)). (2.4)

Consequently, letting VolJ2(R2,R) = ν ∧ dF , we see that (2.3) is equivalent to

(〈ϕ,ψ〉7)p(VolJ2(R2,R))iF (p) = (dϕ̃ ∧ dψ̃ ∧ θ1 ∧ θ2 ∧ θ3 ∧ dF )iF (p),

where p ∈ Σ7. This definition is well-defined: it is independent of the choice of ϕ̃ and ψ̃ so long
as ϕ = i∗F ϕ̃ and ψ = i∗F ψ̃.

A computation in the basis ω1, ω2, ω3 reveals that a volume form may be chosen so that

(〈ωα, ωβ〉7)p =

 0 0 0
0 Ft −1

2Fs

0 −1
2Fs Fr


iF (p)

. (2.5)

Our assumption that iF have maximal rank implies that 〈·, ·〉7 cannot have rank zero. Defining

∆ = i∗F

(
FrFt −

1
4
Fs

2

)
,

we have the following mutually exclusive cases at each point p ∈ Σ7:

Table 1. Contact-invariant classification of scalar second order PDE in the plane.

elliptic parabolic hyperbolic

∆(p) > 0 ∆(p) = 0 ∆(p) < 0

By the commutativity of pullbacks with d, it is clear that this classification is a priori contact-
invariant. We remark that in the classical literature on the geometry of hyperbolic equations,
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the terminology Monge characteristics appears. These are determined by the roots of the cha-
racteristic equation

λ2 − Fsλ+ FtFr = 0. (2.6)

The discriminant of this equation (with the coefficients evaluated on F = 0) is precisely −1
4∆,

and so the elliptic, parabolic, and hyperbolic cases correspond to the existence of no roots,
a double root, and two distinct roots respectively.

In the analysis to follow, all constructions for a PDE F = 0 will implicitly be repeated for
a second PDE F̄ = 0 (if present). We will concern ourselves exclusively with the hyperbolic
case, that is, an open subset of Σ7 on which F = 0 is hyperbolic. By the hyperbolicity condition,
the two nonzero eigenvalues of 〈·, ·〉7 have opposite sign, and hence there exists a pair of rank
two maximally isotropic subsystems M1 and M2 of IF at every point of consideration.

Definition 2.3. Given hyperbolic PDE F = 0 and F̄ = 0, define

Contact+(Σ7, Σ̄7) = {φ ∈ Contact(Σ7, Σ̄7) : φ∗M̄1 = M1, φ
∗M̄2 = M2},

Contact−(Σ7, Σ̄7) = {φ ∈ Contact(Σ7, Σ̄7) : φ∗M̄1 = M2, φ
∗M̄2 = M1}.

If F̄ = F , we take Σ̄7 = Σ7 and use the notation Aut(IF ) := Contact(Σ7,Σ7), etc.

Remark 2.2. Implicitly, given the Pfaffian system IF corresponding to a hyperbolic PDE
F = 0, we assume that a choice of labelling for the M1 and M2 characteristics has been made.
This is of course not intrinsic. All of our final results will not depend on this choice.

Both Vranceanu [25] and Gardner–Kamran [11] consider only local diffeomorphisms which
preserve each of M1 and M2.

Example 2.1. For the wave equation written as zxy = 0, we have the pullbacks of the contact
forms on J2(R2,R) to the parameter space Σ7 : (x, y, z, p, q, r, t),

ω1 = dz − pdx− qdy, ω2 = dp− rdx, ω3 = dq − tdy

and

(〈ωα, ωβ〉7)p =

 0 0 0
0 0 −1

2

0 −1
2 0

 .

Thus, M1 = {ω1, ω2} and M2 = {ω1, ω3}. Interchanging the independent variables induces
φ0 : Σ7 → Σ7, (x, y, z, p, q, r, t) 7→ (y, x, z, q, p, t, r), which satisfies

φ∗0ω
1 = ω1, φ∗0ω

2 = ω3, φ∗0ω
3 = ω2,

and hence φ0 ∈ Aut−(IF ).

The hyperbolicity condition implies that there exists a local basis of IF which by abuse of
notation we also denote ω1, ω2, ω3 such that

M1 = {ω1, ω2}, M2 = {ω1, ω3}

and the matrix representing 〈·, ·〉7 is in Witt normal form

(〈ωα, ωβ〉7)p =

 0 0 0
0 0 1
0 1 0

 .
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Lemma 2.1 (Preliminary hyperbolic structure equations). There exists a (local) coframe
ω = {ωi}7

i=1 on Σ7 such that IF = {ω1, ω2, ω3} and

dω1 ≡ 0,

dω2 ≡ ω4 ∧ ω5, mod IF , (2.7)

dω3 ≡ ω6 ∧ ω7,

with

ω1 ∧ ω2 ∧ ω3 ∧ ω4 ∧ ω5 ∧ ω6 ∧ ω7 6= 0.

Proof. In Theorem 1.7 in [3], an algebraic normal form for a 2-form Ω is given. In particular,
if Ω ∧Ω = 0, then Ω = σ1 ∧ σ2 is decomposable. This statement is also true in a relative sense:
if Ω ∧ Ω ≡ 0 mod I, then Ω ≡ σ1 ∧ σ2 mod I, where I is an ideal in the exterior algebra.

Using this fact, let us deduce consequences of the Witt normal form. By definition of 〈·, ·〉7,
we have (taking congruences below modulo IF )

〈ω2, ω2〉7 = 0 ⇔ dω2 ∧ dω2 ≡ 0 ⇔ dω2 ≡ ω4 ∧ ω5,

〈ω3, ω3〉7 = 0 ⇔ dω3 ∧ dω3 ≡ 0 ⇔ dω3 ≡ ω6 ∧ ω7,

〈ω2, ω3〉7 = 1 ⇔ dω2 ∧ dω3 ∧ ω1 ∧ ω2 ∧ ω3 = ω4 ∧ ω5 ∧ ω6 ∧ ω7 ∧ ω1 ∧ ω2 ∧ ω3 6= 0.

Using 〈ω1, ω2〉7 = 〈ω1, ω3〉7 = 0, we have

0 = dω1 ∧ dω2 ∧ ω1 ∧ ω2 ∧ ω3 = dω1 ∧ ω4 ∧ ω5 ∧ ω1 ∧ ω2 ∧ ω3,

0 = dω1 ∧ dω3 ∧ ω1 ∧ ω2 ∧ ω3 = dω1 ∧ ω6 ∧ ω7 ∧ ω1 ∧ ω2 ∧ ω3,

and thus dω1 ≡ 0. �

Consequently, {ωi}7
i=1 is a (local) coframe on Σ7, and the structure equations can be written

dωi =
1
2
γi

jkω
j ∧ ωk. (2.8)

3 Monge–Ampère, Goursat and generic hyperbolic equations

The congruences appearing in the preliminary hyperbolic structure equations can be tightened
with a more careful study of integrability conditions and further adaptations of the coframe.
The details are provided in Appendix A.

Theorem 3.1 (Hyperbolic structure equations). Given any hyperbolic equation F = 0 with
nondegenerate parametrization iF : Σ7 → J2(R2,R), there is an associated coframe ω = {ωi}7

i=1

on Σ7 such that

1. IF = {ω1, ω2, ω3}, M1 = {ω1, ω2}, M2 = {ω1, ω3}.
2. We have the structure equations

dω1 ≡ ω3 ∧ ω6 + ω2 ∧ ω4 mod {ω1},
dω2 ≡ ω4 ∧ ω5 + U1ω

3 ∧ ω7 mod {ω1, ω2}, (3.1)

dω3 ≡ ω6 ∧ ω7 + U2ω
2 ∧ ω5 mod {ω1, ω3}

for some functions U1, U2 on Σ7.
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A finer contact-invariant classification of hyperbolic equations arises from the study of the
class of M1 and M2. Let us recall some basic definitions.

Definition 3.1. Let I be a Pfaffian system on a manifold Σ. Define the

1. Cauchy characteristic space A(I) = {X ∈ X(Σ) : X ∈ I⊥, X y dI ⊂ I}.
2. Cartan system C(I) = A(I)⊥. The class of I is the rank of C(I) (as a C∞(Σ)-module).

Here, ⊥ refers to the annihilator submodule.

The hyperbolic structure equations indicate that there are only two possibilities for the class
of M1 and M2.

Corollary 3.1. For i = 1, 2, class(Mi) = 6 or 7. Moreover, class(Mi) = 6 iff Ui = 0.

Proof. Let { ∂
∂ωi }7

i=1 denote the dual basis to {ωi}7
i=1. From (3.1), we have

A(M1) ⊂
{

∂

∂ω7

}
, A(M2) ⊂

{
∂

∂ω5

}
.

Moreover, class(M1) = 6 iff ∂
∂ω7 ∈ A(M1) iff U1 = 0. Similarly for M2. �

Consequently, we obtain the subclassification of hyperbolic equations given in Table 2.

Table 2. Contact-invariant classification of hyperbolic PDE.

Type Contact-invariant classification

Monge–Ampère (6-6) class(M1) = class(M2) = 6
Goursat (6-7) {class(M1), class(M2)} = {6, 7}
generic (7-7) class(M1) = class(M2) = 7

Example 3.1. We give some known examples of each type of hyperbolic equation:

• Monge–Ampère: wave equation zxy = 0, Liouville equation zxy = ez, Klein–Gordon equa-
tion zxy = z, or more generally the f -Gordon equation zxy = f(x, y, z, zx, zy), and Monge–
Ampère equation zxxzyy − (zxy)2 = f(x, y).

• Goursat: zxx = f(zxy) where f ′′ 6= 0.

• generic: zxy = 1
2 sin(zxx) cos(zyy), or 3zxx(zyy)3 + 1 = 0.

The terminology for class 6-6 equations is justified by the following result, known to Vran-
ceanu [26]. We refer the reader to Gardner–Kamran [11] for a modern proof.

Theorem 3.2. A second-order hyperbolic equation has class(Mi) = 6, i = 1, 2 if and only if its
locus can be given by an equation of the form

a(zxxzyy − (zxy)2) + bzxx + 2czxy + dzyy + e = 0,

where a, b, c, d, e are functions of x, y, z, zx, zy.

The examples given above were obtained by constructing explicit coframes which realize the
abstract structure equations given in Theorem 3.1, which in general is a very tedious task and
is equation-specific. We state here two relative invariants I1, I2 (which are related to the two
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relative invariants U1, U2) whose vanishing/nonvanishing determine the type of any hyperbolic
equation. Given any hyperbolic equation F = 0, define

λ± =
Fs

2
±
√
|∆|,

which are the roots of the characteristic equation (2.6). Without loss of generality, we may
assume that Fs ≥ 0. (If not, take F̂ = −F instead.) By the hyperbolicity assumption λ+ > 0.
The proof of the following theorem is given in Appendix B.

Theorem 3.3 (Relative contact invariants for hyperbolic equations). Suppose that F =
0 is a hyperbolic equation with Fs ≥ 0. Let

Ĩ1 = det

 Fr Fs Ft

λ+ Ft 0(
Ft
λ+

)
r

(
Ft
λ+

)
s

(
Ft
λ+

)
t

 , Ĩ2 = det

 0 Fr λ+

Fr Fs Ft(
Fr
λ+

)
r

(
Fr
λ+

)
s

(
Fr
λ+

)
t

 ,

and Ii = i∗F Ĩi. Then we have the following classification of F = 0:

Type Contact-invariant classification

Monge–Ampère I1 = I2 = 0
Goursat exactly one of I1 or I2 is zero
generic I1I2 6= 0

Moreover, we have the scaling property: If φ is a function on J2(R2,R) such that i∗Fφ > 0, then

F̂ = φF ⇒ Îi = (i∗Fφ)2Ii, i = 1, 2.

We note that the scaling property is a fundamental property of these relative invariants: their
vanishing/nonvanishing depends only on the equation locus.

Remark 3.1. For a general hyperbolic equation F (x, y, z, p, q, r, s, t) = 0, Juráš’ [13] calculated
two (relative) invariants Mσ, Mτ whose vanishing characterizes the Monge–Ampère class. His
invariants were given explicitly in terms of two non-proportional real roots (µ, λ) = (mx,my)
and (µ, λ) = (nx, ny) of the characteristic equation

Frλ
2 − Fsλµ+ Ftµ

2 = 0,

which he associates to the given PDE. We note here that the characteristic equation (2.6) that
we have used differs from that of Juráš (but has the same discriminant). Our invariants I1, I2
appear to be simpler written in this determinantal form.

Using the relative contact invariants I1, I2 we can identify some more general examples of
hyperbolic equations of Goursat and generic type.

Corollary 3.2. The classification of hyperbolic equations of the form F (x, y, z, p, q, r, t) = 0,
G(x, y, z, p, q, r, s) = 0, and rt = f(x, y, z, p, q, s) is given in Table 3 below.

Proof. The hyperbolicity condition in each case is clear. Define the function

∆F
r,t = Fr

2Ftt − 2FrFtFrt + Ft
2Frr,

and similarly for ∆G
r,s. Without loss of generality Gs, fs ≥ 0. The calculation of Ĩ1, Ĩ2 leads to

F (x, y, z, p, q, r, t) = 0 : Ĩ1 =
−Ft

2∆F
r,t

2(−FtFr)3/2
, Ĩ2 =

−Fr
2∆F

r,t

2(−FtFr)3/2
,
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G(x, y, z, p, q, r, s) = 0 : Ĩ1 = 0, Ĩ2 =
−∆G

r,s

Gs
,

rt = f(x, y, z, p, q, s) : Ĩ1 =
(fss − 2)r2√
fs

2 − 4rt
, Ĩ2 =

(fss − 2)t2√
fs

2 − 4rt
,

rt = −f(x, y, z, p, q, s) : Ĩ1 =
−(fss + 2)r2√
fs

2 − 4rt
, Ĩ2 =

−(fss + 2)t2√
fs

2 − 4rt
.

For F (x, y, z, p, q, r, t) = 0: Since i∗F (FtFr) < 0, then either I1, I2 both vanish or both do not
vanish, i.e. either class 6-6 or class 7-7. The vanishing of I1, I2 is completely characterized by
the vanishing of i∗F (∆F

r,t). By Theorem 3.2, we know what all class 6-6 equations of the form
F (x, y, z, p, q, r, t) = 0 look like. Hence,

i∗F (∆F
r,t) = 0 iff its locus can be given by F (x, y, z, p, q, r, t) = ar + bt+ c = 0,

where a, b, c are functions of x, y, z, p, q only. The proof for G(x, y, z, p, q, r, s) = 0 is similar
and the result for the last equation is immediate. �

Table 3. General examples of hyperbolic equations and their types.

Equation
Hyperbolicity

condition
Type

F (x, y, z, p, q, r, t) = 0 i∗F (FrFt) < 0
6-6 iff F is an affine function of r, t (*)

7-7 otherwise

G(x, y, z, p, q, r, s) = 0 i∗G(Gs) 6= 0
6-6 iff G is an affine function of r, s (*)

6-7 otherwise

rt = f(x, y, z, p, q, s) 4f < fs
2

Assuming rt 6= 0:
6-6 iff fss = 2
7-7 iff fss 6= 2

(*) More precisely, it is the zero-locus of such a function.

Remark 3.2. Hyperbolic equations of Goursat and generic type are necessarily non-variational.
This is because a variational formulation for a second order PDE requires a first order Lagrangian
(density) L(x, y, z, p, q) and the corresponding Euler–Lagrange equation is

∂L

∂z
−Dx

(
∂L

∂p

)
−Dy

(
∂L

∂q

)
= 0,

where Dx and Dy are total derivative operators

Dx =
∂

∂x
+ p

∂

∂z
+ r

∂

∂p
+ s

∂

∂q
, Dy =

∂

∂y
+ q

∂

∂z
+ s

∂

∂p
+ t

∂

∂q
.

Thus, the Euler–Lagrange equation is quasi-linear and, if hyperbolic, is of Monge–Ampère type.

For the remainder of the paper we will deal exclusively with the generic case. In this
case U1, U2 in (3.1) are nonzero and can be further normalized through a coframe adaptation.
Before carrying out this normalization, we recall some more basic definitions.

Definition 3.2. Given a Pfaffian system I on a manifold Σ, recall that the first derived system
I(1) ⊂ I is the Pfaffian system defined by the short exact sequence

0 −→ I(1) ↪−→ I
π◦d−→ dI mod I −→ 0,
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where π : Ω∗(Σ) → Ω∗(Σ)/I be the canonical surjection. (Here we abuse notation and identify I
with the algebraic ideal in Ω∗(Σ) that it generates.) Iteratively, we define the derived flag
· · · ⊂ I(k) ⊂ · · · ⊂ I(1) ⊂ I.

Remark 3.3. I is completely integrable (in the Frobenius sense) iff I(1) = I.

Since d commutes with pullbacks, each derived system I(k) is invariant under any automor-
phism of I, i.e. if φ ∈ Aut(I), then φ∗I(k) = I(k).

Definition 3.3. For hyperbolic equations, define

Char(IF , dMi) = {X ∈ X(Σ7) : X ∈ I⊥F , X y dMi ⊂ IF },
C(IF , dMi) = Char(IF , dMi)⊥.

We now normalize the coefficients U1, U2 in the generic case. Moreover, explicit generators
for the first few systems in the derived flag of C(IF , dM1) and C(IF , dM2) are obtained. The
proofs of the following theorem and subsequent corollaries are provided in Appendix C.

Theorem 3.4 (Generic hyperbolic structure equations). Given any generic hyperbolic
equation F = 0 with nondegenerate parametrization iF : Σ7 → J2(R2,R), there is an associated
coframe ω = {ωi}7

i=1 on Σ7 such that

1) IF = {ω1, ω2, ω3}, I
(1)
F = {ω1}, M1 = {ω1, ω2}, M2 = {ω1, ω3},

2) we have the structure equations

dω1 ≡ ω3 ∧ ω6 + ω2 ∧ ω4 mod I(1)
F ,

dω2 ≡ ω4 ∧ ω5 + ω3 ∧ ω7 mod M1, (3.2)

dω3 ≡ ω6 ∧ ω7 + εω2 ∧ ω5 mod M2,

where ε = ±1,

3) for some choice of coframe satisfying the above structure equations, we have

C(IF , dM1) = {ω1, ω2, ω3, ω4, ω5}, C(IF , dM2) = {ω1, ω2, ω3, ω6, ω7},
C(IF , dM1)(1) = {ω1, ω2, ω4, ω5}, C(IF , dM2)(1) = {ω1, ω3, ω6, ω7}, (3.3)

C(IF , dM1)(2) = {ω4, ω5}, C(IF , dM2)(2) = {ω6, ω7}.

