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Abstract. Within the framework of deformation quantization, a first step towards the
study of star-products is the calculation of Hochschild cohomology. The aim of this article
is precisely to determine the Hochschild homology and cohomology in two cases of algebraic
varieties. On the one hand, we consider singular curves of the plane; here we recover, in
a different way, a result proved by Fronsdal and make it more precise. On the other hand,
we are interested in Klein surfaces. The use of a complex suggested by Kontsevich and the
help of Groebner bases allow us to solve the problem.
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1 Introduction

1.1 Deformation quantization

Given a mechanical system (M, F(M)), where M is a Poisson manifold and F (M) the algebra of
regular functions on M, it is important to be able to quantize it, in order to obtain more precise
results than through classical mechanics. An available method is deformation quantization,
which consists of constructing a star-product on the algebra of formal power series F(M)[[R]].
The first approach for this construction is the computation of Hochschild cohomology of F(M).

We consider such a mechanical system given by a Poisson manifold M, endowed with a Poisson
bracket {-,-}. In classical mechanics, we study the (commutative) algebra F(M) of regular
functions (i.e., for example, C*°, holomorphic or polynomial) on M, that is to say the observables
of the classical system. But quantum mechanics, where the physical system is described by
a (non commutative) algebra of operators on a Hilbert space, gives more correct results than its
classical analogue. Hence the importance to get a quantum description of the classical system
(M, F(M)), such an operation is called a quantization.

One option is geometric quantization, which allows us to construct in an explicit way a Hilbert
space and an algebra of operators on this space (see the book [10] on the Virasoro group and
algebra for a nice introduction to geometric quantization). This very interesting method presents
the drawback of being seldom applicable.

That is why other methods, such as asymptotic quantization and deformation quantization,
have been introduced. The latter, described in 1978 by F. Bayen, M. Flato, C. Fronsdal,

A. Lichnerowicz and D. Sternheimer in [5], is a good alternative: instead of constructing an

*This paper is a contribution to the Special Issue on Deformation Quantization. The full collection is available
at http://www.emis.de/journals/SIGMA /Deformation_Quantization.html
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algebra of operators on a Hilbert space, we define a formal deformation of F(M). This is given
by the algebra of formal power series F (M )][[h]], endowed with some associative, but not always
commutative, star-product,

Frg=>_m;(f o)W, (1)

Jj=0

where the maps m; are bilinear and where mq(f, g) = fg. Then quantization is given by the
map [ +— f, where the operator fsatisfies f(g) = fxg.

In which cases does a Poisson manifold admit such a quantization? The answer was given by
Kontsevich in [11]: in fact he constructed a star-product on every Poisson manifold. Besides,
he proved that if M is a smooth manifold, then the equivalence classes of formal deformations
of the zero Poisson bracket are in bijection with equivalence classes of star-products. Moreover,
as a consequence of the Hochschild-Kostant—Rosenberg theorem, every Abelian star-product is
equivalent to a trivial one.

In the case where M is a singular algebraic variety, say

M ={z € C"/ f(2) = 0},

with n = 2 or 3, where f belongs to C[z] — and this is the case which we shall study — we
shall consider the algebra of functions on M, i.e. the quotient algebra Clz]/ (f). So the above
mentioned result is not always valid. However, the deformations of the algebra F (M), defined
by the formula (1), are always classified by the Hochschild cohomology of F (M), and we are
led to the study of the Hochschild cohomology of Clz] / (f).

1.2 Cohomologies and quotients of polynomial algebras

We shall now consider R := Clz1, ..., 2,] = C|z], the algebra of polynomials in n variables with
complex coefficients. We also fix m elements f1, ..., f;, of R, and we define the quotient algebra
A=R/{f1,- s fm) =Clz1,-- -, 20] / {f1,-- -, fm)-

Recent articles were devoted to the study of particular cases, for Hochschild as well as for
Poisson homology and cohomology:

C. Roger and P. Vanhaecke, in [16], calculate the Poisson cohomology of the affine
plane C?, endowed with the Poisson bracket fi 0., A 0,,, where fi is a homogeneous
polynomial. They express it in terms of the number of irreducible components of the sin-
gular locus {z € C?/ f1(z) = 0} (in this case, we have a symplectic structure outside the
singular locus), the algebra of regular functions on this curve being the quotient algebra
Clz1, 22] / (f)-

M. Van den Bergh and A. Pichereau, in [18, 13] and [14], are interested in the case
where n = 3 and m = 1, and where f; is a weighted homogeneous polynomial with
an isolated singularity at the origin. They compute the Poisson homology and cohomol-
ogy, which in particular may be expressed in terms of the Milnor number of the space
Clz1, 22, 23] / (02, f1, Oz f1, Oz f1) (the definition of this number is given in [3]).

Once more in the case where n = 3 and m = 1, in [2], J. Alev and T. Lambre compare the
Poisson homology in degree 0 of Klein surfaces with the Hochschild homology in degree 0
of A;(C)%, where A;(C) is the Weyl algebra and G the group associated to the Klein
surface. We shall give more details about those surfaces in Section 4.1.

In [1], J. Alev, M.A. Farinati, Th. Lambre and A.L. Solotar establish a fundamental result:
they compute all the Hochschild homology and cohomology spaces of A,,(C)“, where A,,(C)
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is the Weyl algebra, for every finite subgroup G of Sp,,,C. It is an interesting and classical
question to compare the Hochschild homology and cohomology of An((C)G with the Poisson
homology and cohomology of the ring of invariants C[x, y]“, which is a quotient algebra
of the form Clz] / (f1,..., fm)-

C. Fronsdal studies in [8] Hochschild homology and cohomology in two particular cases:
the case where n = 1 and m = 1, and the case where n = 2 and m = 1. Besides, the
appendix of this article gives another way to calculate the Hochschild cohomology in the
more general case of complete intersections.

In this paper, we propose to calculate the Hochschild homology and cohomology in two
particularly important cases.

e The case of singular curves of the plane, with polynomials f; which are weighted homo-
geneous polynomials with a singularity of modality zero: these polynomials correspond
to the normal forms of weighted homogeneous functions of two variables and of modality
zero, given in the classification of weighted homogeneous functions of [3] (this case already
held C. Fronsdal’s attention).

e The case of Klein surfaces X which are the quotients C? /T', where I is a finite subgroup
of SLoC (this case corresponds to n = 3 and m = 1). The latter have been the subject of
many works; their link with the finite subgroups of SLoC, with the Platonic polyhedra,
and with McKay correspondence explains this large interest. Moreover, the preprojective
algebras, to which [6] is devoted, constitute a family of deformations of the Klein surfaces,
parametrized by the group which is associated to them: this fact justifies once again the
calculation of their cohomology.