Corollary 3.3. For the choice of coframe as in Theorem 3.4, we have the additional structure
equations

dω4 ≡ εω5 ∧ ω6 mod {ω1, ω2, ω4},
dω5 ≡ 0 mod {ω1, ω2, ω4, ω5},
dω6 ≡ −ω4 ∧ ω7 mod {ω1, ω3, ω6}, (3.4)

dω7 ≡ 0 mod {ω1, ω3, ω6, ω7}.

We will refer to (3.2) and (3.4) collectively as the generic hyperbolic structure equations.

Corollary 3.4. ε is a contact invariant, and moreover ε = sgn(I1I2).

Example 3.2. From Table 3 and the proof of Corollary 3.2, we see ε = 1 for:

• F (x, y, z, p, q, r, t) = 0 whenever F is not an affine function of r, t.

• rt = f(x, y, z, p, q, s) whenever fss 6= 2.
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Remark 3.4. We have the following dictionary of notations for the adapted coframe labelling:

Gardner–Kamran [11] Vranceanu [25] The
IF ω1, π2, π3 ds1, ds2, ds3 ω1, ω2, ω3

M1 ω1, π2 ds1, ds2 ω1, ω2

M2 ω1, π3 ds1, ds3 ω1, ω3

C(IF , dM1) ω1, π2, π3, ω4, ω5 ds1, ds2, ds3, ds5, ds6 ω1, ω2, ω3, ω4, ω5

C(IF , dM2) ω1, π2, π3, ω6, ω7 ds1, ds2, ds3, ds4, ds7 ω1, ω2, ω3, ω6, ω7

4 The structure group and the Cartan equivalence problem

In this section, we reformulate the problem of contact-equivalence of PDE as a Cartan equiva-
lence problem. The reader will notice the similarities in the calculation of the structure group
in this section and in the calculations in the proof of Corollary 3.4 provided in Appendix C.

For any φ ∈ Contact+(Σ7, Σ̄7),

φ∗I
(1)

F̄
= I

(1)
F , φ∗(C(IF̄ , dM̄i)(k)) = C(IF , dMi)(k), i = 1, 2, ∀ k ≥ 0.

Consequently, with respect to the adapted coframe ω on Σ7 (as specified in Theorem 3.4) and
corresponding coframe ω̄ on Σ̄7, we have

φ∗



ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

ω̄7


=



λ1 0 0 0 0 0 0
µ1 λ2 0 0 0 0 0
µ2 0 λ3 0 0 0 0
0 0 0 λ4 ν1 0 0
0 0 0 µ3 λ5 0 0
0 0 0 0 0 λ6 ν2

0 0 0 0 0 µ4 λ7





ω1

ω2

ω3

ω4

ω5

ω6

ω7


.

Applying φ∗ to the dω̄1 structure equation in (3.2) yields

φ∗dω̄1 = dφ∗ω̄1 = d(λ1ω
1) ≡ λ1(ω3 ∧ ω6 + ω2 ∧ ω4) mod I(1)

F ,

and also

φ∗dω̄1 ≡ λ3ω
3 ∧ (λ6ω

6 + ν2ω
7) + λ2ω

2 ∧ (λ4ω
4 + ν1ω

5) mod I(1)
F ,

which implies ν1 = ν2 = 0, λ1 = λ3λ6 = λ2λ4. Similarly, using the dω̄2, dω̄3 equations yields

λ1 = λ3λ6 = λ2λ4, ν1 = ν2 = 0,
λ2 = λ4λ5 = λ3λ7, µ1 = λ3µ4,

λ3 = λ6λ7 = λ2λ5, µ2 = ελ2µ3.

Then

β :=
λ6

λ4
=
λ2

λ3
=

1
λ5

=
λ4

λ2
, β =

λ2

λ3
= λ7 =

λ3

λ6
⇒ β4 = 1 ⇒ β = ±1,

and so

(λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (βa1
2, a1, βa1, βa1, β, a1, β),

(µ1, µ2, µ3, µ4) = (βa1a2, εa1a3, a3, a2), ∀ a1 6= 0, a2, a3 ∈ R. (4.1)
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This leads us to define

S = diag(−1, 1,−1,−1,−1, 1,−1),

and the connected matrix Lie group

G0 =
{
M(a) : a ∈ R+ × R2

}
, M(a) =



a1
2 0 0 0 0 0 0

a1a2 a1 0 0 0 0 0
εa1a3 0 a1 0 0 0 0

0 0 0 a1 0 0 0
0 0 0 a3 1 0 0
0 0 0 0 0 a1 0
0 0 0 0 0 a2 1


. (4.2)

Let us also define

R =



−ε 0 0 0 0 0 0
0 0 ε 0 0 0 0
0 −ε 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −ε
0 0 0 1 0 0 0
0 0 0 0 −ε 0 0


⇒ R2 = diag(1,−1,−1,−1, 1,−1, 1).

We note that R4 = S2 = 1 and we have the relation RS = SR−1, and consequently R, S
generate the dihedral group of order 8

D8 = 〈R,S : R4 = S2 = SRSR = 1〉.

The results (4.1) of the previous calculations establish that

φ ∈ Contact+(Σ7, Σ̄7) iff φ∗ω̄ = gω, where g : Σ7 → G+,

where G+ is the group generated by G0, S, R2, which we can realize as the semi-direct product

G+ = G0 o 〈S,R2〉

induced by the adjoint action. If φ∗0ω̄ = Rω, then φ0 ∈ Contact−(Σ7, Σ̄7). Conversely, given
any φ ∈ Contact−(Σ7, Σ̄7), we have φ = φ0 ◦ φ̃, where φ̃ ∈ Aut+(IF ). Thus,

φ∗ω̄ = φ̃∗φ∗0ω̄ = φ̃∗Rω = Rgω = AdR(g)Rω, ∀ g ∈ G+.

Since G0 is AdR-invariant, and AdR(S) = SR2, then G+ is AdR-invariant and so

φ ∈ Contact−(Σ7, Σ̄7) iff φ∗ω̄ = gω, where g : Σ7 → G−,

where G− = G+ ·R. (Note that G− is not a group.) Consequently, we define

G = G0 oD8,

and we have established:

Lemma 4.1. φ ∈ Contact(Σ7, Σ̄7) if and only if

φ∗ω̄ = gω, for some g : Σ7 → G. (4.3)
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The group G will play the role of our initial structure group in the application of the Cartan
equivalence method [6, 10, 22]. Specifically, the Cartan equivalence problem for generic hyper-
bolic equations can be stated as follows: Given the coframes ω, ω̄ on Σ7, Σ̄7 respectively, find
necessary and sufficient conditions for the existence of a local diffeomorphism φ : Σ7 → Σ̄7

satisfying (4.3). This is also known as the isomorphism problem for G-structures (ω, G) and
(ω̄, G).

Remark 4.1. Vranceanu (c.f. page 366 in [25]) considered the equivalence problem with respect
to a smaller group which, in our notation, is G0 o 〈R2〉. This has index 4 in G.

The solution of the general Cartan equivalence problem leads to either the structure equations
of an {e}-structure or of an infinite Lie pseudo-group. However, for the equivalence problem for
generic hyperbolic equations only the former case occurs. In particular, we will show in the next
section that we are led to {e}-structures on Σ7×GΓ, where GΓ ⊂ G is a subgroup of dimension
at most two. (Different {e}-structures arise due to normalizations of nonconstant type, and will
depend on choices of normal forms Γ in different orbits.) For the moment, let us recall the
general solution to the coframe ({e}-structure) equivalence problem. Our description below is
abbreviated from the presentation given in [22].

Let Θ, Θ̄ be local coframes on manifolds M , M̄ respectively of dimension m, and let Φ satisfy
Φ∗Θ̄ = Θ. If the structure equations for the {e}-structures are correspondingly

dΘa =
1
2
T a

bcΘb ∧Θc, dΘ̄a =
1
2
T̄ a

bcΘ̄b ∧ Θ̄c, 1 ≤ a, b, c ≤ m,

then by commutativity of Φ∗ and d, the structure functions T a
bc are invariants, i.e.

T̄ a
bc ◦ Φ = T a

bc.

For any local function f on M , define the coframe derivatives ∂f
∂Θa by

df =
∂f

∂Θk
Θk.

Let us write the iterated derivatives of the structure functions as

Tσ =
∂sT a

bc

∂Θks · · · ∂Θk1
, where σ = (a, b, c, k1, . . . , ks) and s = order(σ)

and 1 ≤ a, b, c, k1, . . . , ks ≤ m. We repeat this construction for the barred variables. Necessarily,
again as a consequence of commutativity of Φ∗ and d, the derived structure functions Tσ and T̄σ

satisfy the invariance equations

T̄σ(x̄) = Tσ(x), when x̄ = Φ(x), ∀ order(σ) ≥ 0. (4.4)

Note that these equations are not independent: there are generalized Jacobi identities (which
we will not describe explicitly here) which allow the permutation of the coframe derivatives, so
in general only nondecreasing coframe derivative indices are needed.

Definition 4.1. Let Θ be a coframe with defined on an open set U ⊂M .

1. Let K(s) be the Euclidean space of dimension equal to the number of multi-indices

σ = (a, b, c, k1, . . . , kr), b < c, k1 ≤ · · · ≤ kr, 0 ≤ r ≤ s.

2. The sth order structure map associated to Θ is

T(s) : U → K(s), zσ = Tσ(x), order(σ) ≤ s.
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3. The coframe Θ is fully regular if T(s) is regular for all s ≥ 0. In this case, let ρs =
rank(T(s)), and define the rank of Θ as the minimal s such that ρs = ρs+1.

4. The sth order classifying set is C(s)(Θ, U) = {T(s)(x) : x ∈ U} ⊂ K(s).

As a consequence of the invariance equations (4.4), if Θ and Θ̄ are equivalent coframes via
Φ : U → Ū , then

C(s)(Θ, U) = C(s)(Θ̄,Φ(U)), ∀ s ≥ 0.

This is sufficient in the fully regular case. We refer the reader to [22] for a proof of the following
theorem.

Theorem 4.1. Suppose Θ, Θ̄ are fully regular coframes on U , Ū respectively. There exists Φ
satisfying Φ∗Θ̄ = Θ if and only if for each s ≥ 0, C(s)(Θ, U) ∩ C(s)(Θ̄, Ū) is nonempty. The
set of self-equivalences Φ (i.e. satisfying Φ∗Θ = Θ) defines a p-dimensional local Lie group of
transformations, where p = m− rank(Θ) ≥ 0.

5 Nine-dimensional maximal symmetry

The solution to the Cartan equivalence problem (4.3) begins by lifting the problem to the left
principal bundles Σ7 ×G

π→ Σ7 and Σ̄7 ×G
π̄→ Σ̄7 by defining

ω̂|(u,g) = gπ∗ω|u, ˆ̄ω|(ū,g) = gπ̄∗ω̄|ū, where u ∈ Σ7, ū ∈ Σ̄7, g ∈ G,

and noting the following key lemma [10].

Lemma 5.1. There exists an equivalence φ as in (4.3) if and only if there exists a local diffeo-
morphism Φ : Σ7 ×G→ Σ̄7 ×G satisfying Φ∗ ˆ̄ω = ω̂.

Identifying the coframe ω on Σ7 with its pullback by the canonical projection Σ7×G→ Σ7,
we can write

ω̂i = gi
jω

j , g ∈ G.

Using (2.8), the structure equations for these lifted forms are then

dω̂i = (dg · g−1)i
j ∧ ω̂j +

1
2
γ̂j

k`ω̂
k ∧ ω̂`,

where the coefficients γi
jk transform tensorially under the G-action

γ̂i
jk := gi

`γ
`
mn(g−1)m

j(g−1)n
k, (5.1)

and dg · g−1 refers to the right-invariant Maurer–Cartan form on G. Since D8 is discrete, then
if (g, k) ∈ G0 ×D8,

d(gk) · (gk)−1 = dg · k · k−1g−1 = dg · g−1,

and so we can identify the Maurer–Cartan form on G with that on G0. For g = M(a1, a2, a3) ∈
G0 as in (4.2), we have g−1 = M

(
1
a1
,−a2

a1
,−a3

a1

)
and

dg · g−1 =



2α1 0 0 0 0 0 0
α2 α1 0 0 0 0 0
εα3 0 α1 0 0 0 0
0 0 0 α1 0 0 0
0 0 0 α3 0 0 0
0 0 0 0 0 α1 0
0 0 0 0 0 α2 0


,
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where

α1 =
da1

a1
, α2 =

da2

a1
, α3 =

da3

a1

are a basis for the right-invariant 1-forms on G0 and hence G. Identifying αi on G with their
pullback by the canonical projection Σ7×G→ G, we have the structure equations for the lifted
coframe:

dω̂1 = 2α1 ∧ ω̂1 + ω̂3 ∧ ω̂6 + ω̂2 ∧ ω̂4 + η1 ∧ ω̂1,

dω̂2 = α2 ∧ ω̂1 + α1 ∧ ω̂2 + ω̂4 ∧ ω̂5 + ω̂3 ∧ ω̂7 + η2 ∧ ω̂1 + η3 ∧ ω̂2,

dω̂3 = εα3 ∧ ω̂1 + α1 ∧ ω̂3 + ω̂6 ∧ ω̂7 + εω̂2 ∧ ω̂5 + η4 ∧ ω̂1 + η5 ∧ ω̂3,

dω̂4 = α1 ∧ ω̂4 + η6 ∧ ω̂1 + η7 ∧ ω̂2 + η8 ∧ ω̂4 + η9 ∧ ω̂5,

dω̂5 = α3 ∧ ω̂4 + η10 ∧ ω̂1 + η11 ∧ ω̂2 + η12 ∧ ω̂4 + η13 ∧ ω̂5, (5.2)

dω̂6 = α1 ∧ ω̂6 + η14 ∧ ω̂1 + η15 ∧ ω̂3 + η16 ∧ ω̂6 + η17 ∧ ω̂7,

dω̂7 = α2 ∧ ω̂6 + η18 ∧ ω̂1 + η19 ∧ ω̂3 + η20 ∧ ω̂6 + η21 ∧ ω̂7,

dα1 = 0,

dα2 = −α1 ∧ α2,

dα3 = −α1 ∧ α3,

where ηi are semi-basic 1-forms with respect to the projection Σ7 × G → Σ7. The structure
equations for the lifted forms ω̂i can be written

dω̂i = ai
ρjα

ρ ∧ ω̂j +
1
2
γ̂i

jkω̂
j ∧ ω̂k, (5.3)

where ai
ρj are constants (c.f. Maurer–Cartan form) and γ̂i

jk is defined as in (5.1).

Definition 5.1. The degree of indeterminacy r(1) of a lifted coframe is the number of free
variables in the set of transformations αρ 7→ αρ + λρ

iω̂
i which preserve the structure equations

for dω̂i.

For later use, we note the following:

Lemma 5.2. For our lifted coframe Θ = {ω̂,α} on Σ7×G satisfying (5.2), we have r(1) = 0.

Proof. From the dω̂1, dω̂2, dω̂3 equation in (5.2), we must have

α1 7→ α1 + λω̂1, α2 7→ α2 + λω̂2, α3 7→ α3 + ελω̂3.

However, to preserve the form of dω̂i, i = 4, 5, 6, 7, we must have λ = 0. Since there are no free
variables, then r(1) = 0. �

The goal in Cartan’s solution algorithm is to reduce to an {e}-structure so that Theorem 4.1
can be invoked. This amounts to essentially adapting the coframes on the base, i.e. fixing
a map g : Σ7 → G. Using Lemma 5.1, coefficients in the structure equations are candidates for
normalization, from which the structure group G can be subsequently reduced. However, we
only use those coefficients which are not affected by the choice of any map g : Σ7 → G. Note
that pulling the Maurer–Cartan forms back to the base by such a map will express each αρ in
terms of the new coframe ω̂ (pulled back to the base). This motivates the following definition.
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Definition 5.2. Given a lifted coframe, Lie algebra valued compatible absorption refers to re-
defining the right-invariant 1-forms αρ by α̂ρ = αρ + λρ

iω̂
i, where λρ

i are functions on the
bundle. The terms involving the coefficients γ̂i

jk which cannot be eliminated by means of Lie
algebra valued compatible absorption are called torsion terms and the corresponding coefficients
are referred to as torsion coefficients.

From (5.2), the dω̂5 and dω̂7 structure equations indicate that γ̂5
56, γ̂5

57, γ̂7
47, γ̂7

57 are
torsion coefficients. Using (3.2), (3.4), and the tensor transformation law (5.1) for the γ’s, we
see that there is a well-defined G-action on R4 (i.e. the range of (γ5

56, γ
5
57, γ

7
47, γ

7
57)) given by

the formulas

G0-action by g = M(a1, a2, a3) R-action S-action
γ̂5

56
1
a1

(γ5
56 − γ5

57a2 + a3ε) −γ7
47 γ5

56

γ̂7
47

1
a1

(γ7
47 − a2 − γ7

57a3) γ5
56 −γ7

47

γ̂5
57 γ5

57 εγ7
57 −γ5

57

γ̂7
57 γ7

57 εγ5
57 −γ7

57

(5.4)

We can always normalize γ̂5
56 to zero by using the G0-action and setting

a3 = ε(−γ5
56 + γ5

57a2). (5.5)

The matrix factorization

M(a1, a2, ε(−γ5
56 + γ5

57a2)) = M(a1, a2, εγ
5
57a2)M(1, 0,−εγ5

56)

indicates that we can normalize γ5
56 to 0 for the base coframe via

ω̄3 = −γ5
56ω

1 + ω3, ω̄5 = −εγ5
56ω

4 + ω5.

This change of coframe is admissible in the sense that it preserves the form of the structure
equations in (3.2) and (3.4). (We henceforth drop the bars.) Thus, we have the normal form
Γ = (γ5

56 = 0, γ5
57, γ

7
47, γ

7
57). In general, however, this is a normalization of nonconstant type

since Γ still may depend on x ∈ Σ7. Pointwise, we define the reduced structure group GΓ as
the stabilizer of Γ, i.e. it is the subgroup of G preserving the structure equations together with
the normalization given by Γ. Clearly, the 1-parameter subgroup generated M(1, 0, a3) (a3 ∈ R)
yields a 1-dimensional orbit through Γ and so dim(GΓ) ≤ 2 since dim(G) = 3.

The algorithm continues by means of further normalizations and reductions of the structure
group until one of two possibilities occurs:

1) the structure group has been reduced to the identity, i.e. get an {e}-structure on Σ7, or

2) the structure group has not been reduced to the identity but the structure group acts
trivially on the torsion coefficients.