The main result of the article is given by two propositions:

Proposition 1. Given a singular curve of the plane, defined by a polynomial f € Clz|, of
type Ag, Dy or Ex. For j € N, let HH’ (resp. HH;) be the Hochschild cohomology (resp.
homology) space in degree j of A := Clz]/(f), and let V f be the gradient of f. Then HH" ~
HHy~ A, HH' ~ A ® C* and HHy ~ A%/ (AVf), and for all j > 2, HH/ ~ HH; ~ C*.

Proposition 2. Let I be a finite subgroup of SLoC and f € C[z] such that C[z, y]' ~ C[z] / (f).
Forj €N, let HHY (resp. HH;) be the Hochschild cohomology (resp. homology) space in degree j
of A= Clz]/(f), and let Vf be the gradient of f. Then HH® ~ HHy ~ A, HH' ~ (Vf A
A% @ CH and HHy ~VfANA3, HH?> ~ A®CH and HHy ~ A3 | (Vf A A3), and for all j > 3,
HHI ~ HH; ~ CH, where p is the Milnor number of Xr.

For explicit computations, we shall make use of, and develop a method suggested by M. Kont-
sevich in the appendix of [8].

We will first study the case of singular curves of the plane in Section 3: we will use this
method to recover the result that C. Fronsdal proved by direct calculations. Then we will
refine it by determining the dimensions of the cohomology and homology spaces by means of
multivariate division and Groebner bases.

Next, in Section 4, we will consider the case of Klein surfaces Ar. For j € N, we denote
by HHJ the Hochschild cohomology space in degree j of Ar. We will first prove that HH°
identifies with the space of polynomial functions on the singular surface Xr. We will then prove
that HH' and HH? are infinite-dimensional. We will also determine, for j greater or equal
to 3, the dimension of H H7, by showing that it is equal to the Milnor number of the surface Ar.
Finally, we will compute the Hochschild homology spaces.

In Section 1.3 we begin by recalling important classical results about deformations.
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1.3 Hochschild homology and cohomology and deformations of algebras

Consider an associative C-algebra, denoted by A. The Hochschild cohomological complex of A is

4(0)

co(a) 22 o1y &

d), C*(A) e,

d2) d®)
_— _—

C2(4) C3(4)
where the space CP(A) of p-cochains is defined by CP(A) = 0 for p € —N*, C°(A) = A, and for
p € N*, CP(A) is the space of C-linear maps from A®P to A. The differential d = @3°,d® is
given by

vV feCP(A), d(p)f(ao,...,ap) =aof(al,...,ap)
p—1

- Z(*l)if(ao, RN ¢ 7 S [P (Ip) + (—1)pf(a0, ce ,ap,l)ap.

=0

We may write it in terms of the Gerstenhaber bracket! [-,-]¢ and of the product u of A, as
follows

dP f = (=1)"[u, fl-

Then we define the Hochschild cohomology of A as the cohomology of the Hochschild coho-
mological complex associated to A, i.e. HHY(A) := Kerd® and for p € N*, HHP(A) :=
Ker d®) /Tm dP—1),

We denote by C[[A]] (resp. A[[A]]) the algebra of formal power series in the parameter i, with
coefficients in C (resp. A). A deformation of the map  is a map m from A[[A]] x A[[A]] to A[[R]]
which is C][[h]]-bilinear and such that

YV (s, t) € A[[H])%, m(s, t) = st mod hA[[R]],
V (s, t, u) € A[[R]]?, m(s, m(t, u)) = m(m(s, t), u).

This means that there exists a sequence of bilinear maps m; from A x A to A of which the first
term my is the product of A and such that

V(a, b) € A%, m(a, b) = mjy(a, bW,
j=0

VneN, Z mi(a,m;j(b,c)) = Z mi(m;(a,b),c),
i+j=n i+j=n
that is to say Z [mi, mj]g = 0.
i+j=n

We say that (A[[R]],m) is a deformation of the algebra (A, ). We say that the deformation is
of order p if the previous formulae are satisfied (only) for n < p.

The Hochschild cohomology plays an important role in the study of deformations of the
algebra A, by helping us to classify them. In fact, if 7 € C?(A), we may construct a first order
deformation m of A such that m; = = if and only if 7 € Kerd®. Moreover, two first order

'Recall that for ' € C*(A) and H € C?(A), the Gerstenhaber product is the element I e H € CPraTi(A)
defined by F e H(a1,...,ap+q—1) = S0_g (=1 F(ar, ... ai, H(@it1,. -, @itq); Gitgi1,- -, apiq—1), and the
Gerstenhaber bracket is [F, H]g := F ¢ H — (—1)?"V@~ D H o F. See for example [9], and [4, page 38].
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deformations are equivalent? if and only if their difference is an element of Imd™®). So the set
of equivalence classes of first order deformations is in bijection with H H?(A).

Ifm= Z?:o m;h, m; € C?(A) is a deformation of order p, then we may extend m to
a deformation of order p 4 1 if and only if there exists m,41 such that

P
Y (a,b,c) € A3, Z (mi(a, mps1-i(b, ¢)) — mi(mpr1-i(a,b),¢)) = —dPmyy1(a,b,c),
i=1
p
i.e. E[mz, mp+1_i]G = 2d(2)mp+1.
i=1

According to the graded Jacobi identity for [, -]g, the last sum belongs to Ker d®). So HH?3(A)
contains the obstructions to extend a deformation of order p to a deformation of order p + 1.
The Hochschild homological complex of A is

ds dy ds d dy

C3(A) —> Cy(A) —> C1(A) —= Co(A),

Ca(A)

where the space of p-chains is given by C,(A) = 0 for p € —N*, Cy(A) = A, and for p € N*,
Cp(A) = A® A®P. The differential d = @;°, d, is given by

by B m & B ay) = am © 0@ 5,

p—1
+ Z(—l)lao Qa1 ® - ®ajai+1 Q@ Qap+ (—1)Papa0 ® a1 @ -+ @ ap—1.
i—1

We define the Hochschild homology of A as the homology of the Hochschild homological complex
associated to A, i.e. HHy(A) := A/Im d; and for p € N*, HH),(A) :=Kerd, /Imd,;.
2 Presentation of the Koszul complex

We recall in this section some results about the Koszul complex used below (see the appendix

of [8]).

2.1 Kontsevich theorem and notations

As in Section 1.2, we consider R = C[z] and (f1,. .., fm) € R™, and we denote by A the quotient

R/{f1,..., fm). We assume that we have a complete intersection, i.e. the dimension of the set
of solutions of the system {f1(z) =--- = fn(z) =0} is n — m.
We consider the differential graded algebra
~ (C[zl,...,zn}
T=Am,....,00:b1,..., by = ——[m1,. .., 03 b1, ..., O],
[771 Tn; 01 m] <f17 o fm) [771 Tn; 01 m]

“Two deformations m = i omy B, m; € C*(A) and m’ = o mj W, mj € C*(A) are called equivalent
if there exists a sequence of linear maps ¢; from A to A of which the first term g is the identity of A and such
that

VacA,  pla)=) pi(a)h,
j=0

VoeN, Y gilmi(ab) = Y milp;(a),erb)).

i+j=n i+j+k=n



6 F. Butin

where 7; := 8%1- is an odd variable (i.e. the n;’s anticommute), and b; an even variable (i.e. the
b;’s commute).
T is endowed with the differential

8fz 0
7 = Z Z azj ’

7j=11i=1 877]’

and the Hodge grading, defined by deg(z;) = 0, deg(n;) = 1, deg(b;) = 2.
We may now state the main theorem which will allow us to calculate the Hochschild coho-
mology:

Theorem 1 (Kontsevich). Under the previous assumptions, the Hochschild cohomology of A
is isomorphic to the cohomology of the compler (T, dz) associated with the differential graded

algebra T.

Remark 1. Theorem 1 may be seen as a generalization of the Hochschild-Kostant—Rosenberg
theorem to the case of non-smooth spaces.

There is no element of negative degree. So the complex is as follows

5 ds) a2 d® d@

~ ~ ~ ~ ~ T

T(0) —=T(1) —=T(2) T(3) T(4)

For each degree p, we choose a basis B, of T(p) For example for p = 0,...,3, we may take
T(0) = A,

T(1)=Am @ - & Anp,
T(2) = Aby & - @ Aby, & P Anin.,

i<j
= P Abnje P Anmime.
i=1,....m 1<j<k

Jj=1,...,n

Below we shall make use of the explicit matrices Matg, 5, (dg)).
Set HY := A, H' := Ker dg) and for j > 2, HP := Ker dg) /Im d;f_l). According to Theo-
rem 1, we have, for p € N, HHP(A) ~ HP.

There is an analogous of Theorem 1 for the Hochschild homology. We consider the complex

(~2:A[fl,...,gn;al,...,am],

where §; is an odd variable and a; an even variable. Q is endowed with the differential

B of;j. 0
a6 = ZZ@ZZ "da;’

=1 j=1

and the Hodge grading, defined by deg(z;) = 0, deg(&;) = —1, deg(a;) = —2.
Theorem 2 (Kontsevich). Under the previous assumptions, the Hochschild homology of A is
isomorphic to the cohomology of the complex (€2, dg)

e dc ac® a2 acy
~ Q

~ Q ~ Q ~

= (1) = Q(-3) = Q(—2) —=Q(—1) —= Q(0) -
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For each degree p, we will choose a basis V, of (NZ(p) and we will make use of the explicit
matrices Matyp,ypﬂ(dg))). Set LY := A /Im dgl), and for p > 1, L™ := Ker dgp)/lm dgp_l).
According to Theorem 2, we have, for p e N, HH,(A) ~ L™P.

For each ideal J of Clz], we denote by J4 the image of J by the canonical projection

Clz] — A=Clz]/{f1,---, fm)-

Similarly if (g1,...,9,) € A" we denote by (g1,...,9r)4 the ideal of A generated by (g1,...,9r).
Besides, if g € C[z|, and if J is an ideal of C[z], we set

Annjy(g):={h €Clz]/hg=0 mod J}.

In particular, g does not divide 0 in C[z]/J if and only if Ann;(g) = J. Finally, we denote
by Vg the gradient of a polynomial g € Cl[z].

From now on, we consider the case m = 1 and set f := f;. Moreover, we use the notation 0;
for the partial derivative with respect to z;.

2.2 Particular case where n =1and m =1
In the case where n = 1 and m = 1, according to what we have seen, we have for p € N,
T(2p) = Ab;,  T(2p+1)=Abm,  Q(-2p) = Ad},  Q(-2p—1) = Adl&.
We deduce
H'=L"=A,  H'={gm/ge Aand go\f = 0},
and for p € N*,

AbY
{90 )V} /g € A}

Similarly, for p € N*,

H? =

and H?PH = {gbm /g € A and go1 f = 0}.

L7 ={gal /g € A and g0, f = 0},
and for p € N,

Aazljfl
{g(O1f)ale1 /g e A}

Now if f = 2¥, then

L—Qp—l _

H® = L% = A =Clz]/ (zF) ~ CF,
Afl (Ckfl

H'={gm/ge Aand kgzF"1 =0} ~Ckt, L[7'= _ N
1 {g(kz{")&1 /g € A}

)

and for p € N*,
Abll) (Ck'—l

H¥» ~ [ 1~ o~
{g(kzf )W} / g € A}

)

and for p € N*,
H?PH o~ 7% ~ {gbPn; /g € A and kg2i~1 = 0} ~ CF L,

See [12] for a similar calculation.
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3 Case n =2, m = 1. Singular curves of the plane

3.1 Singular curves of the plane

In this section, we recall a result about the weighted homogeneous functions, given in [3,
page 181].

Theorem 3 (Classification of weighted homogeneous functions, [3]). The weighted
homogeneous functions of two variables and of modality zero reduce, up to equivalence, to the
following list of normal forms

Type Ay, Dy, Eg E; Ex

Normal form z{“l + Z% Z%Z2 + Zé’,*l Z% + Z% Z% + leg Z% + Zg

The singularities of types Ay, Dy, Eg, E7, Eg are called simple singularities. In the two
following sections, we will study the Hochschild cohomology of C[z] / (f), where f is one of the
normal forms of the preceding table.

3.2 Description of the cohomology spaces

With the help of Theorem 1 we calculate the Hochschild cohomology of A := Clz1, 23] / (f),
where f € Clz1,29]. We begin by making cochains and differentials explicit, by using the
notations of Section 2.1.

The various spaces of the complex are given by

T(0) = A, T(5) = Ab2m ® Ab3n,,
f(l) = Am & Ano, f(6) = Ab? © Ab3nne,
T(2) = Aby @ A, T(7) = Abim & Abilny,
T(3) = Abym @ Abima,  T(8) = Ab} & Abimins,
T(4) = Ab} @ Abimma,  T(9) = Abim & Abln,

i.e., for an arbitrary p € N*,
T(2p) = AW, & AbY i,

and for an arbitrary p € N,

T(2p+1) = Abim & Abins.