By Theorem 4.1, the former possibility yields a symmetry group of dimension at most seven. In
the latter case, the next step in the algorithm is to prolong the problem to the space Σ7 ×GΓ.
Here, we have abused notation and writtenGΓ also for the structure group in the latter possibility
above. Since, by Lemma 5.2, r(1) = 0 with respect to the lifted coframe on Σ × G, it is clear
that we must have r(1) = 0 for the lifted coframe on Σ7 ×GΓ. Finally, we invoke the following
standard theorem (Proposition 12.1 in [22]) written here in our notation:

Proposition 5.1. Let ω̂, ˆ̄ω be lifts of coframes ω, ω̄ having the same structure group GΓ, no
group dependent torsion coefficients, and r(1) = 0. Let α̂, ˆ̄α be modified Maurer–Cartan forms
obtained by performing a full Lie algebra-valued compatible absorption. Denote Θ = {ω̂, α̂},
Θ̄ = { ˆ̄ω, ˆ̄α}. Then there exists φ : Σ7 → Σ̄7 satisfying φ∗ω̄ = gω for some g : Σ7 → GΓ if and
only if there exists Φ : Σ7 ×GΓ → Σ̄7 ×GΓ satisfying Φ∗Θ̄ = Θ.



18 D. The

In other words, we have prolonged to an {e}-structure on Σ7 × GΓ. Since dim(GΓ) ≤ 2 for
any choice of Γ, then the symmetry group of the coframe is at most nine-dimensional. Thus, we
have proven:

Theorem 5.1. The (contact) symmetry group of any generic hyperbolic equation is finite di-
mensional and has maximal dimension 9.

In fact, this upper bound is sharp. We will give explicit normal forms for all contact-
equivalence classes of generic hyperbolic equations with 9-dimensional symmetry along with
their corresponding symmetry generators and corresponding structure equations.

Define

m := γ5
57 ∈ C∞(Σ7), n := γ7

57 ∈ C∞(Σ7),

and note that although m and n are G0-invariant, they are not G-invariant. However, along
each G-orbit the product mn is invariant.

We define two functions which will play an important role in the classifications to follow.
Define

∆1 = mn+ ε, ∆2 = m2 − εn2

Note that ∆1 is a contact invariant, and ∆2 is a relative contact invariant: it is G+-invariant,
but under the R-action, ∆̂2 = −ε∆2.

Corollary 5.1. If a generic hyperbolic equation has 9-dimensional symmetry group, then ∆1 =0.

Proof. Under the assumption of maximal symmetry, all torsion coefficients must be constant.
Thus, m̂, n̂ and consequently m, n must be constant. If ∆1 6= 0, then there is a unique solution
to the linear system(

m −ε
1 n

)(
a2

a3

)
=

(
γ5

56

γ7
47

)
, (5.6)

which yields the normalizations γ̂5
56 = γ̂7

47 = 0 and a two dimensional reduction of the initial
structure group G. Consequently, the stabilizer GΓ would be at most 1-dimensional and the
symmetry group would be at most 8-dimensional. Thus, we must have ∆1 = 0. �

6 Complete structure equations

In Appendix D, we provide details of Vranceanu’s reduction of the generic hyperbolic structure
equations which allowed him to isolate the maximally symmetric and two sets of submaximally
symmetric structures.

Theorem 6.1. Let K0 = {diag(a2
1, a1, a1, a1, 1, a1, 1) : a1 > 0} ⊂ G. Consider a coframe

{ωi}7
i=1 on Σ7 satisfying the generic hyperbolic structure equations (3.2) and (3.4), and the

corresponding lifted coframe on Σ7 ×K0 → Σ7. If:

1) all torsion coefficients on which K0 acts nontrivially are constants, and

2) K0 cannot be reduced to the identity,

then the structure equations can be put in the form

dω1 = ω3 ∧ ω6 + ω2 ∧ ω4,
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dω2 = ω4 ∧ ω5 + ω3 ∧ ω7 + ω2 ∧
(
−3n

2
ω5 +

m

2
ω7

)
,

dω3 = ω6 ∧ ω7 + εω2 ∧ ω5 + ω3 ∧
(
−n

2
ω5 +

3m
2
ω7

)
,

dω4 = εω5 ∧ ω6 + ω2 ∧
(
Bω5 + γ4

27ω
7
)

+ ω4 ∧
(

3n
2
ω5 − m

2
ω7

)
, (6.1)

dω5 = mω5 ∧ ω7,

dω6 = −ω4 ∧ ω7 + ω3 ∧
(
γ6

35ω
5 + εBω7

)
+ ω6 ∧

(
n

2
ω5 − 3m

2
ω7

)
,

dω7 = nω5 ∧ ω7,

where m,n,B ∈ C∞(Σ7),

dm = m5ω
5 +m7ω

7, dn = n5ω
5 + n7ω

7, m57 =
∂m5

∂ω7
=

∂

∂ω7

(
∂m

∂ω5

)
, etc.

dB = ε

(
−4m∆1 − 2nεB − 6mm5 −mn7 + nm7 +

3
2
m57 +

1
2
n77

)
ω5

+
(

4n∆1 + 2mB − 6nn7 − nm5 +mn5 −
1
2
m55 −

3
2
n75

)
ω7 (6.2)

and

γ4
27 = mn+ ε− 3

2
n7 −

1
2
m5, γ6

35 = mn+ ε+
1
2
n7 +

3
2
m5.

Finally, the integrability conditions for (6.1) (i.e. d2ωi = 0 for all i) reduce to the integrability
conditions for dm, dn, dB as given above.

Remark 6.1. All structures admitting a 9-dimensional symmetry group are included in (6.1)
(since K0 cannot be reduced to the identity).

Remark 6.2. For all valid structures arising from (6.1), the function ∆3 = B := γ4
25 is

a relative contact invariant: it is G+-invariant, and under the R-action, ∆̂3 = ε∆3.

Corollary 6.1. For all valid structures arising from (6.1), the original G-structure on Σ7 can
be reduced to an H-structure, where H = H0 oD8 and

H0 =





a1
2 0 0 0 0 0 0

a1a2 a1 0 0 0 0 0
ma1a2 0 a1 0 0 0 0

0 0 0 a1 0 0 0
0 0 0 εma2 1 0 0
0 0 0 0 0 a1 0
0 0 0 0 0 a2 1


: (a1, a2) ∈ R+ × R


. (6.3)

Moreover, wherever ∆1 6= 0, or B 6= 0 there is a further reduction to a K-structure, where
K = K0 oD8.

Proof. For all valid structures satisfying (6.1), γ5
56 = γ7

47 = 0, so from the G-action described
in (5.4), the stabilizer GΓ of Γ = (γ5

56, γ
7
47, γ

5
57, γ

7
57) = (0, 0,m, n) is contained in H (since

we can always keep γ̂5
56 = 0 using a3 = εma2).
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If ∆1 6= 0, then a2 = a3 = 0 is the unique solution to (5.6) and GΓ ⊂ K. Alternatively,
suppose B 6= 0. Note that γ̂4

15 and γ̂6
17 are torsion coefficients, and for the structure equa-

tions (6.1), we have γ4
15 = γ6

17 = 0, and the transformation laws (under H0):

γ̂4
15 =

−Ba2

a1
, γ̂6

17 =
−Bεma2

a1
.

Consequently, we can normalize γ̂4
15 = γ̂6

17 = 0 and reduce the connected component of the
structure group to K0 by setting a2 = 0. The discrete part of the structure group will preserve
this reduction since

R-action : γ̂4
15 = −γ6

17, γ̂6
17 = γ4

15,

S-action : γ̂4
15 = −γ4

15, γ̂6
17 = γ6

17. �

Let us now examine in detail the case when m, n are constants. Then (6.2) becomes

dB = −2 (2εm∆1 + nB)ω5 + 2 (2n∆1 +mB)ω7. (6.4)

Applying d to (6.4) and simplifying, we obtain the integrability condition

0 = −12ε∆1∆2ω
5 ∧ ω7.

Corollary 6.2. Suppose m, n are constants. Then ∆1∆2 = 0 if and only if (6.1) are valid
structure equations. Moreover, in this case:

1) σ = −nω5 +mω7 is closed, so σ = dh for some function h ∈ C∞(Σ7);

2) m = 0 iff n = 0 iff σ = 0 iff h is constant;

3) if ∆1 = 0, then n = − ε
m , and dB = 2Bσ, so B = be2h, where b is an arbitrary constant;

4) if ∆2 = 0, then:

• if ε = −1, then m = n = 0, and B is an arbitrary constant;
• if ε = 1, then letting n = ε1m, ε1 = ±1 we have dB = 2(2(m2 + ε1) +B)σ. If m 6= 0,

then B = −2(m2 + ε1) + be2h, where b is an arbitrary constant. If m = 0, then B is
an arbitrary constant;

5) If ∆1 = ∆2 = 0, then ε = 1, and (m,n) = (1,−1) or (−1, 1).

All of the above structures have a symmetry group with dimension at least seven.

Proof. We prove only the final assertion as the others are straightforward to prove. Let GΓ be
the reduced structure group for which there is no group dependent torsion. By construction
(c.f. Theorem 6.1), we must have K0 ⊂ GΓ, and by Proposition 5.1 we prolong to an {e}-
structure on Σ7×GΓ. If B is constant, then by Theorem 4.1 the symmetry group has dimension
dim(Σ7 ×GΓ) ≥ 8. If B is nonconstant, then by Corollary 6.1, GΓ ⊂ K. Note that B̂ = B, so
equation (6.4) implies that on Σ7 ×GΓ, we have

dB = −2 (2εm∆1 + nB) ω̂5 + 2 (2n∆1 +mB) ω̂7.

Thus, the coframe derivatives of B are functions of B. Thus, if B is nonconstant, then the
rank of the lifted coframe Θ is 1 and by Theorem 4.1 the symmetry group will be at least
dim(Σ7 ×GΓ)− rank(Θ) ≥ 8− 1 = 7 dimensional. �

Remark 6.3. In the case ∆2 = 0, ε = 1, we note that ε1 is a contact invariant.
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Certain values of m, n, B lead to equivalent structures owing to the presence of the D8

discrete subgroup of the original structure group G. Suppose ∆1 = 0, so n = − ε
m . Then

R-action : m̂ = − 1
m
, B̂ = εB,

S-action : m̂ = −m, B̂ = B.

In this case, by choosing a representative element m ∈ (0, 1], we can reduce D8 to Z2 = 〈R2〉.
If ε = 1, no further reduction occurs. If ε = −1 and B 6= 0, we choose a representative out of
{B,−B} to reduce the discrete subgroup to the identity. A similar argument is used in the case
∆1 6= 0, where ∆2 = 0, n = ε1m, and

R-action : m̂ = εε1m, B̂ = εB,

S-action : m̂ = −m, B̂ = B.

The results are organized in Table 4 according to the dimension of the symmetry group of
the resulting {e}-structures on Σ7 ×GΓ.

Table 4. All generic hyperbolic structures for which m,n are constants and K0 ⊂ GΓ.

Sym. grp. ∆1 ∆2 (ε,m) n B Str. grp. GΓ

9 0 6= 0 {±1} × (0, 1] − ε
m 0 H0 o 〈R2〉

except (1, 1)
9 0 0 (1, 1) −1 0 H0 o 〈R2〉
8 6= 0 0 (−1, 0) 0 b > 0 K0 o 〈R2, S〉
8 6= 0 0 (−1, 0) 0 0 K0 oD8

8 6= 0 0 (1, 0) 0 b ∈ R K0 oD8

8 6= 0 0 {1} × (0,∞) m −2(m2 + 1) K0 o 〈R〉
8 6= 0 0 {1} × (0,∞) −m −2(m2 − 1) K0 o 〈R2〉
7 0 6= 0 {−1} × (0, 1] 1

m be2h, b > 0 K0

7 0 6= 0 {1} × (0, 1) − 1
m be2h, b ∈ R× K0 o 〈R2〉

7 0 0 (1, 1) −1 be2h, b ∈ R× K0 o 〈R2〉
7 6= 0 0 {1} × (0,∞) m −2(m2 + 1) + be2h, b ∈ R K0 o 〈R〉
7 6= 0 0 {1} × (0,∞) −m −2(m2 − 1) + be2h, b ∈ R K0 o 〈R2〉

(h is a nonconstant function such that dh = −nω5 +mω7)

Remark 6.4. Vranceanu explicitly derived the following constant torsion cases:

• 9-dim. symmetry: ε = 1, ∆1 = 0, B = 0;

• 8-dim. symmetry:

1) ε = 1, ∆1 6= 0, ∆2 = 0, m = n = 0,
2) ε = 1, ∆1 6= 0, ∆2 = 0, n = ±m, B = −2(m2 ± 1).

Theorem 6.2. All contact-inequivalent generic hyperbolic structures for which:

1) K0 is a subgroup of the structure group, and

2) m, n are constants,

are displayed in Table 4.
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For ease of reference, we state below the structure equations explicitly for each of the cases
above. For the maximally symmetric cases, we state the structure equations for both the base
coframe {ω1, . . . , ω7} and the lifted coframe on Σ7 × GΓ. In the submaximally symmetric
cases, we only display structure equations for the lifted coframe. (One can obtain the structure
equations on the base simply by setting α̂1 = 0 and removing all hats from the remaining
variables.) In each case, we assume that GΓ and all parameters are as in Table 4. Note that dω̂i

are determined by (5.3). Following potentially some Lie algebra valued compatible absorption,
α̂ρ = αρ + λρ

iω̂
i, the structure equations dα̂ρ are determined by the integrability conditions

d2ω̂i = 0. (We only display the final results.)
For those coframes whose structure equations depend explicitly on the (nonconstant) func-

tion h, we have m 6= 0 (c.f. Table 4) and the symmetry algebra is determined by restricting to the
level set h = h0, where h0 is a constant. (Note: We will abuse notation and identify h ∈ C∞(Σ7)
with its pullback to the bundle.) On this level set, we have 0 = dh = −nω̂5 + mω̂7. We can
choose (the pullback of) {ω̂1, . . . , ω̂6, α̂1} as a coframe on each level set, and the corresponding
structure equations will have constant coefficients. Thus, these are Maurer–Cartan equations
for a local Lie group. A well-known fact is that the isomorphism type of the symmetry algebra
of a coframe determined in this way is independent of the level set chosen. Consequently, we
make the canonical choice and restrict to the level set h = 0 in these cases.

The structure constants for the (contact) symmetry algebra for each of the structures can
be read off from the structure equations for the coframe (or its pullback to the level set h = 0
if h appears explicitly). Only the symmetry algebras appearing in the 9-dimensional case will
be studied in further detail in this article.

6.1 Case 1: ∆1 = 0, B = 0

This branch consists of precisely all maximally symmetric generic hyperbolic equations.
Parameters: (ε,m) ∈ {±1} × (0, 1].
Base coframe:

dω1 = ω2 ∧ ω4 + ω3 ∧ ω6,

dω2 = ω4 ∧ ω5 + ω3 ∧ ω7 + ω2 ∧
(

3ε
2m

ω5 +
m

2
ω7

)
,

dω3 = ω6 ∧ ω7 + εω2 ∧ ω5 + ω3 ∧
(

ε

2m
ω5 +

3m
2
ω7

)
,

dω4 = εω5 ∧ ω6 − ω4 ∧
(

3ε
2m

ω5 +
m

2
ω7

)
, (6.5)

dω5 = mω5 ∧ ω7,

dω6 = −ω4 ∧ ω7 − ω6 ∧
(

ε

2m
ω5 +

3m
2
ω7

)
,

dω7 = − ε

m
ω5 ∧ ω7.

Lifted coframe on Σ7 ×GΓ:

dω̂1 = 2α̂1 ∧ ω̂1 + ω̂2 ∧ ω̂4 + ω̂3 ∧ ω̂6,

dω̂2 = α̂2 ∧ ω̂1 + α̂1 ∧ ω̂2 + ω̂4 ∧ ω̂5 + ω̂3 ∧ ω̂7 + ω̂2 ∧
(

3ε
2m

ω̂5 +
m

2
ω̂7

)
,

dω̂3 = mα̂2 ∧ ω̂1 + α̂1 ∧ ω̂3 + ω̂6 ∧ ω̂7 + εω̂2 ∧ ω̂5 + ω̂3 ∧
(

ε

2m
ω̂5 +

3m
2
ω̂7

)
,
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dω̂4 = α̂1 ∧ ω̂4 + εω̂5 ∧ ω̂6 − ω̂4 ∧
(

3ε
2m

ω̂5 +
m

2
ω̂7

)
,

dω̂5 = εmα̂2 ∧ ω̂4 +mω̂5 ∧ ω̂7,

dω̂6 = α̂1 ∧ ω̂6 − ω̂4 ∧ ω̂7 − ω̂6 ∧
(

ε

2m
ω̂5 +

3m
2
ω̂7

)
,

dω̂7 = α̂2 ∧ ω̂6 − ε

m
ω̂5 ∧ ω̂7,

dα̂1 =
1
2
α̂2 ∧ (ω̂4 +mω̂6),

dα̂2 = α̂2 ∧
(
α̂1 +

3
2

( ε
m
ω̂5 +mω̂7

))
.

6.2 Case 2: ∆2 = 0, B constant

This branch contains two families of equations with 8-dimensional symmetry. All coefficients in
both sets of structure equations are constants.

6.2.1 Case 2a: m = n = 0

dω̂1 = 2α̂1 ∧ ω̂1 + ω̂3 ∧ ω̂6 + ω̂2 ∧ ω̂4,

dω̂2 = α̂1 ∧ ω̂2 + ω̂4 ∧ ω̂5 + ω̂3 ∧ ω̂7,

dω̂3 = α̂1 ∧ ω̂3 + ω̂6 ∧ ω̂7 + εω̂2 ∧ ω̂5,

dω̂4 = α̂1 ∧ ω̂4 + εω̂5 ∧ ω̂6 + bω̂2 ∧ ω̂5 + εω̂2 ∧ ω̂7,

dω̂5 = 0,

dω̂6 = α̂1 ∧ ω̂6 − ω̂4 ∧ ω̂7 + εω̂3 ∧ ω̂5 + εbω̂3 ∧ ω̂7,

dω̂7 = 0,

dα̂1 = 0.

6.2.2 Case 2b: n = ε1m 6= 0 (and ε = 1)

dω̂1 = 2α̂1 ∧ ω̂1 + ω̂3 ∧ ω̂6 + ω̂2 ∧ ω̂4,

dω̂2 = α̂1 ∧ ω̂2 + ω̂4 ∧ ω̂5 + ω̂3 ∧ ω̂7 − ω̂2 ∧
(

3ε1m
2

ω̂5 − m

2
ω̂7

)
,

dω̂3 = α̂1 ∧ ω̂3 + ω̂6 ∧ ω̂7 + εω̂2 ∧ ω̂5 − ω̂3 ∧
(
ε1m

2
ω̂5 − 3m

2
ω̂7

)
,

dω̂4 = α̂1 ∧ ω̂4 + εω̂5 ∧ ω̂6 + (m2 + ε1)ω̂2 ∧
(
−2ω̂5 + ε1ω̂

7
)

+ ω̂4 ∧
(

3ε1m
2

ω̂5 − m

2
ω̂7

)
,

dω̂5 = mω̂5 ∧ ω̂7,

dω̂6 = α̂1 ∧ ω̂6 − ω̂4 ∧ ω̂7 + (m2 + ε1)ω̂3 ∧
(
ε1ω̂

5 − 2ω̂7
)

+ ω̂6 ∧
(
ε1m

2
ω̂5 − 3m

2
ω̂7

)
,

dω̂7 = ε1mω̂
5 ∧ ω̂7,

dα̂1 = 0.

6.3 Case 3: B nonconstant

This branch contains two families of equations with 7-dimensional symmetry. Note the case
∆1 = ∆2 = 0, ε = m = −n = 1 is contained in both families.



24 D. The

6.3.1 Case 3a: ∆1 = 0, B nonconstant
dω̂1 = 2α̂1 ∧ ω̂1 + ω̂2 ∧ ω̂4 + ω̂3 ∧ ω̂6,

dω̂2 = α̂1 ∧ ω̂2 + ω̂4 ∧ ω̂5 + ω̂3 ∧ ω̂7 + ω̂2 ∧
(

3ε
2m

ω̂5 +
m

2
ω̂7

)
,

dω̂3 = α̂1 ∧ ω̂3 + ω̂6 ∧ ω̂7 + εω̂2 ∧ ω̂5 + ω̂3 ∧
(

ε

2m
ω̂5 +

3m
2
ω̂7

)
,

dω̂4 = α̂1 ∧ ω̂4 + εω̂5 ∧ ω̂6 + be2hω̂2 ∧ ω̂5 − ω̂4 ∧
(

3ε
2m

ω̂5 +
m

2
ω̂7

)
,

dω̂5 = mω̂5 ∧ ω̂7,

dω̂6 = α̂1 ∧ ω̂6 − ω̂4 ∧ ω̂7 + εbe2hω̂3 ∧ ω̂7 − ω̂6 ∧
(

ε

2m
ω̂5 +

3m
2
ω̂7

)
,

dω̂7 = − ε

m
ω̂5 ∧ ω̂7,

dα̂1 = 0.

On the level set {h = 0}: In this case, ω̂7 = − ε
m2 ω̂

5.

dω̂1 = 2α̂1 ∧ ω̂1 + ω̂2 ∧ ω̂4 + ω̂3 ∧ ω̂6,

dω̂2 = α̂1 ∧ ω̂2 +
( ε
m
ω̂2 − ε

m2
ω̂3 + ω̂4

)
∧ ω̂5,

dω̂3 = α̂1 ∧ ω̂3 +
(
εω̂2 − ε

m
ω̂3 − ε

m2
ω̂6
)
∧ ω̂5,

dω̂4 = α̂1 ∧ ω̂4 +
(
bω̂2 − ε

m
ω̂4 − εω̂6

)
∧ ω̂5,

dω̂5 = 0,

dω̂6 = α̂1 ∧ ω̂6 − 1
m2

(bω̂3 − εω̂4 − εmω̂6) ∧ ω̂5,

dα̂1 = 0.

6.3.2 Case 3b: ∆2 = 0, B nonconstant
dω̂1 = 2α̂1 ∧ ω̂1 + ω̂3 ∧ ω̂6 + ω̂2 ∧ ω̂4,

dω̂2 = α̂1 ∧ ω̂2 + ω̂4 ∧ ω̂5 + ω̂3 ∧ ω̂7 − ω̂2 ∧
(

3ε1m
2

ω̂5 − m

2
ω̂7

)
,

dω̂3 = α̂1 ∧ ω̂3 + ω̂6 ∧ ω̂7 + ω̂2 ∧ ω̂5 − ω̂3 ∧
(
ε1m

2
ω̂5 − 3m

2
ω̂7

)
,

dω̂4 = α̂1 ∧ ω̂4 + ω̂5 ∧ ω̂6 + (−2(m2 + ε1) + be2h)ω̂2 ∧ ω̂5 + (ε1m2 + 1)ω̂2 ∧ ω̂7

+ ω̂4 ∧
(

3ε1m
2

ω̂5 − m

2
ω̂7

)
,

dω̂5 = mω̂5 ∧ ω̂7,

dω̂6 = α̂1 ∧ ω̂6 − ω̂4 ∧ ω̂7 + (ε1m2 + 1)ω̂3 ∧ ω̂5 + (−2(m2 + ε1) + be2h)ω̂3 ∧ ω̂7

+ ω̂6 ∧
(
ε1m

2
ω̂5 − 3m

2
ω̂7

)
,

dω̂7 = ε1mω̂
5 ∧ ω̂7,

dα̂1 = 0.

On the level set {h = 0}: In this case, ω̂7 = ε1ω̂
5.

dω̂1 = 2α̂1 ∧ ω̂1 + ω̂3 ∧ ω̂6 + ω̂2 ∧ ω̂4,



Contact Geometry of Hyperbolic Equations of Generic Type 25

dω̂2 = α̂1 ∧ ω̂2 + (ω̂4 + ε1ω̂
3 − ε1mω̂

2) ∧ ω̂5,

dω̂3 = α̂1 ∧ ω̂3 + ε1(ω̂6 + ε1ω̂
2 +mω̂3) ∧ ω̂5,

dω̂4 = α̂1 ∧ ω̂4 + (−ω̂6 + (−(m2 + ε1) + b)ω̂2 + ε1mω̂
4) ∧ ω̂5,

dω̂5 = 0,

dω̂6 = α̂1 ∧ ω̂6 + ε1(−ω̂4 + (−(m2 + ε1) + b)ω̂3 −mω̂6) ∧ ω̂5,

dα̂1 = 0.

7 The maximally symmetric case

7.1 A coframing in local coordinates

For the remainder of the paper we focus on the maximally symmetric generic hyperbolic struc-
tures. In Appendix E, we outline how Vranceanu arrived at an explicit coframe {ωi}7

i=1 on Σ7

given in local coordinates which satisfies the structure equations (6.5). In local coordinates
(x, y, z, p, q, u, v) on Σ7, the coframe is given by

ω1 = dz − pdx− qdy,

ω2 =
(
εm2

6
− mαv3

3u3
+
αv2

2u2

)
ω6 +

(
−εm

3
− αv3

3u3

)
ω4 − u−3/2(dp+ vdq),

ω3 =
(
εm2

6
− mαv3

3u3
+
αv2

2u2

)
ω4 +

(
−εm

3

3
− m2αv3

3u3
+
mαv2

u2
− αv

u

)
ω6

−mu−3/2(dp+ vdq) + u−1/2dq, (7.1)

ω4 = u3/2dx+m
√
u(dy − vdx), ω5 =

εm(du−mdv)
u

,

ω6 = −
√
u(dy − vdx), ω7 =

dv

u
,

which is valid on the open set u > 0, and where α = 1− εm4. The coordinates (x, y, z, p, q) are
identified with the corresponding coordinates on J1(R2,R).

Note that α in the case ∆1 = 0 is a relative contact invariant since α = −εm2
(
m2 − ε

m2

)
=

−εm2∆2, m 6= 0, and ∆2 is relative contact invariant. Since the contact-inequivalent structures
are parametrized by (ε,m) ∈ {±1} × (0, 1], then α ∈ [0, 1) ∪ (1, 2].

7.2 Normal forms

Let us determine how the coordinates (u, v) on Σ7 are related to the standard 2-jet coordinates
(x, y, z, p, q, r, s, t) ∈ J2(R2,R) . Let χ : R2 → Σ7 be any integral manifold of IF with indepen-
dence condition χ∗(dx ∧ dy) 6= 0. Without loss of generality, we identify the coordinates (x, y)
on R2 with the (x, y) coordinates on Σ7. The composition iF ◦χ is then an integral manifold of
the contact system C(2) and on R2 we can write

dp = rdx+ sdy, dq = sdx+ tdy, (7.2)

where for convenience p is identified with (iF ◦ χ)∗p, and similarly for the coordinates q, r, s, t.
Substituting (7.2) into the conditions 0 = χ∗ω2 = χ∗ω3, and extracting the coefficients of dx
and dy, we obtain the relations

0 = 6vs+ 6r + 2εmu3 − 3εm2u2v − αv3,

0 = 2vt+ 2s+ εm2u2 + αv2,
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0 = −6su+m(6sv + 6r − αv3) + 3vεm3u2 + 3αv2u− εm2u3,

0 = −2tu+m(2tv + 2s+ αv2)− εm3u2 − 2αvu,

or equivalently, using the coordinate w = u−mv instead of u, we have

r = −1
3
(εmw3 + v3), s = −1

2
(εm2w2 − v2), t = −(εm3w + v). (7.3)

Thus, our PDE is of the form

F (r, s, t) = 0,

and we have a nondegenerate parametrization iF : Σ7 → J2(R2,R) (for u = w +mv > 0).
Consider the case α = 0, i.e. (ε,m) = (1, 1). In this case, it is straightforward to eliminate

both parameters w, v and obtain the equation

rt− s2 − t4

12
= 0. (7.4)

Now consider the general case α 6= 0. Let us write u = − 1
ũ , v = ṽ and rewrite (7.3) as

ũt = εm3 − αũṽ,

ũ2s = −1
2
εm2 − εm3ũṽ +

1
2
α(ũṽ)2 = −εm

2

2α
+
ũ2t2

2α
,

ũ3r =
1
3
εm+ εm2ũṽ + εm3(ũṽ)2 − 1

3
α(ũṽ)3 =

m(ε+m4)
3α2

− εm2ũt

α2
+
ũ3t3

3α2
,

and so using ν = (εm3 − αũṽ)−1 as a new parameter, we arrive at

2αs− t2 = −εm2ν2t2, 3α2r = m(ε+m4)ν3t3 − 3εm2ν2t3 + t3.

Eliminating the parameter ν, we obtain

(ε+m4)2(2αs− t2)3 + εm4(3α2r − 6αst+ 2t3)2 = 0. (7.5)

Finally, use the scaling x̄ = 1
αx, which induces

(r̄, s̄, t̄) =
(
α2r, αs, t

)
to eliminate α from (7.5). Dropping bars, and letting a = m4 we obtain

(ε+ a)2
(
2s− t2

)3 + εa
(
3r − 6st+ 2t3

)2 = 0. (7.6)

Note that in the case ε = 1 considered by Vranceanu, the st term has a missing factor of 2.

Theorem 7.1. The contact-equivalence classes of maximally symmetric generic hyperbolic PDE
are parametrized by (ε, a) ∈ {±1} × (0, 1]. Normal forms from each equivalence class are given
by (7.4) in the case (ε, a) = (1, 1) and (7.6) otherwise.

Remark 7.1. Letting ε = a = 1 in (7.6), we have F = 4
(
2s− t2

)3 +
(
3r − 6st+ 2t3

)2 = 0, and

∆ = FrFt −
1
4
Fs

2 = −36(2s− t2)F.

On the equation manifold (and hence on Σ7), we have ∆ = 0 and consequently, this limiting
equation is parabolic.
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7.3 Nine-dimensional symmetry algebras

The calculations leading to (7.3) are quite long and consequently to confirm the validity of (7.3)
(and in turn, Theorem 7.1), it is useful to describe the nine-dimensional (contact) symmetry
algebra explicitly for the normal forms given in the previous section. Calculating the symmetry
algebra is a nontrivial task however – the standard Lie method of calculating symmetries (by
working in J2(R2,R) on the equation locus) is highly impractical owing to the complexity of the
equations. In Appendix F, we describe how the symmetry algebra was found by an alternative
method. In order to give a unified description of the symmetry algebras, we work with the
normal forms (7.4) and (7.5) as these arise from the parametrization (7.3).

Proposition 7.1. Any equation of the form F (r, s, t) = 0 admits the symmetries

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂z
, X4 = x

∂

∂z
, X5 = y

∂

∂z
,

X6 = x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
.

The equations (7.4) and (7.5) have the following additional symmetries:

X7 = y
∂

∂y
+ 3z

∂

∂z
, X8 = x

∂

∂y
− α

2
y2 ∂

∂z
, X9 = x2 ∂

∂x
+ xy

∂

∂y
+
(
xz − α

6
y3
) ∂

∂z
.

In particular, all of these symmetries are projectable point symmetries.

(Recall that a point symmetry here is a vector field on J0(R2,R). A point symmetry is
projectable if it projects to a vector field on the base R2.)

The normalization of (7.5) to (7.6) is carried out by letting x̄ = 1
αx from which we get:

Corollary 7.1. The generic hyperbolic equation (7.6) has symmetry generators X1, . . . , X6 as
in Proposition 7.1 as well as

X7 = y
∂

∂y
+ 3z

∂

∂z
, X8 = x

∂

∂y
− 1

2
y2 ∂

∂z
, X9 = x2 ∂

∂x
+ xy

∂

∂y
+
(
xz − 1

6
y3

)
∂

∂z
.

We will denote the corresponding abstract Lie algebras as gα and express their commutator
relations in a canonical basis. Let

(e1, e2, e3, e4, e5, e6, e7, e8, e9) = (X2, X3, X4, X5,−X8, X7, X1,−2X6 +X7,−X9).

The commutator relations in this basis are

e1 e2 e3 e4 e5 e6 e7 e8 e9

e1 · · · e2 αe4 e1 · −e1 e5
e2 · · · · 3e2 · −e2 −e3
e3 · · · 3e3 −e2 e3 ·
e4 · e3 2e4 · · ·
e5 · e5 e1 e5 ·
e6 · · · ·
e7 · −2e7 e8
e8 · −2e9
e9 ·
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In the case α 6= 0, redefining

(ē2, ē3, ē4) = (αe2, αe3, αe4)

and dropping the bars, we have the same commutator relations as above except α has been
normalized to 1. Thus, in the case α 6= 0, all symmetry algebras are isomorphic. (This is also
obvious from the fact that the symmetry generators in Corollary 7.1 are independent of α.)

Let g1 denote the abstract symmetry algebra in the case α 6= 0, although this is a slight abuse
of notation since α ∈ (0, 1) ∪ (1, 2] in this case. We calculate for g = gδ (δ = 0, 1),

Killing form: κ = diag

0, 0, 0, 0, 0, 24,

 0 0 6
0 12 0
6 0 0


 ,

derived subalgebra: g(1) = 〈e1, e2, e3, e4, e5, e7, e8, e9〉,
radical: r = (g(1))⊥κ = 〈e1, e2, e3, e4, e5, e6〉,
(semi-simple) Levi factor: gss = 〈e7, e8, e9〉 ∼= sl(2,R),
Levi decomposition: g = r o gss,

nilradical : n = 〈e1, e2, e3, e4, e5〉,
derived series of r : r(1) = n, r(2) = 〈e2, e3, δe4〉, r(∞) = r(3) = 0,

lower central series of r : r∞ = r1 = n.

An isomorphism between two Lie algebras must restrict to an isomorphism of their radicals
and the corresponding derived flags of the radicals. Since r(2) is two-dimensional for g0 and
three-dimensional for g1, then we must have g0 6∼= g1.

Theorem 7.2. The contact symmetry algebra of any maximally symmetric generic hyperbolic
PDE is:

1) nine-dimensional,

2) contact-equivalent to a (projectable) point symmetry algebra.

Moreover, there are exactly two isomorphism classes of Lie algebras (represented by g0 and g1)
that arise as such symmetry algebras.

We remark that Mubarakzjanov has classified all five-dimensional real solvable Lie algebras
(labelled by g5,∗) [20] and all six-dimensional non-nilpotent real solvable Lie algebras (labelled
by g6,∗) [21]. The nilradicals of g0 and g1 can be identified in the former classification as:

n0
∼= g5,1 : (ē1, ē2, ē3, ē4, ē5) = (e2,−e3, e1, e5, e4),

n1
∼= g5,3 : (ē1, ē2, ē3, ē4, ē5) = (e3, e4,−e2, e1, e5).

The radicals of g0 and g1 can be identified in the latter classification as

r0 ∼= g6,54 : (ē1, ē2, ē3, ē4, ē5, ē6) =
(
e2,−e3, e1, e5, e4,

1
3
e6

)
, param.: (λ, γ) =

(
1,

2
3

)
,

r1 ∼= g6,76 : (ē1, ē2, ē3, ē4, ē5, ē6) =
(
e3, e4,−e2, e1, e5,

1
3
e6

)
, param.: h = 1.

Let us be more explicit about the direct verification of Proposition 7.1 from the point of view
of external symmetries, internal symmetries, and symmetries of the lifted coframe on Σ7 ×H.
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7.3.1 External symmetries

Given any vector field X on J0(R2,R), there is a corresponding prolonged vector field X(2)

on J2(R2,R). This prolongation is uniquely determined by the condition that LX(2)C(2) ⊂ C(2),
where C(2) is the contact system on J2(R2,R). See (F.5) for the standard prolongation formula.
For the vector fields in Proposition 7.1, we have

X
(2)
1 = X1, X

(2)
2 = X2, X

(2)
3 = X3,

X
(2)
4 = X4 +

∂

∂p
, X

(2)
5 = X5 +

∂

∂q
, X

(2)
6 = X6 + p

∂

∂p
+ q

∂

∂q
,

X
(2)
7 = X7 + 3p

∂

∂p
+ 2q

∂

∂q
+ 3r

∂

∂r
+ 2s

∂

∂s
+ t

∂

∂t
,

X
(2)
8 = X8 − q

∂

∂p
− αy

∂

∂q
− 2s

∂

∂r
− t

∂

∂s
− α

∂

∂t
,

X
(2)
9 = X9 + (z − xp− yq)

∂

∂p
− α

2
y2 ∂

∂q
− (3xr + 2ys)

∂

∂r
− (2xs+ yt)

∂

∂s
− (xt+ αy)

∂

∂t
.

For (7.4) or (7.5), we verify the external symmetry condition

LXi
(2)F = 0 whenever F = 0.