As in [8], we denote by % the partial derivative with respect to the variable ny, for k € {1, 2}.
So, for {k,l} = {1,2}, we have

e Am)=1Am=-mANl1,
ank< )

hence

@y — 9, o OF
A (M) = =5 Z-bum + 5= b

The matrices of d are therefore given by

2p) 0 82f
Mat62p762p+1 (df(iv“p) - ( 0 _81f ) ’
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2p+1 81f an
Mat32p+1,82p+2 (d%p )) :< 0 0 )

We deduce a simpler expression for the cohomology spaces

H° = A,
H' = {gim + g2m2/ (91, 92) € A* and g101 f + g202f = 0}

:{g:(§;>€A2/g-Vf:O}.

For p € N*,

_ {gth + gab 'mma / (g1, g2) € A2 and g2 f = g2daf = 0}
{(9101f + 9202 £)VF / (91, 92) € A%}

{g: ( 9 > €A2/9231f:9232f:0}

H?

g2

") ree)

A

20+l _ {g1im + gabina / (g1, 92) € A% and g101f + 9202 f = 0}
{9202 f0n1 — O1Lfn2) [ g2 € A}

JEORITR]
b))

Remark 2. We recover a result of [8] (here, we use the notations of [8]). According to Theo-
rem 3.8 of [8], we have Hochy, = Hochy,, & Hochgy p+1 and Hochgpi1 = Hochgpyiq pi1, so
Hochy,, = 0 if k ¢ {p,p+ 1}, and Hochopi1 = 0 if k # p + 1. By using Section 4.1 of [8], we
deduce H?* =0 if k ¢ {p,p+ 1}, and H>* 1% =0 if k # p+ 1. Hence H? = H*»P @ [g*r+!
and H?P*t! = [2pTLp+l S Theorem 4.9 of [8] gives the cohomology spaces which we have just
obtained.

It remains to determine these spaces more explicitly. This will be done in the two following
sections.

3.3 Explicit calculations in the particular case where f has separate variables

In this section, we consider the polynomial f = a2 +a2z}, with k > 2,1 > 2, and (a1, az)€(C*)2.
The partial derivatives of f are 01 f = k‘alzlffl and 0o f = lagzéfl.
We already have

H° = Clz1, 2] / (a1 2F + ag2b).

Besides, as f is weighted homogeneous, Euler’s formula gives %2181 f+ %2282 f=/f. Sowe
have the inclusion (f) C (01 f,02f), hence

A N (C[Zl,ZQ]
(O1f,02f)a — (O1f,02f)

~ Vect(zizg/i e [0,k —2], jeo,1-2]).
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But 01 f and f are relatively prime, just as dof and f are, hence if g € A satisfies gO1f = 0
mod (f), then g € (f), i.e. g is zero in A. So,

We now determine the set

{g=<Z;>€A2/g-Vf

First we have

(f,01f) = (a12f + az2h, 2

H? ~ Vect(212) /i € [0,k — 2], j € [0,1 —2]) ~ CHr=DUI=D,

k—1

1 _k—
1 >:(22,zl 1)-

So the only monomials which are not in this ideal are the elements zﬁz% with ¢ € [0,k — 2] and
j € 0,1 —1]. Every polynomial P € C[z] may be written in the form
P=oaf+pof+ >  ayzizd,

1=0,...,k—2

§=0,...,1—1
are the elements

with «, 8 € C[z] and a;; € C. Therefore, the polynomials P € C[z] such that Poyf € (f,01f)
P=af+p0f+ Z aijzizg.

i=0,...,k—2
j=1,..,1-1

So we have calculated Ann s, ¢y (02f). Let g = ( 91 > € A? satisfy the equation
g-Vf=0 mod (f).

Then we have

9262f =0 mod <f7 81f>7
i.e. g2 € Anns g 1 (02 f), i.e. again

g=af+pof+ >y,
i=0,...,.k—2

with (a, 3) € Clz]*.
j=1,..,1—1
It follows that

q1o1f +afdef + BO1fOf +

> aizioaf € (f).
i=0,....k—2
j=T1,.0—1
From the equality 2002 f = If — %zlé)l f, one deduces

s [t oo~ Y

i+1_ j—1
iz %3
i=0,....k—2

j=1,..,1-1

€ (/)
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i.e.

l o .
g1=—Bohf + z Z a2t 4 6, with § € C[z].
i=0,...,k—2
j=1,..,1-1
Then we verify that the elements g; and gy obtained in this way are indeed solutions of equa-
tion (2).
Finally, we have

{geA?/g-Vf=0}
= _ﬂ(—a;{f>+, Z aijzll'zg_1<’%z?)/ﬁeAandaijEC

We immediately deduce the cohomology spaces of odd degree:

Vp> 1 HWH ~ kD01
H' ~ C*=DUD @ Clzy, 29]/(a12F + ag2b),

where the direct sum results from the following argument: if we have

y L,
_ﬁ< _a;lff ) = | Z aijzizﬂ—l ( kz21 ) mod <f>,

i=0,...,k—2
j=1,...,0-1
then
R -1 l i+1 _J—1
v:= —flagzy ~ — Z Eaijzi zy € (f).
i=0,....k—2
j: 7"'7l_1

And by a Euclidian division in (Clzz]) [21], we may write 5 = fq + r, where the z;-degree of r
is smaller or equal to k — 1. So the z;-degree of v is also smaller or equal to k — 1, thus v € (f)
implies 8 = 0 and a;; = 0.

Remark 3. We obtain in particular the cohomology for the cases where f = z]fH +23 (k € N¥),
f =2} +25 and f = 23 + 25. These cases correspond respectively to the weighted homogeneous
functions of types Ag, Fg and Eg given in Theorem 3.

The table below summarizes the results we have just obtained for the three particular cases

[ i (i p =2
Ap || Clz] /(5 4+ 23) | Clz] / (5T + 22) @ CF | CF
Ee || Clz]/ (2} +23) | Cla]/ (s} +23) ®@C® | CO
Es || Cle]/(:f +23) |Cla]/(sf +23)@C® |C®

The cases where f = 2229 + zé“_l and f = 2} + 2123, i.e. respectively Dy, and E7, will be
studied in the next section.
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3.4 Explicit calculations for D, and Ey

To study these particular cases, we use the following result about Groebner bases (Theorem 4).
First, recall the definition of a Groebner basis. For g € Clz], we denote by lt(g) its leading
term (for the lexicographic order). Given a non-trivial ideal J of C[z], a Groebner basis of J is
a finite subset Gy of J\ {0} such that for all f € J\ {0}, there exists g € Gy such that lt(g)
divides 1t(f). See [15] for more details.