Clearly this is satisfied by X
(2)
i , i = 1, . . . , 6 since they have no components in the ∂

∂r , ∂
∂s ,

∂
∂t

direction and since F = F (r, s, t) for (7.4) and (7.5). For the remaining vector fields we have

(7.4) : L
X

(2)
7

F = 4F, L
X

(2)
8

F = 0, L
X

(2)
9

F = −4xF,

(7.5) : L
X

(2)
7

F = 6F, L
X

(2)
8

F = 0, L
X

(2)
9

F = −6xF,

and so the external symmetry condition is satisfied.

7.3.2 Internal symmetries

The symmetry generators X(2)
i are all tangent to the equation manifold F = 0, so they induce

(via the parametrization (7.3)) corresponding vector fields Zi on Σ7. Letting X(1)
i = (π2

1)∗X
(2)
i

denote the projection onto J1(R2,R), and identifying the coordinates (x, y, z, p, q) on J1(R2,R)
with corresponding coordinates on Σ7, we have

Zi = X
(1)
i , i = 1, . . . , 6, Z7 = X

(1)
7 + w

∂

∂w
+ v

∂

∂v
,

Z8 = X
(1)
8 +

∂

∂v
−m

∂

∂w
, Z9 = X

(1)
9 − (my + xw)

∂

∂w
+ (y − xv)

∂

∂v
,

with u = w+mv. One can verify directly that these vector fields satisfy the internal symmetry
condition

LZiIF ⊂ IF ,

where IF = 〈ω1, ω2, ω3〉 is given by the explicit coframing (7.1).

7.3.3 Symmetries of the lifted coframe on Σ7 × H ′, where H ′ = H0 ooo 〈R2〉

The lifted coframe ω̂ = {ω̂1, . . . , ω̂7, α̂1, α̂2} on Σ7 ×H ′ is parametrized by

ω̂1 = a1
2ω1, ω̂2 = a1ω

2 + a1a2ω
1, ω̂3 = a1ω

3 +ma1a2ω
1,
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ω̂4 = a1ω
4, ω̂5 = ω5 + εma2ω

4, ω̂6 = a1ω
6, ω̂7 = ω7 + a2ω

6,

α̂1 =
da1

a1
+

a2

2a1
(ω̂4 +mω̂6), α̂2 =

da2

a1
+

3a2

2a1

( ε
m
ω̂5 +mω̂7

)
− a2

2

2a1
2
(ω̂4 +mω̂6),

and by construction ω̂ is an {e}-structure on Σ7×H ′, so that a symmetry is by definition a map
Φ : Σ7 ×H ′ → Σ7 ×H ′ such that

Φ∗ω̂i = ω̂i, i = 1, . . . , 9,

with infinitesimal analogue

LẐω̂i = 0, i = 1, . . . , 9.

Explicitly, these lifted vector fields are given by

Ẑi = Zi, i = 1, . . . , 5, Ẑ6 = Z6 − a1
∂

∂a1
− a2

∂

∂a2
, Ẑ7 = Z7 −

3a1

2
∂

∂a1
− 3a2

2
∂

∂a2
,

Ẑ8 = Z8, Ẑ9 = Z9 −
xa1

2
∂

∂a1
+
(

1
(w +mv)3/2

− xa2

2

)
∂

∂a2
.

7.4 Ampère contact transformations and 3zxx(zyy)
3 + 1 = 0

After deriving the normal form

rt− s2 − t4

12
= 0, (7.7)

which appeared in (7.4), Vranceanu remarks that if one makes an Ampère contact transformation,
then (7.7) can be reduced to the simpler form

rt3 +
1
12

= 0. (7.8)

The notion of an Ampère contact transformation is never defined in Vranceanu’s paper and does
not appear to be common terminology in the literature. This terminology is, however, referred
to briefly in recent work by Stormark (see page 275 in [24]). Namely, Stormark defines it as the
genuine (i.e. non-point) contact transformation Φ of J1(R2,R) given by

(x̄, ȳ, z̄, p̄, q̄) = (p, y, z − px,−x, q)

which is clearly contact since

dz̄ − p̄dx̄− q̄dȳ = d(z − px) + xdp− qdy = dz − pdx− qdy.

This is essentially akin to the Legendre transformation from Hamiltonian mechanics, but only
acting with respect to the x, z, p variables. For our purposes, we consider the corresponding
Legendre-like transformation acting with respect to y, z, q variables, namely

(x̄, ȳ, z̄, p̄, q̄) = (x, q, z − qy, p,−y) .

The prolongation of this transformation to J2(R2,R) satisfies

dp̄− r̄dx̄− s̄dȳ = dp− r̄dx− s̄dq ≡ rdx+ sdy − r̄dx− s̄(sdx+ tdy) mod C(2)

≡ (r − ss̄− r̄)dx+ (s− ts̄)dy mod C(2),

dq̄ − s̄dx̄− t̄dȳ = −dy − s̄dx− t̄dq ≡ −dy − s̄dx− t̄(sdx+ tdy) mod C(2)
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≡ −(s̄+ st̄)dx− (1 + tt̄)dy mod C(2),

and hence

(r̄, s̄, t̄) =
(
rt− s2

t
,
s

t
,−1

t

)
.

Consequently

0 = rt− s2 − t4

12
= − r̄

t̄
− 1

12t̄4
= − 1

t̄4

(
r̄t̄3 +

1
12

)
⇒ r̄t̄3 +

1
12

= 0.

By applying the subsequent scaling x = 1
2 x̄ (and hence (r, s, t) = (4r̄, 2s̄, t̄)), we are led to the

equation

3rt3 + 1 = 0, (7.9)

which was investigated by Goursat [12] who recognized its Darboux integrability.
Since (7.9) is contact-equivalent to (7.7), it is clear that (7.9) is hyperbolic of generic type

with ∆1 = ∆2 = 0 and ε = a = 1. The standard Lie algorithm to calculate symmetries can be
applied for this equation in a straightforward manner. Its contact symmetry algebra consists of
(projectable) point symmetries X1, . . . , X6 as in Proposition 7.1 as well as

X7 = xy
∂

∂z
, X8 = 2y

∂

∂y
+ 3z

∂

∂z
, X9 = x2 ∂

∂x
+ xz

∂

∂z
. (7.10)

We note that the vector fields X7, X8, X9 have prolongations

X
(2)
7 = X7 + y

∂

∂p
+ x

∂

∂q
+

∂

∂s
,

X
(2)
8 = X8 + 3p

∂

∂p
+ q

∂

∂q
+ 3r

∂

∂r
+ s

∂

∂s
− t

∂

∂t
,

X
(2)
9 = X9 + (z − xp)

∂

∂p
+ xq

∂

∂q
− 3xr

∂

∂r
+ (q − xs)

∂

∂s
+ xt

∂

∂t
.

7.5 Darboux integrability

Definition 7.1. For a hyperbolic PDE F = 0, IF is said to be Darboux-integrable (at level
two) if each of C(IF , dM1) and C(IF , dM2) contains a completely integrable subsystem of rank
two that is independent from IF .

Recall that for our adapted coframe as in Theorem 3.4, we have

C(IF , dM1)(2) = {ω4, ω5} and C(IF , dM2)(2) = {ω6, ω7}.

Theorem 7.3. Given a generic hyperbolic PDE F = 0 with (maximal) 9-dimensional symmetry
group, the second derived systems C(IF , dM1)(2) and C(IF , dM2)(2):

1) are completely integrable, and hence IF is Darboux integrable, and

2) contain rank one completely integrable subsystems.

Proof. Referring to the maximally symmetric structure equations (6.5), we have that

dω4 ≡ dω5 ≡ 0 mod C(IF , dM1)(2), dω6 ≡ dω7 ≡ 0 mod C(IF , dM2)(2).

Hence, the rank two systems C(IF , dMi)(2), i = 1, 2 are complete integrable and IF = {ω1, ω2,
ω3} is Darboux integrable. Moreover, since

dω5 = mω5 ∧ ω7, dω7 = − ε

m
ω5 ∧ ω7,

then the rank one subsystems {ω5} and {ω7} are also completely integrable. �
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Abstractly, Darboux’s integration method for these systems proceeds as follows. Darboux
integrability of IF implies the existence of completely integrable subsystems Ji ⊂ C(IF , dMi).
Applying the Frobenius theorem to each subsystem Ji, there exist local functions fi, gi called
Riemann invariants such that

J1 = {df1, dg1} ⊂ C(IF , dM1), J2 = {df2, dg2} ⊂ C(IF , dM2).

If ϕ1, ϕ2 are arbitrary functions, then restricting to any submanifold determined by

S : g1 = ϕ1(f1), g2 = ϕ2(f2),

the structure equations (2.7) become

dω̃i ≡ 0 mod ĨF , i = 1, 2, 3,

where ĨF = {ω̃1, ω̃2, ω̃3} is the restriction of IF to S. Hence, ĨF is completely integrable, and so
there exist local functions h1, h2, h3 on S such that

ĨF = {dh1, dh2, dh3}.

Hence, these functions h1, h2, h3 are first integrals of ĨF , and together with the constraint S
determine first integrals of IF .

Explicitly, from our parametrization of the coframe {ωi}7
i=1 on Σ7 (c.f. (7.1)), we have:

ω4 = u3/2dx+m
√
u(dy − vdx) =

√
u(wdx+mdy) =

√
u(d(my + wx)− xdw),

ω5 =
εm

u
(du−mdv) =

εm

u
dw,

ω6 = −
√
u(dy − vdx) = −

√
u(d(y − vx) + xdv),

ω7 =
dv

u
,

and so

C(IF , dM1)(2) = {ω4, ω5} = {dw, d(my + wx)},
C(IF , dM2)(2) = {ω6, ω7} = {dv, d(y − vx)},

where w = u−mv. Thus,

w, my + wx, and v, y − vx

are Riemann invariants and, in principle, Darboux’s integration method may be applied to find
solutions or first integrals to the original equation. In [11, Corollary 5.9] Gardner–Kamran
asserted that hyperbolic equations of generic type do not have Riemann invariants. As first
remarked by Eendebak [8], this statement is incorrect and the equation 3rt3 + 1 = 0 is a coun-
terexample. Moreover, as described above, all maximally symmetric generic hyperbolic equations
have Riemann invariants.

We refer the reader to page 130 in Goursat [12] for the implementation of Darboux’s method
to the equation 3rt3+1 = 0. The implementation of Darboux’s method in the case (ε, a) 6= (1, 1)
appears to be computationally quite difficult.

Let us comment on Darboux integrability for the submaximally symmetric cases described
in Table 4. Recall that the structure equations listed in Sections 6.2 and 6.3 are those for the
lifted coframe. To obtain the structure equations for the corresponding base coframe, we simply
set α̂1 = 0 and remove all hats. For all these cases we have either that

C(IF , dM1)(3) = {ω4, ω5}, C(IF , dM2)(3) = {ω6, ω7}
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and hence IF is Darboux integrable, or

C(IF , dM1)(3) = {ω5}, C(IF , dM2)(3) = {ω7}

and IF is not Darboux integrable. We list the possibilities in Table 5. Moreover, for these sub-
maximally symmetric cases, all which are Darboux integrable have one-dimensional subsystems
of C(IF , dM1)(2) and C(IF , dM2)(2) which are completely integrable (namely, {ω5} and {ω7}
respectively). Thus, the converse of Theorem 7.3 is clearly false.

Table 5. Darboux integrability of submaximally symmetric generic hyperbolic PDE.

Case Darboux integrable?

2a no
2b no in general; yes if (m, ε1) = (1,−1)
3a yes
3b no in general; yes if (m, ε1) = (1,−1)

8 Concluding remarks

Let us summarize some of the main results of this paper:

• We derived relative invariants I1, I2 (see Theorem 3.3) given parametrically in terms of
an arbitrary hyperbolic equation F (x, y, z, zx, zy, zxx, zxy, zyy) = 0. Their vanishing/non-
vanishing distinguishes the three types of hyperbolic equations.

• In the generic case, the ε contact invariant is given parametrically as ε = sgn(I1I2) = ±1.

• In the abstract analysis of the generic hyperbolic structure equations, we identified relative
contact invariants m, n, B and ∆1 = mn + ε, ∆2 = m2 − εn2 which played a key role
in the classification of various generic hyperbolic structures admitting nine, eight, and
seven-dimensional symmetry along with the corresponding complete structure equations.

• Integration of maximally symmetric structure equations, leading to normal forms for all
contact-equivalence classes of maximally symmetric generic hyperbolic equations.

• Nine-dimensional symmetry algebras for these normal forms for generic hyperbolic equa-
tions are given explicitly. There are exactly two such nonisomorphic algebras.

• For any maximally symmetric generic hyperbolic equation, the second derived systems of
C(IF , dMi), i = 1, 2 are rank 2 and completely integrable. Hence, all maximally symmetric
generic hyperbolic equations are Darboux integrable.

We conclude with some possible points for future investigation:

1. Maximally symmetric equations: (1) Do “simpler” normal forms exist? (2) Implement
Darboux’s integration method in the general case. (3) Investigate the existence of conser-
vation laws. (4) Study the local solvability of these equations.

2. Submaximally symmetric equations: Integrate the structure equations given in Sections 6.2
and 6.3 and find normal forms for the corresponding PDE equivalence classes. Address
similar questions as above.

3. The submaximally symmetric structures that we have derived here (see Table 4 and Sec-
tions 6.2 and 6.3) share the common property thatm, n are constants andK0 is a subgroup
of the structure group. Are there any other reductions of the initial 3-dimensional structure
group that lead to valid structures?
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4. In this article, we have carried out a detailed analysis of the generic (7-7) case. Hyperbolic
equations of Goursat (6-7) type are equally poorly understood. Some preliminary results
on structure equations were stated in [11], but to our knowledge, Vranceanu’s student
Petrescu [23] has written the only paper which has made a more detailed investigation into
the contact geometry of the Goursat class. Recasting Petrescu’s results for a contemporary
audience and building upon his work would make for a natural sequel to our paper.

A Hyperbolic structure equations

We give here the details of the proof of Theorem 3.1 starting from the preliminary hyperbolic
structure equations (2.7). The main details of this proof have appeared in [25] and [11].

Note A.1. In this section, we will define changes in the coframe basis using a “bar”, e.g.
ω̄i = gi

jω
j , but we make the convention that the bar is immediately dropped afterwards, i.e. so

that ωi is redefined to be ω̄i.

Proof of Theorem 3.1. From the preliminary hyperbolic structure equations (2.7), we have

dω1 ≡ ω3 ∧
(
a4ω

4 + a5ω
5 + a6ω

6 + a7ω
7
)

mod M1, (A.1)

but since

0 = d2ω1 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω5 = a4ω
4 ∧ ω6 ∧ ω7 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω5,

0 = d2ω1 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω4 = a5ω
5 ∧ ω6 ∧ ω7 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω4,

then a4 = a5 = 0. Assuming a6 = a7 = 0, then dω1 ≡ 0 mod M1, which would imply that
dω1 ∧ dω1 ∧ ω1 = 0, i.e. the Darboux rank ρ of I(1)

F = {ω1} would be ρ ≤ 1. However, since
ω1 = i∗F (dz − pdx − qdy) ∈ I

(1)
F and dω1 = i∗F (dx ∧ dp + dy ∧ dq), then dω1 ∧ dω1 ∧ ω1 =

i∗F (dx∧ dp∧ dy ∧ dq ∧ dz) 6= 0 since iF is a nondegenerate parametrization. Hence ρ ≥ 2 and we
get a contradiction. Thus, a6ω

6 + a7ω
7 6= 0.

Choose A, B such that Ba6 −Aa7 = 1, and redefine

ω̄6 = a6ω
6 + a7ω

7, ω̄7 = Aω6 +Bω7.

This preserves both the dω2 and dω3 structure equations (since ω̄6 ∧ ω̄7 = ω6 ∧ ω7). We have

dω1 ≡ ω3 ∧ ω6, dω2 ≡ ω4 ∧ ω5 + ω3 ∧

(
7∑

k=4

bkω
k

)
mod M1.

Redefining (ω̄2, ω̄4, ω̄5) = (ω2 − b6ω
1, ω4 + b5ω

3, ω5 − b4ω
3), we may without loss of generality

take b4 = b5 = b6 = 0. (Note that the dω3 equation is not affected.) Setting b7 = U1, we have

dω1 ≡ ω3 ∧ ω6, dω2 ≡ ω4 ∧ ω5 + U1ω
3 ∧ ω7 mod M1. (A.2)

A similar argument modulo {ω1, ω3} and for the M2 characteristic system yields

dω1 ≡ ω2 ∧ ω4, dω3 ≡ ω6 ∧ ω7 + U2ω
2 ∧ ω5 mod M2, (A.3)

and we emphasize that ωi in (A.2) are the same as ωi in (A.3). This implies

dω1 ≡ ω2 ∧ ω4 + ω3 ∧ ω6 +Wω2 ∧ ω3 mod {ω1}.

We calculate

0 = d2ω2 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω4 = dω4 ∧ ω5 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω4,

0 = d2ω1 ∧ ω1 ∧ ω3 ∧ ω4 ∧ ω5 = −ω2 ∧ (dω4 +Wω6 ∧ ω7) ∧ ω1 ∧ ω3 ∧ ω4 ∧ ω5.

The first equation implies that γ4
67 = 0 (c.f. as defined in (2.8)) and hence the second equation

implies W = 0. �
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B Principal contact invariants for hyperbolic equations

Here we derive the contact invariants stated in Theorem 3.3. We give a brief outline of the
computations to follow. Ultimately, we are looking for a coframe satisfying the hyperbolic
structure equations given in (3.1). Beginning with the pullback of the basis θ1, θ2, θ3 of the
contact ideal on J2(R2,R), we find a canonical basis θ̃1, θ̃2, θ̃3 whose pullback brings 〈·, ·〉7
into the Witt normal form. This yields the basis ω̃1, . . . , ω̃7 in Lemma B.2. A subsequent
normalization in (B.5) defines the basis ω1, . . . , ω7 which satisfies (3.1) and from which (multiples
of) U1 and U2 can be extracted in parametrized form. The final calculation of these parametrized
functions is performed in the ambient space J2(R2,R), essentially using the simple fact given
in (2.4). Pulling these back by iF yields the desired invariants. We begin with the following
lemma.

Lemma B.1. Given a symmetric bilinear form represented by

Q =

(
a −b
−b c

)
with ∆ = det(Q) = ac− b2 < 0, (B.1)

the change of basis matrix

P =

(
λ+ c

a λ+

)
, λ+ = b+ sgn(b)

√
|∆|, sgn(x) =

{
1, x ≥ 0,

−1, x < 0,

brings Q, up to a nonzero scaling, into the Witt normal form, i.e.