Definition 1. Let J be a non-trivial ideal of C[z] and let G; := [g1, ..., gr| be a Groebner basis
of J. We call set of the G j-standard terms, the set of all monomials of C[z] that are not divisible

by any of 1t(g1),...,1t(gr).

Theorem 4 (Macaulay). The set of the G j-standard terms forms a basis of the quotient vector
space Clz] / J.

3.4.1 Case of f = z%zz + zg_l, i.e. Dy
Here we have
= Z%ZQ + zg_l, O f = 22129 and Oof = zf + (k — 1)25‘2.
A Groebner basis of the ideal (f,dsf) is
B = [by,bo] = [2f + (k= 1)257%,257"].
So the set of the standard terms is
{#i2] Jie{0,1} and j € [0, k —2]}.

We may now solve the equation pd; f = 0 in Clz] / (f, 02 f). In fact, by writing

the equation becomes

q:= Z aijzﬁlzgﬂ € (f,02f).

We look for the normal form of the element ¢ modulo the ideal (f, s f). ‘
The multivariate division of ¢ by B is ¢ = q1b1 + g2bo + r with r = Z?;g aojjzlzéﬂ.

Thus the solution in C[z] / (f, O2f) is
k-2 '
p=aok—27y "+ E a1,j217%y.
7=0

But the equation
g Vf=0 mod (f)
yields

9101f =0 mod (f,0f),
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i.e.

g1 = af + B0sf +azh 2 + Z bjzlzg, with (a, ) € C[z]* and a,b; € C.

Hence
k—2 '
G202 f + BOVf Oof +azh P00 f + > bizmzonf € (f).
j=0
And with the equalities,
1 1
5 = o (f — 20af) = —5—20f mod (f),
and
k—2
9 2101 f + z00of = (k—1)f (Euler),
we obtain

Oaf | 92+ BOLS = 5 zlzz+2bj2 e IO

ie.,

2
g2 = —PBof + 5 _akzlzz - ijngﬂ +4f, with ¢ € C[z].
7=0

So
{gecA®/g-Vf=0}

8f k—2
B p)
_ ﬂ(_alf>+a<2kzlz2)+0b]z< i >/ﬂ€Aab€<C

J
On the other hand, a Groebner basis of (9 f, daf) is [z + (k — 1)2572 2129, 2571], thus
Clz] / (01 f, Oaf ) ~ Vect(zl, 1,z29,.. ,z§ )
Let us summarize (by using, for the direct sum, the same argument as in Section 3.2):
H° =Clz] / (#}2 + z§ b,
H' =~ Clg]/ (s} + 25~ 1) & CF,
H?* ~ CF,
H¥PH ~ ¢k,

3.4.2 Case of f = zi” + zlzg’, i.e. Er

Here We have 1 f = 323 + 25 and Oof = 32125. A Groebner basis of the ideal (f,01f) is
[322 + 23,2123, 28], and a Groebner basis of (9;f,0af) is [327 + 23,2122, 23]. By an analogous
proof, we obtain

H® = Clz] / (2} + 2123,
H'~Clz] /(z} + m23) & C”,
H» ~ (7,

H»+ ~ 7.
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3.5 Homology

The study is the same as the one of the Hochschild cohomology: to get the Hochschild homology
is equivalent to compute the cohomology of the complex (ﬁ, d@) described in Section 2.1. We
have Q(0) = A, Q(=2p) = Ad® ® Aal" €16 for p € N*, and Q(—2p — 1) = AdP&; & Adb&, for
p € N. This defines the bases V. The differential is dg = (£101f + 5282]0)8%1.

So we obtain, for p € N*, the matrices

(~2p)) _ [ pOLf O
Matv,Qp,V,QPH (dﬁ ) - ( pOaf O > ’

and

(—=2p—1)\ _ 0 0
Maty o, v, (d7) = < ~pdaf v\ >

The cohomology spaces read as

-4 -
’ {9Vf/ge A}
For p € N*,
{( i; ) € AQ/pglalf =pg102f = 0}
L% ~

{< —(p+1)g182f0+ (p+1)g201f >/< 5: ) © A2}

A
For p € N*,
9 .
121 {( 92 > © AQ/ ~P0] + PO ] = 0} _{ge A/ det(VSf, g) = 0}
{((p+1)glalf>/<gl)eA2} B {gVf | ge A}
(p+1)g102f 92

From now on, we assume that f has separate variables, or f is of type Dy or E7. Then we

have {g € A/ g0 f = gOof =0} = {0}, and according to Euler’s formula, for p € N, L™2 ~
C . 2

ﬁ ~ %. For the computation of {g € A%/ det(Vf,g) = 0} and {giAW, we proceed

with Groebner bases as in Section 3.3. For example, we do it for f = 2229 + 25—1 (i.e. type D).

Let g € A% be such that det(Vf,g) = 0. Then g201f = 0 mod (f, d2f), i.e., according to

Section 3.4.1,
k—2 '
g2 = af + B0af +azf?+> bz,
j=0

with (a, 8) € C[z]? and a,b; € C. Hence

k—2
—100f + afOLf + BOufONS + azk 20 f + Y b3S € (f).

=0
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With the equalities,

Zgagf mod <f>,

2k 2k
and
k—2
2101 f + 2202f = (k—1)f (Euler),
we obtain
k—2 9
+1
Oof | —g1+B0Lf — 512 +Jzob]2 — kZ%Jr € (f)
ie.,
= Bof - 5 2122+Zb = “+5f, with & € C[z).
So

{g e A?/ det(Vf, g)

_0}
{ﬁVf+a( le2>+2b22<2kz2>/ﬁeA a, b; EC}

We have {gVf /g€ A} C {g € A%/ det(Vf,g) = 0}, thus
dim (A% /{gVf /g€ A}) > dim (A*/ {g € A*/ det(V f,g) = 0}).

Since A? /{g € A%/ det(Vf,g) =0} ~ {det(Vf,g) /g € A%}, and since the map

geAHda<Vﬁ<g>>e{@uVﬁ@/geA%

is injective, we deduce that A% /{gV f /g € A} is infinite-dimensional.
We collect in the following table the results for the Hochschild homology in the various cases

]TanHHbzA \HH1 ‘HHmp22
Ap || Cla)/{n" +25) | A?/AVS|CH
Dy, Clz] /(2320 + 2571 | A2 ) AV | CF
Eg Clz] / (2} + 23) A% AV | CS
E; Clz] / (2} + z123) A% ) AVF | CT
Eg Clz] / (2} + 23) A% JAVf | CB

4 Case n =3, m = 1. Klein surfaces

4.1 Klein surfaces

Given a finite group G acting on C", we associate to it, according to Erlangen program of
Klein, the quotient space C"/G, i.e. the space whose points are the orbits under the action



16 F. Butin

of G; it is an algebraic variety, and the polynomial functions on this variety are the polynomial
functions on C™ which are G-invariant. In the case of SLoC, invariant theory allows us to
associate a polynomial to any finite subgroup, as explained in Proposition 4. Thus, to every
finite subgroup of SLoC is associated the zero set of this polynomial; it is an algebraic variety,
called a Klein surface.

In this section we recall some results about these surfaces. See the references [17] and [7] for
more details.

Proposition 3. Fvery finite subgroup of SLoC is conjugate to one of the following groups:

Ag (cyclic), k> 1, |Ag| = k;
Dy, (dihedral), k > 1, |Dy| = 4k;
Es (tetrahedral), |Eg| = 24;

E; (octahedral), |E;| = 48;

Eg (icosahedral), |Es| = 120.

Proposition 4. Let G be one of the groups of the preceding list. The ring of invariants is the
following

Clx,y]® = Clex, ea, e3] = Cley, ea] @ e3Clex, ea] =~ Clz1, 22, 23] / {f),

where the invariants e; are homogeneous polynomials, with e; and ez algebraically independent,
and where f is a weighted homogeneous polynomial with an isolated singularity at the origin.
These polynomials are given in the following table.

We call Klein surface the algebraic hyper-surface defined by {z € C?/ f(z) = 0}.

(G er. ea, es [/ [ Clet, 22, 2] / (011,021, 05) ]
k
e = k_2
Ag || e2 = y* 7’6(212272:?) Yect(l,zg,...,z3 )
es = 1y dim=k—1
e1 = 22h 1y 4 (= 1)kt g2k +1
Dy e; — 2k +:%71()kygk Y Mo ()P 224 (=1)FF1 2225442511 Vect(l,ZQ,Z3,...,z§71)
e3 = w2y? with \p = 2k(—1)F+1 dim=k+1

e1 = 33yBat — y12 4+ 3348 — 12 s o
Fg || e2 = ldy*at + 28 + 48 4(22 — 25 +108z%) Yect(l, 22,723, %273, 2273, 73)
es = 2y — xyP dim =6

e1 = —34z5y13—yx17+34y5x13+zy17 ) ) )
E7 || e2 = —3y'022 + 69626 — 392210 8(327 — 1223 + 2223) Yect(l, 72,25, 23, 2223, 2523, 23)
ez = ldytat + 28 + 48 dim =7

e1 = 230452242545 —10005220y10
—10005210420 52254254430

Eg || e2 = 220 — 22821545 4 494210410 10(—z% + zg +1 728z§)
+ 228x5y15 4 420 dim = 8

ez = xlly + 112696 — gyt

Vect(z%zg) i=0,1,
§j=0,....3

Before carrying on with our study, we make a digression in order to draw a parallel bet-
ween the Poisson and the Hochschild cohomologies of Klein surfaces, by recalling the result of
A. Pichereau.

Theorem 5 (Pichereau). Consider the Poisson bracket defined on Clz1, 21, 23] by

{‘a ‘}f = anal A Oy + 81f82 A O3 + 82f33 A0l = l(df)(@l A Oy A 33),
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where © 1s the contraction of a multiderivation by a differential form. Denote by HP}‘ (resp.

HP*f) the Poisson cohomology (resp. homology) for this bracket. Under the previous assump-
tions, the Poisson cohomology H P} and the Poisson homology HP! of (Clz1, z1,23] / (f), {1 f)
are given by

HP{=C,  HP}~HP;=/{0},
HPJ ~ HP{ ~C[z21, 22, 23] / (91 f, Do f, ),
dim(HP{) = dim(HP]) -1,
HP/ = HP] ={0} if j>3.
The algebra C[z,y] is a Poisson algebra for the standard symplectic bracket {-, -}stq. As G is
a subgroup of the symplectic group Sp,C (since Sp,C = SLyC), the invariant algebra C[z, y]“ is

a Poisson subalgebra of Cz, y]. The following proposition allows us to deduce, from Theorem 5,
the Poisson cohomology and homology of C[z,y]“ for the standard symplectic bracket.

Proposition 5. With the choice made in the preceding table for the polynomial f, the isomor-
phism of associative algebras

71 (Cle, Y% dsa) = (€l 228l (), =5

1s a Poisson isomorphism.

In the sequel, we will calculate the Hochschild cohomology of C[z1, 21, 23]/(f), and we will
immediately deduce the Hochschild cohomology of Clz, y]G, with the help of the isomorphism .
Note that the fact that 7 preserves the Poisson structures has no incidence on the computation
of the Hochschild cohomology. Therefore, so as to simplify the calculations, we may replace the
polynomial f by a simpler one, given in the following table

G Ay Dy, FEg FEr FEyg
Fl24+22+28 |22 +22+28 |22 +234+25 | 22428+ 2023 | 22423 +23

Indeed, the linear maps defined by

Clz] — C[z],
(21, 22, 23) — (121, 222, a323),

(21, 22, 23) — (a1(z1 + 22), a2(21 + 22), 323)

are isomorphisms of associative algebras.

4.2 Description of the cohomology spaces

We consider now the case A := C|z1, 22, 23],/ (f) and we want to calculate the Hochschild
cohomology of A. We use the notations of Section 2.1, but we change the ordering of the basis:
we shall take (112, m2m3, 13m1) instead of (n1m2,m1m3, M2n3). The different spaces of the complex
are now given by

T(0) = 4,

T(1) = Am & Anp & Ans,

T(2) = Aby & Aniny & Az & Angny,
T(3) = Abimy @ Abyno @ Abyig © Ammans,
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T(4) = Ab; ® Abimine @ Abinans & Abinsm,
T(5) = Ab¥m @ Ab?ny @ Ab2nz & Abyminans,

i.e., for an arbitrary p € N*,

T(2p) = AW @& AP 'y @ A 'nans @ AP 'nsmy,

and
T(2p+ 1) = AW @ Abne & A ns © A ninans.
We have
0
67(771/\772/\773) =1AmAn=nAnAl,
m
thus

3) _of of of
A (mins) = o7 bupns + 5 = busm + 5 =binip.