P tQP = ρ

(
0 1
1 0

)
, ρ 6= 0. (B.2)

Proof. Let v1, v2 be the columns of P . Note that λ± = b ± sgn(b)
√
|∆| are roots of the

polynomial λ2 − 2bλ + ac = 0 and that λ+ 6= 0. Hence, v1, v2 are nonzero and it is a straight-
forward verification that v1 and v2 are null vectors (i.e. vt

1Qv1 = vt
2Qv2 = 0). They are linearly

independent since det(P ) = 2
√
|∆|(|b|+

√
|∆|) 6= 0. Finally, they have nonzero scalar product

ρ = vt
1Qv2 = 2∆λ+ 6= 0. �

We apply this elementary result to the 2 × 2 submatrix appearing in the matrix in (2.5)
representing the bilinear form 〈·, ·〉7,(

Ft −1
2Fs

−1
2Fs Fr

)

with respect to the basis θ2, θ3, and arrive at the canonical basis

θ̃2 = λ+θ
2 + Ftθ

3, θ̃3 = Frθ
2 + λ+θ

3.

Without loss of generality, we assume that Fs ≥ 0. (If not, consider the equation −F = 0
which defines the same locus as F = 0.) In the notation of the previous lemma, we have

∆ = FtFr −
1
4
F 2

s < 0, λ± =
Fs

2
±
√
|∆|.

Note that λ+ > 0, but λ− may vanish. Both λ± are roots of the polynomial

λ2 − Fsλ+ FtFr = 0.
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Furthermore, let us note the identities

λ+λ− = FtFr, λ+ + λ− = Fs, λ2
+ − FtFr = 2λ+

√
|∆|.

We also define the total derivative operators

Dx =
∂

∂x
+ p

∂

∂z
+ r

∂

∂p
+ s

∂

∂q
, Dy =

∂

∂y
+ q

∂

∂z
+ s

∂

∂p
+ t

∂

∂q
.

Lemma B.2. Suppose that Fs ≥ 0. Let ω̃i = i∗F θ̃
i, where

θ̃1 = dz − pdx− qdy, θ̃2 = λ+θ
2 + Ftθ

3, θ̃3 = Frθ
2 + λ+θ

3,

θ̃4 = dx− Fr

λ+
dy, θ̃5 = λ+dr + Ftds+DxFdy,

θ̃6 = dy − Ft

λ+
dx, θ̃7 = λ+dt+ Frds+DyFdx.

Then ω̃ = {ω̃i}7
i=1 is a (local) coframe on Σ7 satisfying the structure equations

dω̃1 ≡ ρ(ω̃2 ∧ ω̃4 + ω̃3 ∧ ω̃6) + W̃ ω̃2 ∧ ω̃3 mod I(1)
F ,

dω̃2 ≡ ω̃4 ∧ ω̃5 + ω̃3 ∧ ρ i∗F Ξ1 mod M1,

dω̃3 ≡ ω̃6 ∧ ω̃7 + ω̃2 ∧ ρ i∗F Ξ2 mod M2,

where

IF = {ω̃1, ω̃2, ω̃3}, I
(1)
F = {ω̃1}, ρ = i∗F

(
−1

2
√
|∆|

)
, and

Ξ1 = dFt −
Ft

λ+
dλ+ −

(
Fq −

FtFp

λ+

)
dy, Ξ2 = dFr −

Fr

λ+
dλ+ −

(
Fp −

FrFq

λ+

)
dx.

Proof. We need to show that ω̃ is linearly independent, or equivalently ω̃1 ∧ · · · ∧ ω̃7 6= 0.
By (2.4), it suffices to show that θ̃1 ∧ · · · ∧ θ̃7 ∧ dF 6= 0. We calculate

θ̃1 ∧ θ̃2 ∧ θ̃3 ∧ θ̃4 ∧ θ̃6 = 4|∆|dz ∧ dp ∧ dq ∧ dx ∧ dy (B.3)

and so

θ̃1 ∧ · · · ∧ θ̃7 ∧ dF
= 4|∆|dz ∧ dp ∧ dq ∧ dx ∧ dy ∧ (λ+dt+ Frds) ∧ (λ+dr + Ftds) ∧ (Frdr + Fsds+ Ftdt)

= 4|∆|det

 0 Fr λ+

λ+ Ft 0
Fr Fs Ft


VolJ2(R2,R)︷ ︸︸ ︷

dz ∧ dp ∧ dq ∧ dx ∧ dy ∧ dr ∧ ds ∧ dt

= 4|∆|λ+(−2FtFr + λ+Fs)VolJ2(R2,R) = 4|∆|λ2
+(−2λ− + Fs)VolJ2(R2,R)

= 8|∆|3/2λ2
+VolJ2(R2,R) 6= 0.

Thus, ω̃ is a coframe on Σ7. Let us verify the structure equations. Note that

i∗F θ
2 =

1
λ2

+ − FtFr

(
λ+ω̃

2 − Ftω̃
3
)
, i∗F θ

3 =
1

λ2
+ − FtFr

(
−Frω̃

2 + λ+ω̃
3
)
,

i∗Fdx =
λ2

+

λ2
+ − FtFr

(
ω̃4 +

Fr

λ+
ω̃6

)
, i∗Fdy =

λ2
+

λ2
+ − FtFr

(
Ft

λ+
ω̃4 + ω̃6

)
,
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where all coefficients on the right side are pulled back by i∗F to Σ7 (i.e. evaluated on F = 0)

dω̃1 = i∗F (dx ∧ dp+ dy ∧ dq) = i∗F (dx ∧ (θ2 + sdy) + dy ∧ (θ3 + sdx))

= i∗F (dx ∧ θ2 + dy ∧ θ3).

Mod M1, we have

dω̃1 ≡
λ2

+

(λ2
+ − FtFr)2

((
ω̃4 +

Fr

λ+
ω̃6

)
∧
(
−Ftω̃

3
)

+
(
Ft

λ+
ω̃4 + ω̃6

)
∧
(
λ+ω̃

3
))

≡
λ2

+

(λ2
+ − FtFr)2

(
λ+ −

FtFr

λ+

)
ω̃6 ∧ ω̃3 ≡ λ+

λ2
+ − FtFr

ω̃6 ∧ ω̃3 ≡ −1
2
√
|∆|

ω̃3 ∧ ω̃6.

Mod M2, we have

dω̃1 ≡
λ2

+

(λ2
+ − FtFr)2

((
ω̃4 +

Fr

λ+
ω̃6

)
∧
(
λ+ω̃

2
)

+
(
Ft

λ+
ω̃4 + ω̃6

)
∧
(
−Frω̃

2
))

≡
λ2

+

(λ2
+ − FtFr)2

(
λ+ −

FtFr

λ+

)
ω̃4 ∧ ω̃2 ≡ λ+

λ2
+ − FtFr

ω̃4 ∧ ω̃2 ≡ −1
2
√
|∆|

ω̃2 ∧ ω̃4.

Now examine dω̃2 and dω̃3. Note the relation

0 = i∗F (dF ) = i∗F (Fxdx+ Fydy + Fzdz + Fpdp+ Fqdq + Frdr + Fsds+ Ftdt)

= i∗F (Fxdx+ Fydy + Fz(θ1 + pdx+ qdy) + Fp

(
θ2 + rdx+ sdy

)
+ Fq(θ3 + sdx+ tdy)

+ Frdr + Fsds+ Ftdt)

= i∗F (DxFdx+DyFdy + Frdr + Fsds+ Ftdt+ Fzθ
1 + Fpθ

2 + Fqθ
3) (B.4)

and so,

0 ≡ i∗F

(
DxFdx+DyFdy + Frdr + Fsds+ Ftdt+

(
Fq −

FtFp

λ+

)
θ3

)
mod M1,

0 ≡ i∗F

(
DxFdx+DyFdy + Frdr + Fsds+ Ftdt+

(
Fp −

FrFq

λ+

)
θ2

)
mod M2.

Mod M1, we have

dω̃2 ≡ i∗F (dλ+ ∧ θ2 + λ+dθ
2 + Ftdθ

3 + dFt ∧ θ3)

≡ i∗F

(
− Ft

λ+
dλ+ ∧ θ3 + λ+(dx ∧ dr + dy ∧ ds) + Ft(dx ∧ ds+ dy ∧ dt) + dFt ∧ θ3

)
≡ i∗F

(
λ+dx ∧ dr − λ−dy ∧ ds+ Ftdx ∧ ds+DxFdx ∧ dy − Frdy ∧ dr + Ξ1 ∧ θ3

)
≡ i∗F

((
dx− Fr

λ+
dy

)
∧ (λ+dr + Ftds+DxFdy) + Ξ1 ∧ θ3

)
≡ ω̃4 ∧ ω̃5 + ω̃3 ∧ ρ i∗F Ξ1.

Mod M2, we have

dω̃3 ≡ i∗F (dFr ∧ θ2 + Frdθ
2 + λ+dθ

3 + dλ+ ∧ θ3)

≡ i∗F

(
dFr ∧ θ2 + Fr(dx ∧ dr + dy ∧ ds) + λ+(dx ∧ ds+ dy ∧ dt)− Fr

λ+
dλ+ ∧ θ2

)
≡ i∗F

(
Frdy ∧ ds+ λ+(dx ∧ ds+ dy ∧ dt)− dx ∧ (DyFdy + Fsds+ Ftdt) + Ξ2 ∧ θ2

)
≡ i∗F

((
dy − Ft

λ+
dx

)
∧ (λ+dt+ Frds+DyFdx) + Ξ2 ∧ θ2

)
≡ ω̃6 ∧ ω̃7 + ω̃2 ∧ ρ i∗F Ξ2. �
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Let us write

ρ i∗F Ξ1 = b4ω̃
4 + b5ω̃

5 + b6ω̃
6 + b7ω̃

7, ρ i∗F Ξ2 = c4ω̃
4 + c5ω̃

5 + c6ω̃
6 + c7ω̃

7.

We make the change of basis

ω1 = ω̃1, ω2 = ω̃2 − b6
ρ
ω̃1, ω3 = ω̃3 − c4

ρ
ω̃1, ω4 = ρ(ω̃4 + b5ω̃

3),

ω5 =
1
ρ
(ω̃5 − b4ω̃

3), ω6 = ρ(ω̃6 + c7ω̃
2), ω7 =

1
ρ
(ω̃7 − c6ω̃

2) (B.5)

to obtain the structure equations

dω1 ≡ ω2 ∧ ω4 + ω3 ∧ ω6 +Wω2 ∧ ω3 mod I(1)
F ,

dω2 ≡ ω4 ∧ ω5 + b7ω
3 ∧ ω7 mod M1,

dω3 ≡ ω6 ∧ ω7 + c5ω
2 ∧ ω5 mod M2,

where W = W̃ + ρ(b5 − c7). Thus, in the notation of Theorem 3.1, we have that U1 = b7 and
U2 = c5 and by the argument given at the end of Appendix A, we must have that W = 0.

We are primarily concerned with the vanishing / nonvanishing of U1 and U2, though the sign
will play a later role in the determination of the ε contact invariant. It suffices to calculate

U1 : ω̃7 coefficient in i∗F Ξ1, and U2 : ω̃5 coefficient in i∗F Ξ2.

Note that the sign of these coefficients is reversed for both since ρ < 0. As a further sim-
plification, since i∗F (dx), i∗F (dy) depend only on ω̃4, ω̃6, and since i∗F (λ+) > 0, it suffices to
calculate

U1 : ω̃7 coefficient in i∗Fd
(
Ft

λ+

)
, and U2 : ω̃5 coefficient in i∗Fd

(
Fr

λ+

)
.

Let us illustrate how to calculate the ω̃7 coefficient in i∗Fd
(

Ft
λ+

)
. Given ω̃ = fiω̃

i = i∗Fd
(

Ft
λ+

)
on Σ7, we are interested in f7. Since iF : Σ7 → J2(R2,R) is maximal rank, there exist functions f̃i

on J2(R2,R) such that i∗F f̃i = fi, so ω̃ = i∗F (f̃iθ̃
i). Thus, we calculate f̃7 using

θ̃1 ∧ · · · ∧ θ̃6 ∧ d
(
Ft

λ+

)
∧ dF = f̃7θ̃

1 ∧ · · · ∧ θ̃7 ∧ dF

and then use i∗F to obtain f7.
Using (B.3), we have

ν1 := θ̃1 ∧ θ̃2 ∧ θ̃3 ∧ θ̃4 ∧ θ̃5 ∧ θ̃6 ∧ d
(
Ft

λ+

)
∧ dF

= −4|∆|dz ∧ dp ∧ dq ∧ dx ∧ dy ∧ dF ∧ (λ+dr + Ftds) ∧ d
(
Ft

λ+

)
= −4|∆|Ĩ1dz ∧ dp ∧ dq ∧ dx ∧ dy ∧ dr ∧ ds ∧ dt
= f̃7θ̃

1 ∧ · · · ∧ θ̃7 ∧ dF, (B.6)

where

Ĩ1 = det

 Fr Fs Ft

λ+ Ft 0(
Ft
λ+

)
r

(
Ft
λ+

)
s

(
Ft
λ+

)
t

 , f̃7 =
−Ĩ1

2|∆|1/2λ2
+

.
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Let I1 = i∗F Ĩ1, and note I1 and f7 = i∗F f̃7 have opposite sign. Because of the aforementioned
sign reversal (i.e. U1 and f7 have opposite sign), we have

sgn(U1) = sgn(I1). (B.7)

We perform a similar computation for the ω5 coefficient in i∗Fd
(

Fr
λ+

)
.

ν2 := θ̃1 ∧ θ̃2 ∧ θ̃3 ∧ θ̃4 ∧ d
(
Fr

λ+

)
∧ θ̃6 ∧ θ̃7 ∧ dF

= −4|∆|dz ∧ dp ∧ dq ∧ dx ∧ dy ∧ (λ+dt+ Frds) ∧ dF ∧ d
(
Fr

λ+

)
= −4|∆|Ĩ2dz ∧ dp ∧ dq ∧ dx ∧ dy ∧ dr ∧ ds ∧ dt
= f̃5θ̃

1 ∧ · · · ∧ θ̃7 ∧ dF,

where

Ĩ2 = det

 0 Fr λ+

Fr Fs Ft(
Fr
λ+

)
r

(
Fr
λ+

)
s

(
Fr
λ+

)
t

 , f̃5 =
−Ĩ2

2|∆|1/2λ2
+

.

Let I2 = i∗F Ĩ2, and note I2 and f5 = i∗F f̃5 have opposite sign. Because of the aforementioned
sign reversal (i.e. U2 and f5 have opposite sign), we have

sgn(U2) = sgn(I2). (B.8)

Since class 6-6, 6-7, and 7-7 hyperbolic equations are determined by the vanishing/nonvanishing
of U1, U2, the classification in Theorem 3.3 follows.

For the scaling property, suppose that F̂ = φF with i∗Fφ > 0. We may without loss of
generality suppose that Σ̂7 = Σ7 and iF̂ = iF . Hence,

i∗
F̂
F̂r = i∗F (φrF + φFr) = i∗F (φFr), i∗

F̂
F̂s = i∗F (φFs), i∗

F̂
F̂t = i∗F (φFt),

i∗
F̂
∆̂ = i∗F (φ2∆), i∗

F̂
λ̂+ = i∗F (φλ+).

Since i∗F commutes with d,

i∗
F̂
d

(
F̂t

λ̂+

)
= i∗Fd

(
Ft

λ+

)
, i∗

F̂
d

(
F̂r

λ̂+

)
= i∗Fd

(
Fr

λ+

)
.

From the coframe definition in Lemma B.2, we see that

(ˆ̃ω1, . . . , ˆ̃ω7) = (ω̃1, (i∗Fφ)ω̃2, (i∗Fφ)ω̃3, ω̃4, (i∗Fφ)ω̃5, ω̃6, (i∗Fφ)ω̃7).

Hence, from the expression for ν1 in (B.6),

i∗
F̂
ν̂1 = (i∗Fφ)4i∗F ν1. (B.9)

Since i∗
F̂
∆̂ = i∗F (φ2∆), then by (B.6) and (B.9) we see that necessarily

Î1 = (i∗Fφ)2I1.

Similarly, we find that

Î2 = (i∗Fφ)2I2.
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C Generic hyperbolic structure equations

Starting with the hyperbolic structure equations (c.f. Theorem 3.1), we specialize here to the
generic case and prove Theorem 3.4 and Corollaries 3.3 and 3.4.

Proof of Theorem 3.4. Suppose class(M1) = class(M2) = 7 so that U1U2 6= 0. Let (ω̄1, . . . ,
ω̄7) = (λ1ω

1, . . . , λ7ω
7), where

λ1 = |U1|−
3
4 |U2|−

1
4 , λ2 = |U1|−

1
2 |U2|−

1
2 , λ3 = |U1|−

3
4 |U2|−

1
4 , λ4 = |U1|−

1
4 |U2|

1
4 ,

λ5 = |U1|−
1
4 |U2|−

3
4 , λ6 = 1, λ7 = |U1|−

3
4 |U2|−

1
4 .

This normalizes (U1, U2) to (ε1, ε2) = (sgn(U1), sgn(U2)) = (±1,±1). Dropping bars and making
the further coframe change ω̄3 = ε1ω

3, ω̄6 = ε1ω
6 normalizes (ε1, ε2) to (1, ε), where ε = ε1ε2 =

±1. Thus, we have obtained the structure equations (3.2) in Theorem 3.4.
Using the structure equations (3.2), let us now establish explicit generators for C(IF , dM1)

and its derived systems. Let { ∂
∂ω1 , . . . ,

∂
∂ω7 } be the dual basis to {ω1, . . . , ω7}. From the structure

equations, we have

Char(IF , dM1) =
{

∂

∂ω6
,
∂

∂ω7

}
⇒ C(IF , dM1) = {ω1, ω2, ω3, ω4, ω5}.

Next, we clearly have dω1 ≡ 0, dω2 ≡ 0, dω3 6≡ 0 mod C(IF , dM1) while

0 = d2ω2 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω4 = dω4 ∧ ω5 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω4,

0,= d2ω2 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω5 = dω5 ∧ ω4 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω5

implies that dω4 ≡ 0, dω5 ≡ 0 mod C(IF , dM1). Thus, C(IF , dM1)(1) = {ω1, ω2, ω4, ω5} and

dω1 ≡ ω3 ∧ ω6, dω4 ≡ Iω3 ∧ ω6 + Jω3 ∧ ω7,

dω2 ≡ ω3 ∧ ω7, dω5 ≡ Kω3 ∧ ω6 + Lω3 ∧ ω7 mod {ω1, ω2, ω4, ω5}.