The matrices of d are therefore given by

31f 32f 8Bf
0 0 0
MatBLBz (dg)) = 0 0 0 ’
0 0 0
0 an 0 _83f
. 0 -0 0 0
Vpe N Mathp,B2p+1 (dgp)) = 0 Olf —;gff onf ’
0 0 0 0
of Of 95f 0
. 941 0 0 0 o
Vp eN s Mat82p+1782p+2 (d%p—i_ )) = 0 0 0 a?;
0 0 0 Oof
We deduce
HY = A,

H' = {gim + gam2 + g3m3 / (91, 92, g3) € A® and g101 f + g202f + g303f = 0}

g1
>~ {g (92 ) EAS/g-Vf()}’
g3
(90791,92,93) S A4 and }

{gob1 + g3min2 + g1m2m3 + ganam / 9302 f — g203f = g103f — g301 f
= g201f —g102f =0

H? =
{(g101f + g202f + 9303f)b1, / (91,92, 93) € A3}

g0

g1
~loe_ | N v _ g-Vf
il L eA4/ fA(92>O /{( 03,1 >/g€A3}

g3 g3



Hochschild Homology and Cohomology of Klein Surfaces 19

A

~ d{ge A /VfArg=0)
O 0 Oaf)a B EAT/VIng =0}
For p > 2,
(90,91, g2, g3) € A* and
- - - Oz f — 9203 f
W+ ggbP ! pp—t 1 9302
goby + 930y "Mz + 9107 m2ms + 9207 Mzm /T 00nf — gudh f
H? =g201f —g102f =0

- (9101f + g202.f + 9303 f )by }
- - - bl 9 P} € A3
{ + g0(s O muma + 01 FV) " mpams + Do SO ) /(90 91,92, 93)

90 g-Vf

g1
g1 4 go o1 f 3
~ = e A*/VfA =0 e A dgoe A
& 92 / / ( g; ) / 9o 02 f /8 ane 9o
g3 9003 f
N A ABe4/Ving=0)
N <81f7 ana 83f>A {gvf/g € A} .
For p € N*,
1 (90, 91, g293) € A* and
G + gabina + g3bins + goby ™ minens / 91O f + 9202 f + g303f = 0,
o _ 9093 f = goOr f = goOaf =0
B (9302 f — 9203 )01 + (9103 f — 9301 f)bn2 3
{ +(g201 f — 102f)bm3 /(gl’g2’93) €4
g1 ( g1 )
g2 4/ Vf-| g2 | =0 Vf/\g> 3}
~ cA €A
93 / 93 /{( 0 /g
90 9003f =goOf=go02f =0

_{geA’/Vf g=0}
{Ving/ge A3}

The following section will allow us to make those various spaces more explicit.

®{g€ A/ gosf =goLf =glaf =0}.

4.3 Explicit calculations in the particular case where f has separate variables

In this section, we consider the polynomial f = a1z} + agzg + a32§, with 2 < i < j < k and

a; € C*. Its partial derivatives are 01 f = ialzi_l, Oof = jagzé_l and O3 f = ka3z§_1.

We already have
H® = Clz1, 20, 23] / (a1 2} + CLQZ% + azzy).

Moreover, as f is weighted homogeneous, Euler’s formula gives
1 1 1
;Zlalf + 52232f + Ezsasf =f.

So we have the inclusion (f) C (01 f,02f,05f), thus

A N (C[Zl,ZQ,Z:?J
<81f7 82f, a3f>A B <alf> 82f7 a3f>

~ Vect (ZfZng/pE [[O’l_Qﬂa qc [[Oa] _2]]7 re [[Oak_2]])
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Finally, as 01 f and f are relatively prime, if g € A verifies gd1f = 0 mod (f), then g € (f),

i.e. g is zero in A.
Now we determine the set

g1
g = g2
g3

cA/g-Vf=0

First we have
<f7 81f7 82f> = <CL12’§ + a’2zg + CL3Z§7 211._17 Zg_1> - <Zli_17 Zg_la Zl?f)
Thus the only monomials which are not in this ideal are the elements 272324 with p € [0, — 2],
q€[0,j—2], and r € [0,k — 1].
So every polynomial P € C[z] may be written in the form

P=af+B01f+~v02f + Z Apgr 2} 2925

The polynomials P € C|z] such that POsf € (f,01f,02f) are therefore the following ones

P=oaf+B0if+02f + > apphzzs.
p=0,...,i—2
g=0,..j—2
r=1,..,.k—1

So we have calculated Anny s, 19,7 (93f). The equation
g Vf=0 mod (f)
leads to g3 € Ann(f,81f,82f) (63f), i.e.

gs=of +Bf +70uf + Y apgr 2z,

p=0,...,i—

q 07"'7j7
1..k—

Il
il VI N

T

with (a, 8,7) € C[z]3. Hence
Z apqrzlfzgzgai%f € (f,of).

7’L._

9202 f +~702f0sf +
p
q

0
0
1

= NN

goee
geeey,
gooe

J
k

Thus, according to Euler’s formula,

k _
Ouf | g2 +705f — = > apehdTAT | € (f Ouf).

p=0,...,i—2
q=0...5—-2
r=1,....k—1

Since Ann s 9, 7y (92f) = (f, O1f), this equation is equivalent to

k 1
g2 = —YO03f + — E Apgrh 23T 2V Sf teonf,
I po, i-2
p=Y,...,1
q:O,J_Z
r=1,...,k—1
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with d,e € C[z]. It follows that
9101 f + BOLfOsf + €01 fOaf

k +1_r—1
+ Z Apgr2h 242503 f + = Z Apgr2 za " 25 0o f € (f).
0, i— J
0. -
1 k=

0,....i—
0.....7
1,k

)
|
]
|

3
Il
— NN
S
SN

And, according to Euler’s formula,

i.e.

k _
g1 = *583]0 - 562f + ; Z apqrzif+1zgzg ! + 77f,

p=0,...,i—2
q:077j_2
r=1,....,k—1
with 7 € C[z]. Finally
{ge A /g -Vf=0}
— 221
=< VfA 8 + Z apqrzfzgzg_l G2 /(ﬂ,’y,s) € A3 and apgr € C
— p=0,...,i—2 23
g=0...7j—2
r=1,....,k—1

We deduce immediately the cohomology spaces of odd degrees
Vp>1, HP~CE-DG-DE-1)
H'~VfA(Cle]/ () @ct DU,
It remains to determine the set

g1
g=| 92 | €A’/Vfrg=0

93
Let g € A3 be such that Vf A g = 0. This means that, modulo (f), g verifies the system
O2fgs —03fg2 =0,  O3fg1—01fgs=0,  Oifga—afg =0.