We have dω1 6≡ 0, dω2 6≡ 0 mod C(IF , dM1)(1). Redefining

ω̄4 = ω4 − Iω1 − Jω2, ω̄5 = ω5 −Kω1 − Lω2

preserves the structure equations (3.2). Dropping bars, we have

dω4 ≡ 0, dω5 ≡ 0 mod C(IF , dM1)(1).

Hence, C(IF , dM1)(2) = {ω4, ω5}. Similarly, we describe the derived flag of C(IF , dM2). �

Proof of Corollary 3.3. Using the integrability condition d2ω1 = 0, we have

0 = d2ω1 ∧ ω1 ∧ ω2 ∧ ω6 = (ω7 ∧ ω4 − dω6) ∧ ω3 ∧ ω1 ∧ ω2 ∧ ω6, (C.1)

0 = d2ω1 ∧ ω1 ∧ ω3 ∧ ω4 = (εω5 ∧ ω6 − dω4) ∧ ω2 ∧ ω1 ∧ ω3 ∧ ω4, (C.2)

0 = d2ω1 ∧ ω1 ∧ ω4 ∧ ω6 = −(ω3 ∧ dω6 + ω2 ∧ dω4) ∧ ω1 ∧ ω4 ∧ ω6. (C.3)

Equation (C.1) implies γ6
47 = −1 and γ6

57 = 0; (C.2) implies γ4
56 = ε and γ4

57 = 0; (C.3)
implies γ4

35 = γ6
25 and γ4

37 = γ6
27. Referring to C(IF , dMi)(2), in (3.3), we know γ6

25 =
γ4

37 = 0, so we obtain γ4
35 = γ6

27 = 0. Using these values, we have

0 = d2ω4 ∧ ω1 ∧ ω2 ∧ ω4 ∧ ω6 = (γ4
25 − εγ6

37) ∧ ω5 ∧ ω3 ∧ ω7 ∧ ω1 ∧ ω2 ∧ ω4 ∧ ω6. �
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Proof of Corollary 3.4. We are interested in all coframe changes which preserve the form of
the structure equations (3.2) and (3.4) with the exception of possibly changing the value of the
ε coefficient to its negative. If necessarily the value of the ε coefficient is preserved under these
coframe changes, then it is a contact invariant. The change of coframe ω̄i = Ri

jω
j , where

R =



−ε 0 0 0 0 0 0
0 0 ε 0 0 0 0
0 −ε 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −ε
0 0 0 1 0 0 0
0 0 0 0 −ε 0 0


interchanges the labelling of M1 and M2 but preserves the structure equations, including the
value of ε. Thus, without loss of generality, we may restrict to change of coframe which pre-
serve M1 and M2 and hence each C(IF , dMi)(k). Thus, we have

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

ω̄7


=



λ1 0 0 0 0 0 0
µ1 λ2 0 0 0 0 0
µ2 0 λ3 0 0 0 0
0 0 0 λ4 ν1 0 0
0 0 0 µ3 λ5 0 0
0 0 0 0 0 λ6 ν2

0 0 0 0 0 µ4 λ7





ω1

ω2

ω3

ω4

ω5

ω6

ω7


.

Using (3.2) yields

dω̄1 = d(λ1ω
1) ≡ λ1(ω3 ∧ ω6 + ω2 ∧ ω4) mod I(1)

F

and also

dω̄1 ≡ ω̄3 ∧ ω̄6 + ω̄2 ∧ ω̄4 ≡ λ3ω
3 ∧ (λ6ω

6 + ν2ω
7) + λ2ω

2 ∧ (λ4ω
4 + ν1ω

5) mod I(1)
F ,

which implies ν1 = ν2 = 0, λ1 = λ3λ6 = λ2λ4. We also have

dω̄2 = d(µ1ω
1 + λ2ω

2) ≡ µ1ω
3 ∧ ω6 + λ2(ω4 ∧ ω5 + ω3 ∧ ω7) mod M1,

dω̄3 = d(µ2ω
1 + λ3ω

3) ≡ µ2ω
2 ∧ ω4 + λ3(ω6 ∧ ω7 + εω2 ∧ ω5) mod M2

and

dω̄2 ≡ ω̄4 ∧ ω̄5 + ω̄3 ∧ ω̄7 ≡ λ4ω
4 ∧ λ5ω

5 + λ3ω
3 ∧ (µ4ω

6 + λ7ω
7) mod M1,

dω̄3 ≡ ω̄6 ∧ ω̄7 + δω̄2 ∧ ω̄5 ≡ λ6ω
6 ∧ λ7ω

7 + δλ2ω
2 ∧ (µ3ω

4 + λ5ω
5) mod M2,

where δ = ±ε. Consequently, we have the system of equations

λ1 = λ3λ6 = λ2λ4, ν1 = ν2 = 0,
λ2 = λ4λ5 = λ3λ7, µ1 = λ3µ4,

λ3 = λ6λ7 = δελ2λ5, µ2 = δλ2µ3.

Then

β :=
λ6

λ4
=
λ2

λ3
=
δε

λ5
=
δελ4

λ2
, β =

λ2

λ3
= λ7 =

λ3

λ6
,
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and so

0 ≤ β4 =
(
λ6

λ4

)(
λ2

λ3

)(
δελ4

λ2

)(
λ3

λ6

)
= δε.

Consequently, we must have δ = ε and so ε is a contact invariant.
Finally, from (B.7), (B.8), and the proof of Theorem 3.4 given in Appendix C, we have

ε = sgn(U1U2) = sgn(I1I2). �

Remark C.1. Vranceanu [25] incorrectly asserts that ε can be normalized to 1. In particular,
in the formulas preceding his equation (4) he writes ν = (BC3)

1
4 . This is invalid if BC < 0.

D Isolating maximally and submaximally symmetric structures

Starting with the structure equations (3.2), (3.4) (and not assuming γ5
56 = 0) we clarify Vran-

ceanu’s method of isolating all structures admitting maximal symmetry as well as several struc-
tures admitting submaximal symmetry. The key to understanding Vranceanu’s method occurs
in a single rather cryptic paragraph on pages 367–368 of [25]. In our notation, Vranceanu writes:

In effect, we can remark that if a1 were equal to 1 we could reduce a2, and consequently a3,
to zero, by cancelling in the covariant dω6 the term γ6

46 with the help of the coefficient a2.
This indicates that for a2, a3 different than zero, we must have a1 6= 1, and consequently the
systems for which we cannot reduce a2 and a3 to zero are found amongst those for which a1 6= 1,
a2 = a3 = 0, and such that we cannot reduce a1 to 1.

Let us refer back to the structure equations (5.2) for the lifted coframe on Σ7 × G → Σ7.
Let H0 denote the subgroup obtained by setting a1 = 1 in G0. Since Vranceanu did not consider
discrete symmetries, let us consider the corresponding lifted coframe on Σ7×H0 → Σ7. We would
have structure equations as in (5.2) except no α1 terms would appear (and dα2 = dα3 = 0).
Thus, using Lie algebra valued compatible absorption using α2 and α3 only, γ6

46 would be a
torsion coefficient. With respect to the group H0, we have the transformation laws

γ̂6
46 = γ6

46 − γ6
56a3 + a2, γ̂6

56 = γ6
56. (D.1)

By setting a2 = γ6
56a3 − γ6

46, we can normalize γ̂6
46 = 0. In the group reduced from H0,

we only obtain a2 = γ6
56a3, so it is unclear whether a2, a3 can both be reduced to 0. Thus,

Vranceanu’s claim may be true, but if so it is certainly not obvious. Are there any structures
for which a1 can be reduced to 1, but at least one of a2, a3 are nonzero?

The second sentence in the paragraph appears to be quite cryptic and at first sight appears
even self-contradictory. One can make sense of this as follows: Vranceanu sets out to find
all structures for which K0 = {diag(a1

2, a1, a1, a1, 1, a1, 1) : a1 > 0} ⊂ G cannot be reduced
to the identity. Thus, he is considering the restricted equivalence problem with respect to the
subgroupK0, and a lifted coframe on the bundle Σ7×K0 → Σ7 satisfying the structure equations

dω̂1 = 2α1 ∧ ω̂1 + ω̂3 ∧ ω̂6 + ω̂2 ∧ ω̂4 + η1 ∧ ω̂1,

dω̂2 = α1 ∧ ω̂2 + ω̂4 ∧ ω̂5 + ω̂3 ∧ ω̂7 + η21 ∧ ω̂1 + η22 ∧ ω̂2,

dω̂3 = α1 ∧ ω̂3 + ω̂6 ∧ ω̂7 + εω̂2 ∧ ω̂5 + η31 ∧ ω̂1 + η33 ∧ ω̂3,

dω̂4 = α1 ∧ ω̂4 + η41 ∧ ω̂1 + η42 ∧ ω̂2 + η44 ∧ ω̂4 + εω̂5 ∧ ω̂6, (D.2)

dω̂5 = η51 ∧ ω̂1 + η52 ∧ ω̂2 + η54 ∧ ω̂4 + η55 ∧ ω̂5,

dω̂6 = α1 ∧ ω̂6 + η61 ∧ ω̂1 + η63 ∧ ω̂3 + η66 ∧ ω̂6 − ω̂4 ∧ ω̂7,
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dω̂7 = η71 ∧ ω̂1 + η73 ∧ ω̂3 + η76 ∧ ω̂6 + η77 ∧ ω̂7,

dα1 = 0.

where ηi are semibasic with respect to the canonical projection Σ7×K0 → Σ7. Note that under
the K0-action, all coefficients transform by a scaling action:

γ̂i
jk = (a1)pγi

jk

for some scaling weight p ∈ R. (In other words, by setting a2 = a3 = 0 in the general trans-
formation formulas under G0, c.f. last sentence in Vranceanu’s paragraph above.) For specific
i, j, k, if γi

jk 6= 0, then we can normalize to γ̂i
jk = ±1 by setting a1 = |γi

jk|−1/p, thereby
reducing K0 to the identity. Since we are assuming that K0 cannot be reduced, Vranceanu’s
conclusion would be that γi

jk = 0. A technical assumption that should be made here is that if
p 6= 0, we are considering γi

jk to be a constant torsion coefficient. For example, if γi
jk 6= 0 (as

functions) but vanishes at a point, then K cannot be normalized since a1 must be nonzero. In
summary, we have:

Lemma D.1. Suppose κ̂ = (a1)pκ is a torsion coefficient with respect to K0. If (1) K0 cannot
be reduced to the identity, (2) p 6= 0, and (3) κ is a constant, then κ = 0.

Note D.1. We do not need to assume that all torsion terms are constant. Only those torsion
terms with a nontrivial scaling action by K0 are assumed to be constant.

Vranceanu finishes the paragraph with the consequences of this simplification:

However, it is easy to see that for these systems we must have in the formulas (3.4), all null
coefficients, except for γ4

25, γ4
27, γ4

53, γ4
56 = 1, γ5

57, γ6
35, γ6

37, γ6
72, γ6

74 = 1, γ7
75 and

likewise one must have γ2
3α = 0 (α 6= 2), γ3

2α = 0 (α 6= 3).

Note D.2. The values γ4
53 = γ6

72 = 0, γ4
56 = ε, γ6

47 = −1 were established in Corollary 3.3.
Also, the final assertions in Vranceanu’s sentence above should read γ2

1α and γ3
1α respectively –

see explanations below.

We give an outline of these details. With respect to the subgroup K0, the following are
torsion terms (c.f. (D.2)):

γ̂2
1k (k 6= 2), γ̂3

1k (k 6= 3), γ̂4
1k, γ̂

4
2k (k 6= 4), γ̂6

1k, γ̂
6
3k (k 6= 6),

γ̂5
1k, γ̂

5
2k, γ̂

5
4k, γ̂

7
1k, γ̂

7
3k, γ̂

7
6k (k arbitrary), γ̂5

35, γ̂
7
27, γ̂

7
47.

The scaling weight for all these terms is nonzero with the exception of γ̂4
25, γ̂4

27, γ̂6
35, γ̂6

37

for which p = 0. By Lemma D.1, all of the corresponding coefficients must vanish with the
exception of γ4

25, γ4
27, γ6

35, γ6
37. Vranceanu did not make use of the following torsion terms:

2γ̂2
k2 − γ̂1

k1 (k 6= 1, 2), 2γ̂3
k3 − γ̂1

k1 (k 6= 1, 3), 2γ̂4
k4 − γ̂1

k1 (k 6= 1, 4),

2γ̂6
k6 − γ̂1

k1 (k 6= 1, 6), γ̂3
13 − γ̂2

12, γ̂4
14 − γ̂2

12, γ̂6
16 − γ̂2

12.

All of these terms have nonzero scaling weight (and hence must vanish) with the exception of

2γ̂i
ki − γ̂1

k1 (no sum), i = 2, 3, 4, 6, k = 5, 7.

Thus, the structure equations take the form

dω1 = ω3 ∧ ω6 + ω2 ∧ ω4 + ω1 ∧ η1,

dω2 = ω4 ∧ ω5 + ω3 ∧ ω7 + ω2 ∧ η2,
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dω3 = ω6 ∧ ω7 + εω2 ∧ ω5 + ω3 ∧ η3,

dω4 = εω5 ∧ ω6 + ω2 ∧ (γ4
25ω

5 + γ4
27ω

7) + ω4 ∧ η4, (D.3)

dω5 = mω5 ∧ ω7,

dω6 = −ω4 ∧ ω7 + ω3 ∧ (γ6
35ω

5 + γ6
37ω

7) + ω6 ∧ η6,

dω7 = nω5 ∧ ω7,

where ηk = γk
k`ω

` (no sum on k), and

2γ4
46 = 2γ3

36 = 2γ2
26 = γ1

16, 2γ6
63 = 2γ4

43 = 2γ2
23 = γ1

13,

2γ6
64 = 2γ3

34 = 2γ2
24 = γ1

14, 2γ6
62 = 2γ4

42 = 2γ3
32 = γ1

12,

γ6
16 = γ4

14 = γ3
13 = γ2

12,

or more succinctly,

γk
k` =

1
2
γ1

1` (no sum), k, ` = 2, 3, 4, 6, (D.4)

γk
1k = γ2

12 (no sum), k = 3, 4, 6. (D.5)

Lemma D.2. There exists an admissible change of coframe so that η1 = 0 and γ2
12 = 0.

Proof. Let us evaluate some integrability conditions.

0 = d2ω1 = (η1 − η2 − η4) ∧ ω2 ∧ ω4 + (η1 − η3 − η6) ∧ ω3 ∧ ω6 − ω1 ∧ dη1. (D.6)

Isolating terms that are in the ideal generated by ω1 and using (D.5), we have

0 = ω1 ∧ (2γ2
12dω

1 − dη1). (D.7)

Note that for k = 2, 3, 4, 6,

0 = d2ωk ∧ ω5 ∧ ω7 = −ωk ∧ dηk ∧ ω5 ∧ ω7 (no sum on k)

= −ωk ∧ d(γk
k`ω

`) ∧ ω5 ∧ ω7 = −ωk ∧ d
(
γ2

21ω
1 +

1
2
η1

)
∧ ω5 ∧ ω7

= −ωk ∧
(
dγ2

21 ∧ ω1 + γ2
21dω

1 +
1
2
dη1

)
∧ ω5 ∧ ω7. (D.8)

Thus, (D.7) and (D.8) imply

dη1 = d(2γ2
12ω

1) + ω1 ∧ (f1ω
5 + f2ω

7)

for some functions f , g. Applying d and wedging with ω1 yields

0 = ω1 ∧ dω1 ∧ (f1ω
5 + f2ω

7) = ω1 ∧ (ω2 ∧ ω4 + ω3 ∧ ω6) ∧ (f1ω
5 + f2ω

7)

and so we must have f1 = f2 = 0. By Poincaré’s lemma, we have

η1 = 2γ2
12ω

1 + 2dh

for some function h. Define the change of coframe

(ω̄1, ω̄2, ω̄3, ω̄4, ω̄6) = (a1
2ω1, a1ω

2, a1ω
3, a1ω

4, a1ω
6), where a1 = eh.
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Then

dω̄1 = 2e2hdh ∧ ω1 + e2hdω1 = 2e2hdh ∧ ω1 + e2h(ω2 ∧ ω4 + ω3 ∧ ω6 + ω1 ∧ η1)

= 2dh ∧ ω̄1 + ω̄2 ∧ ω̄4 + ω̄3 ∧ ω̄6 + ω̄1 ∧ η1

= ω̄2 ∧ ω̄4 + ω̄3 ∧ ω̄6.

Dropping bars, we have a new coframe satisfying (D.3) with η1 = 0. Moreover, using (D.7), we
have that γ2

12 = 0. �

From (D.6), we have that

γ4
45 = −γ2

25, γ4
47 = −γ2

27, γ6
65 = −γ3

35, γ6
67 = −γ3

37,

and using (D.4), (D.5), the structure equations take the form

dω1 = ω3 ∧ ω6 + ω2 ∧ ω4,

dω2 = ω4 ∧ ω5 + ω3 ∧ ω7 + ω2 ∧ (γ2
25ω

5 + γ2
27ω

7),

dω3 = ω6 ∧ ω7 + εω2 ∧ ω5 + ω3 ∧ (γ3
35ω

5 + γ3
37ω

7),

dω4 = εω5 ∧ ω6 + ω2 ∧ (γ4
25ω

5 + γ4
27ω

7)− ω4 ∧ (γ2
25ω

5 + γ2
27ω

7),

dω5 = mω5 ∧ ω7,

dω6 = −ω4 ∧ ω7 + ω3 ∧ (γ6
35ω

5 + γ6
37ω

7)− ω6 ∧ (γ3
35ω

5 + γ3
37ω

7),

dω7 = nω5 ∧ ω7.

Further integrability conditions reveal

0 = d2ω5 = dm ∧ ω5 ∧ ω7 ⇒ dm = m5ω
5 +m7ω

7,

0 = d2ω7 = dn ∧ ω5 ∧ ω7 ⇒ dn = n5ω
5 + n7ω

7.

Next,

0 = d2ω2 ∧ ω2 = (n− γ3
35 + γ2

25)ω2 ∧ ω3 ∧ ω5 ∧ ω7 + (m− 2γ2
27)ω2 ∧ ω4 ∧ ω5 ∧ ω7,

0 = d2ω3 ∧ ω3 = ε(−m+ γ3
37 − γ2

27)ω2 ∧ ω3 ∧ ω5 ∧ ω7 − (n+ 2γ3
35)ω3 ∧ ω5 ∧ ω6 ∧ ω7,

⇒ γ2
25 = −3n

2
, γ2

27 =
m

2
, γ3

35 = −n
2
, γ3

37 =
3m
2
,

0 = d2ω2 = (mn+ ε− γ4
27)ω2 ∧ ω5 ∧ ω7 +

1
2
ω2 ∧ (3dn ∧ ω5 − dm ∧ ω7),

0 = d2ω3 = (γ6
35 −mn− ε)ω3 ∧ ω5 ∧ ω7 +

1
2
ω3 ∧ (dn ∧ ω5 − 3dm ∧ ω7),

0 = d2ω4 ∧ ω1 ∧ ω2 ∧ ω4 ∧ ω6 = (εγ6
37 − γ4

25)ω3 ∧ ω5 ∧ ω7 ∧ ω1 ∧ ω2 ∧ ω4 ∧ ω6,

⇒ γ4
25 = B = εγ6

37, γ4
27 = mn+ ε− 3

2
n7 −

1
2
m5, γ6

35 = mn+ ε+
1
2
n7 +

3
2
m5.

The final two integrability conditions are

0 = d2ω4 = (−4n∆1 − 2mB + 6nn7 + nm5 −mn5)ω2 ∧ ω5 ∧ ω7 + ω2 ∧ ω5 ∧ dB

− 1
2
ω2 ∧ ω7 ∧ (dm5 + 3dn7),

0 = d2ω6 = (−4m∆1 − 2nεB − 6mm5 −mn7 + nm7)ω3 ∧ ω5 ∧ ω7 + εω3 ∧ ω7 ∧ dB

+
1
2
ω3 ∧ ω5 ∧ (3dm5 + dn7),
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which implies

0 = d2ω4 ∧ ω7 = ω2 ∧ ω5 ∧ dB ∧ ω7,

0 = d2ω6 ∧ ω5 = εω3 ∧ ω7 ∧ dB ∧ ω5,

and hence d2ω4 = d2ω6 = 0 is equivalent to

dB = ε

(
−4m∆1 − 2nεB − 6mm5 −mn7 + nm7 +

3
2
m57 +

1
2
n77

)
ω5

+
(

4n∆1 + 2mB − 6nn7 − nm5 +mn5 −
1
2
m55 −

3
2
n75

)
ω7.

This reduces the structure equations to those given in Theorem 6.1.

E Parametrization of maximally symmetric structures

While in general it is very difficult to go from structure equations specified in an abstract
coframe to a coframe described parametrically (i.e. in local coordinates), Vranceanu succeeded
in doing this for the maximally symmetric structure equations (6.5). Certain steps in his com-
putation were unjustified or contained errors (e.g. Vranceanu missed the contact invariant ε in
his structure equations and hence his normal forms), and so we provide a more complete outline
here.

Let us consider a coframe {ωi}7
i=1 on Σ7 satisfying (6.5), and let us consider ω1 in its canonical

form

ω1 = dz − pdx− qdy. (E.1)

ω5 and ω7

The subsystem {ω5, ω7} is completely integrable, so by the Frobenius theorem there exist local
functions u, v on Σ7 such that {du, dv} generate the same subsystem. We introduce u, v as
follows. By using the dω5 and dω7 equations,

0 = d
( ε
m
ω5 +mω7

)
⇒ ε

m
ω5 +mω7 =

du

u
.

Consequently,

dω7 = −du
u
∧ ω7 ⇒ d(uω7) = 0,

and hence

ω7 =
dv

u
, ω5 =

εm(du−mdv)
u

. (E.2)

An ansatz for ω2, ω3, ω4, ω6

We can now determine an ansatz for ω2, ω3, ω4, ω6. Plugging (E.1), into the dω1 equation, we
obtain

dx ∧ dp+ dy ∧ dq = ω2 ∧ ω4 + ω3 ∧ ω6.

Taking the interior product with ∂
∂u , we find that

0 = (i∂uω
2)ω4 − (i∂uω

4)ω2 + (i∂uω
3)ω6 − (i∂uω

6)ω3,
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and hence i∂uω
k = 0 and similarly i∂vω

k = i∂zω
k = 0 for k = 2, 3, 4, 6. Thus,

ωk = Akdp+Bkdq + Ckdx+Dkdy. (E.3)

Vranceanu asserts without justification that the coefficients Ak, Bk, Ck, Dk can be taken to
only depend on u, v. In Lemma E.1, we show that we can reduce to dependence on x, y, u, v,
but it is unclear why a further simplification is a priori necessary.

ω4 and ω6

We observe from the dω4 and dω6 equations, that

d
(
ω4 +mω6

)
= −3

2
(
ω4 +mω6

)
∧ du

u
⇒ 0 = d

(
u−3/2(ω4 +mω6)

)
,

and we make the choice of introducing the x-coordinate into the coframe via

ω4 +mω6 = u3/2dx.

Now substitute into the dω6 equation and simplify to get

d

(
ω6

√
u

)
= d(vdx)

and we make the choice of introducing the y-coordinate into the coframe via

ω6 = −
√
u(dy − vdx), ω4 = u3/2dx+m

√
u(dy − vdx).

ω2 and ω3

Using the ansatz (E.3), we write

ω2 = σ1ω
6 + µω4 + α1dp+ β1dq,

ω3 = σ2ω
4 + ρω6 + α2dp+ β2dq.

Plugging these and (E.1) into dω1, we obtain σ1 = σ2 =: σ and

dx ∧ dp+ dy ∧ dq = −(
√
u(u−mv)α1 + v

√
uα2)dx ∧ dp+

√
u(mα1 − α2)dp ∧ dy,

+ (
√
u(u−mv)β1 + v

√
uβ2)dq ∧ dx−

√
u(mβ1 − β2)dy ∧ dq,

which can be solved to obtain

ω2 = σω6 + µω4 − u−3/2(dp+ vdq), (E.4)

ω3 = σω4 + ρω6 −mu−3/2(dp+ vdq) + u−1/2dq, (E.5)

for some functions σ, µ, ρ.

Lemma E.1. σ, µ, ρ only depend on x, y, u, v.

Proof. Since ω4, ω6 depend only on dx, dy and ω5, ω7 depend only on du, dv, it suffices to
show that dσ, dµ, dρ depend only on ω4, ω5, ω6, ω7. The structure equations (6.5) indicate that
dωk ≡ 0 mod {ω5, ω7} for k = 2, 3, 4, 6. Applying d to (E.4), (E.5), we obtain

dω2 ≡ dσ ∧ ω6 + dµ ∧ ω4 mod {ω5, ω7},
dω3 ≡ dσ ∧ ω4 + dρ ∧ ω6 mod {ω5, ω7},
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so necessarily,

dσ ≡ σ4ω
4 + σ6ω

6 mod {ω5, ω7},
dµ ≡ µ4ω

4 + σ4ω
6 mod {ω5, ω7},

dρ ≡ σ6ω
4 + ρ6ω

6 mod {ω5, ω7}. �

We now make the simplifying search for solutions where σ, µ, ρ are functions of u, v only.
Thus,

dσ =
∂σ

∂ω5
ω5 +

∂σ

∂ω7
ω7, dµ =

∂µ

∂ω5
ω5 +

∂µ

∂ω7
ω7, dρ =

∂ρ

∂ω5
ω5 +

∂ρ

∂ω7
ω7.

Then substitution of (E.4), (E.5) into the structure equations for ω2 and ω3 yields

dω2 =
(
∂σ

∂ω5
+

2εσ
m

+ εµ

)
ω5 ∧ ω6 +

(
∂σ

∂ω7
+ 2mσ + ρ

)
ω7 ∧ ω6 +

(
∂µ

∂ω5
+

3εµ
m

)
ω5 ∧ ω4

+
(
∂µ

∂ω7
+ 2σ +mµ

)
ω7 ∧ ω4 + ω3 ∧ ω7 −

(
3ε
2m

ω5 +
m

2
ω7

)
∧ ω2,

dω3 =
(
∂σ

∂ω5
+

2εσ
m

+ εµ

)
ω5 ∧ ω4 +

(
∂σ

∂ω7
+ 2mσ + ρ

)
ω7 ∧ ω4

+
(
∂ρ

∂ω5
+ 2εσ +

ερ

m

)
ω5 ∧ ω6 +

(
∂ρ

∂ω7
+ 3mρ

)
ω7 ∧ ω6 + εω2 ∧ ω5

−
(

ε

2m
ω5 +

3m
2
ω7

)
∧ ω3.

Comparison with the structure equations yields

∂µ

∂ω5
= −3εµ

m
− 1,

∂σ

∂ω5
= −2εσ

m
− εµ,

∂ρ

∂ω5
= −2εσ − ε

m
ρ, (E.6)

∂µ

∂ω7
= −2σ −mµ,

∂σ

∂ω7
= −2mσ − ρ,

∂ρ

∂ω7
= −3mρ− 1. (E.7)

For γi
jk defined as in (2.8), we have[
∂

∂ωj
,
∂

∂ωk

]
= −γi

jk
∂

∂ωi
⇒

[
∂

∂ω5
,
∂

∂ω7

]
= −m ∂

∂ω5
+

ε

m

∂

∂ω7
.

Using this commutator relation, we can verify that all integrability conditions for the system
(E.6), (E.7) are satisfied. Using (E.2), we have for F = F (u, v),

dF = Fudu+ Fvdv =
uFu

εm
ω5 + u(mFu + Fv)ω7,

and so

∂F

∂ω5
=
uFu

εm
,

∂F

∂ω7
= (mFu + Fv)u = uFv + εm2 ∂F

∂ω5
.

We use these expressions for the coframe derivatives to rewrite the system (E.6), (E.7) and
obtain expressions for σ, µ, ρ. The three equations in (E.6) are respectively equivalent to

(u3µ)u = −εmu2 ⇒ µ = −εm
3

+
a1(v)
u3

,

(u2σ)u = −muµ ⇒ σ =
εm2

6
+
ma1(v)
u3

+
a2(v)
u2

,
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(uρ)u = −2mσ ⇒ ρ = −εm
3

3
+
m2a1(v)
u3

+
2ma2(v)

u2
+
a3(v)
u

.

Using these expressions for σ, µ, ρ, the three equations in (E.7) are respectively equivalent to

a′1(v) = −2a2(v), a′2(v) = −a3(v), a′3(v) = −α, (E.8)

where α = 1− εm4. The general solution of (E.8) is

a3(v) = −αv + c3, a2(v) =
1
2
αv2 − c3v + c2, a1(v) = −1

3
αv3 + c3v

2 − 2c2v + c1,

for arbitrary constants c1, c2, c3. Taking the simplest choice c1 = c2 = c3 = 0 yields

µ = −εm
3
− αv3

3u3
, σ =

εm2

6
− mαv3

3u3
+
αv2

2u2
, ρ = −εm

3

3
− m2αv3

3u3
+
mαv2

u2
− αv

u
,

and these can be substituted into our ansatz for ω2, ω3. Finally, our explicit parametrization
for the coframe on Σ7 satisfying the structure equations (6.5) is given by (7.1).

F Calculation of the nine-dimensional symmetry algebras

We provide here the calculation of the (contact) symmetries of the maximally symmetric generic
hyperbolic PDE’s F = 0 corresponding to the normal forms (7.4) and (7.5). A direct approach
by computing one of:

1) internal symmetries of IF ,

2) external symmetries of F ,

3) symmetries of the lifted coframe on Σ7 ×H,

without any prior simplifications is highly impractical owing to the complexity of the equation.
We first make several observations which allow us to simplify the calculation dramatically.

Any equation of the form F (r, s, t) = 0 admits a six-parameter family of symmetries

x̃ = c1 + c6x, ỹ = c2 + c6y, z̃ = c3 + c4x+ c5y + c6
2z

corresponding to the symmetry generators

∂

∂x
,

∂

∂y
,

∂

∂z
, x

∂

∂z
, y

∂

∂z
, x

∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
. (F.1)

These are clearly symmetries because the induced action on the second derivative coordinates r,
s, t is trivial. (Equivalently, the prolongations of the vector fields (F.1) to J2(R2,R) have no
components along ∂r, ∂s, ∂t.)

We will treat both cases (7.4) and (7.5) simultaneously by using the parametric form of the
equation. Using (7.3), we have the following vector fields tangent to the equation manifold in
J2(R2,R):

∂

∂w
= −εmw2 ∂

∂r
− εm2w

∂

∂s
− εm3 ∂

∂t
,

∂

∂v
= −v2 ∂

∂r
+ v

∂

∂s
− ∂

∂t
.

The key is noticing the following C∞(Σ7)-linear combinations of ∂
∂w , ∂

∂v that can be expressed
purely in terms of the 2-jet variables x, y, z, p, q, r, s, t:

w
∂

∂w
+ v

∂

∂v
= 3r

∂

∂r
+ 2s

∂

∂s
+ t

∂

∂t
, (F.2)
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m
∂

∂w
− ∂

∂v
= 2s

∂

∂r
+ t

∂

∂s
+ α

∂

∂t
, (F.3)

(my + wx)
∂

∂w
− (y − vx)

∂

∂v
= (2ys+ 3xr)

∂

∂r
+ (yt+ 2xs)

∂

∂s
+ (αy + xt)

∂

∂t
. (F.4)

These three vector fields are also tangent to the equation manifold, but they are clearly not
contact vector fields since: (1) they do not preserve the contact ideal, and (2) they do not arise
as prolongations of vector fields on J1(R2,R) (c.f. Bäcklund’s theorem). However, this leads
us to the following problem: Do (F.2)–(F.4) describe the r, s, t components of contact vector
fields on J2(R2,R)? If so, then those contact vector fields would also be tangent to the equation
manifold and hence would correspond to contact symmetries of the equation. The search is
greatly simplified by the observation that the components in (F.2)–(F.4) are linear in x, y, r,
s, t and independent of z, p, q.

By Bäcklund’s theorem, any contact vector field on J2(R2,R) is the prolongation of a contact
vector field on J1(R2,R). Hence, we look at a generalized vector field of order one on J0(R2,R)

X = ξ1(x, y, z, p, q)
∂

∂x
+ ξ2(x, y, z, p, q)

∂

∂y
+ η(x, y, z, p, q)

∂

∂z

and examine its prolongation X(2) = pr(2)(X) on J2(R2,R). If we write

X(2) = X + ηx ∂

∂p
+ ηy ∂

∂q
+ ηxx ∂

∂r
+ ηxy ∂

∂s
+ ηyy ∂

∂t
,

then the standard prolongation formula [22] is

ηJ,i = Diη
J − (Diξ

j)zJ,j , (F.5)

where Di are total derivative operators and we have used the notation x1 = x, x2 = y. J is
an unordered (symmetric) multi-index, so that for example z1 = p, z12 = z21 = s, etc. Ian
Anderson’s JetCalculus package in Maple v.11 was very useful for computing and manipulating
these prolongations. We give an outline of the calculation here.

In order that the components of X(2) in the directions ∂
∂r , ∂

∂s ,
∂
∂t , have: (1) no dependence

on third-order terms, and (2) no quadratic dependence on r, s, t, we must have (using (F.5)),

0 = ηp − p(ξ1)p − q(ξ2)p, (F.6)

0 = ηq − p(ξ1)q − q(ξ2)q, (F.7)

0 = ηpp − p(ξ1)pp − q(ξ2)pp − 2(ξ1)p, (F.8)

0 = ηqq − p(ξ1)qq − q(ξ2)qq − 2(ξ2)q, (F.9)

0 = ηpq − p(ξ1)pq − q(ξ2)pq − (ξ1)q − (ξ2)p. (F.10)

Differentiating (F.6), (F.7) with respect to p or q and comparing with (F.8)–(F.10) leads to the
conclusion that ξ1, ξ2, η are all independent of p, q. Consequently, the vector fields we derive are
necessarily infinitesimal point transformations, i.e. they project to vector fields on J0(R2,R).

We first examine the coefficient of ∂
∂s in X(2), or equivalently LX(2)(s). Using (F.5),

LX(2)(s) = −p2q(ξ1)zz − pq2(ξ2)zz − p2(ξ1)yz − 2ps(ξ1)z − pt(ξ2)z − q2(ξ2)xz

− qr(ξ1)z − 2qs(ξ2)z + (ηzz − (ξ1)xz − (ξ2)yz)pq − r(ξ1)y − t(ξ2)x

+ (ηyz − (ξ1)xy)p+ (ηxz − (ξ2)xy)q + (ηz − (ξ1)x − (ξ2)y)s+ ηxy. (F.11)

Referring back to (F.2)–(F.4), we require LX(2)(s) ∈ spanR{s, t, yt, xs}. From (F.11), we must
have ξ1 = ξ1(x), ξ2 = ξ2(x, y), and η is linear in z with ηyz = ηxy = 0. Thus, η = C1(x) +
C2(y) + C3(x)z. Recalculating X(2), we have

LX(2)(r) = ηxx + (C3(x)− 2(ξ1)x)r − 2s(ξ2)x + (2C ′3(x)− (ξ1)xx)p− q(ξ2)xx,
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LX(2)(s) = −t(ξ2)x + (C ′3(x)− (ξ2)xy)q + (C3(x)− (ξ1)x − (ξ2)y)s,

LX(2)(t) = C ′′2 (y) + (C3(x)− 2(ξ2)y)t− (ξ2)yyq.

From (F.2)–(F.4), we require LX(2)(r) ∈ spanR{r, s, xr, ys} and LX(2)(t) ∈ spanR{1, t, y, tx}.
Thus, ηxx = (ξ2)xx = (ξ2)yy = 0, C2(y) is at most cubic in y, (ξ1)x is linear in x, and C ′3(x) =
(ξ2)xy. Referring to (F.1), we have six symmetries with trivial action on r, s, t and so without
loss of generality we can require ξ1 to have no constant or linear term, ξ2 to have no constant
term, and ξ3 to have no constant term or terms purely linear in x, y. Thus,

ξ1 = a2x
2, ξ2 = b01x+ b10y + a2xy, η = c020y

2 + c030y
3 + c001z + a2xz,

and we have

LX(2)(r) = (−3a2x− 2a1 + c001)r − 2(b01 − a2y)s, (F.12)
LX(2)(s) = (−2a2x− a1 − b10 + c001)s+ (b01 − a2y)t, (F.13)
LX(2)(t) = 2c020 + 6c030y + (−xa2 − 2b10 + c001)t. (F.14)

Comparing (F.12)–(F.14) to each of the desired expressions arising in (F.2)–(F.4), we obtain the
remaining symmetry generators

X7 = y
∂

∂y
+ 3z

∂

∂z
, X8 = x

∂

∂y
− α

2
y2 ∂

∂z
, X9 = x2 ∂

∂x
+ xy

∂

∂y
+
(
xz − α

6
y3
) ∂

∂z
.
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