The first equation gives, modulo (f,02f), 93fg2 = 0. Now Anny g, 1y(03f) = (f, 02 f), therefore
go = af + [0sf. Hence

92f(g3 — BOf) =0 mod (f),
i.c. g3 = 7 f + B0sf. Finally, we obtain
93f(g1 — B0Lf) =0 mod (f),
L. g1 =6+ 801f. So, {g€ A3 /Vfrg=0}={BVf/B € A}.
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We deduce the cohomology spaces of even degrees (for the direct sum, we use the same
argument as in Section 3.2)

Vp>2, H¥~A/(0if,00f,05f) ~Cla] [ (71, 270, 2571
=~ Vect (272525 /p € [0,i — 2], g € [0,5 —2],7 € [0,k —2])
~ Cl-DE-D(k-1)

H2 ~ {ﬁ Vf/Be A} D c=DE-D(k-1)
~ Clz] / (a1 2% + agzg + agzf) @ CO-DE-D(E=1),
Remark 4. We also have
VfA(Cl2 /() = (Clz] / ()’ /{g/VfAg=0}=(Clz]/{f))’/ (Clz]/ (f))V].

Moreover the map

g g1
(Clal/ (2~ VEnea /it (D) evin| e
0

is injective, thus V.f A (C[z] / (f))? is infinite-dimensional.

Remark 5. In particular, we obtain the cohomology for the cases where f = 22 + 23 + z§,
f=22+2+ zg‘ and f = 27 + 23 + z3. These cases correspond respectively to the types Ag, Fg
and Fg of the Klein surfaces.

The following table sums up the results of those three special cases:

[ i i E2VEE
Ay || Clz] / (2} + 25 + 25) |V A (Clz) / ()’ @ C* [ Cla] / (2 + 23 + 25) @ CF1 [ CH!
Es|Clz)/ (} + 28 +23)[VF A (Cl2) / ()’ ©C® | Cla]/(zf + 23 +2]) @C® |C°
Ey| Cle]/ (s} + 25 + ) |V/ A (Clal / ()’ @ C® |Cle]/ (A + 25 +25)@C® [CP

The cases where f = 22 + 2323 + 25 and f = 22 + 23 + 2923, i.e. respectively Dy and E; are
studied in the following section.
4.4 Explicit calculations for D, and E;
4.4.1 Case of f = zf + z%z;:, + z:’,f, i.e. Dy

In this section, we consider the polynomial f = 27+ 2323 +z§, with k > 3. Tts partial derivatives
are O1f = 2z, Oof = 22923 and Os3f = Z% + kizg_l.
We already have

H® = Clz] / (22 + 2223 + 25).

Besides, since f is weighted homogeneous, Euler’s formula gives

k k—1
521(91f+ 5 29000 f + 2303 f =k f. (3)
Thus, we have the inclusion (f) C (91 f,92f, d3f). Moreover, a Groebner basis of (0 f, 02 f, 93 f)

is [25, 2023, 25 + /€Z§_1, z1], therefore

A N (C[217227Z3}
<81f7 62f, 63f>A B <61f> 82f7 a3f>

~ Vect(zz, 1,23,..., zé“*l).
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Finally, as 01 f and f are relatively prime, if g € A verifies gd1f = 0 mod (f), then g € (f),
ie. giszeroin A, thus {g € A/ gdsf = go1f = g0af =0} =0.

Now we determine the set

g1

g = 92

g3

A Groebner basis of (f,01f,05f) is [z1,25, 22 + k‘z‘fffl], thus a basis of C[z]|/(f,O1f,05f) is

{zézé /i€{0,1}, j € [0,k — 1]}. We have already solved the equation pdaf = 0 in this space;
the solutions of this equation in Cz] / (f, 01 f,05f) are of the form

cA/g-Vf=0

k—1

k-1 j

p=agk-123 + E a1,1'22z§,
§=0

where ag ;—1,a1,; € C.
g1

Letg= | g2

g3

€ A3 satisfy the equation

g-Vf=0 mod (f).
Then we have

9282f =0 mod <f7 81f7 83f>7

hence

k—1
g2 =af +Bof +~0sf +arht+ Z bjze2],
7=0

with (a, 3,7) € Clz]>. And
k-1

9303f + Y03 fOf + azb L oo f + ij222§32f € (f,01f).

J=0

Now according to Euler’s formula (3) and the equality

z2z363f mod <f, (91f>,

1 1 1
Koy = 1% <22f — 222303 f — 2222131f> =17

Equation (4) becomes

k—1
2a 2 .
Osf | 95 +702f — 17278 — ) bjT— 1z§+1 € (f,onf).
J=0

As Anny 9, 1) (05f) = (f,01f), this equation is equivalent to
9 k—1
S > b,
g3 7@f+1_k@%+ﬁﬂjk_1

A4 5f +ednf,
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with §,e € C[z]. We find

k—1

k ; a
g1 = —B0af —cdsf + bjmzlzgj), + s taf,
=0
with n € C[z]. Finally, we have
{gcA’/g-Vf=0}
k J 1
g k-1 F—17173 Tk 271 3
_ . 7 k—1 (57’% 5) €A
=<cVfA 3 —i—Zb] §2Z3‘+1 +a 22'3 /anda,bjeC )
AN N TR %273

as well as cohomology spaces of odd degrees (for the direct sum, we use the same argument as
in Section 3.2)

Vp>1, HPH ~CkHL
H' ~VfA(Clz]/{f)>®Cr.

To show {g € A®/VfAg=0}={fg+0Vf/gec A B A}, we proceed as in the case
of separate variables. We deduce the cohomology spaces of even degrees
Vp>2 H»~ A [ {(Ovf,0af,05f) ~ Vect (2’2, 1,23,.. .,z§_1> ~ Ck+1,
H?>~{BVf/B € Ay ®CH" ~Cla] / (] + 2523 + 25) & C*F1.

4.4.2 Case of f = zf + zg + z2z§’, i.e. Ey
Here we have 01 f = 221,02f = 323 + 23 and 93f = 32923. The proof is similar to that of the
previous cases. A Groebner basis of (01 f, Do f, O3 f) is [23, 2223, 325+ 23, 21]. Similarly, a Groebner
basis of (f,01f,0af) is [2§, 2223,323 + 23, 21]. We obtain the following results
Vp>1, H»H ~(7,
H'~VfA(Clzl/(f)*aCT,
Vp>2, H°=Clz]/ (] + 25 + 2225),
H? ~ A/ (01f,0of, 3f) ~ Vect (zg, 221, 23,22, 23, zg‘) ~ C7,
H?~{pVf /B Ay ®CT ~Clz]/ (2} + 25 + 2025) © C".

Remark 6. In all the previously studied cases, there exists a triple (3, j, k) such that {i,j,k} =
{1,2,3}, and such that the map

Clz] /(01 f,02f,03f) — {g € Clz] / (f,0;f,0rf) / 90if = 0},
P mod (O1f,02f,03f) = 2P mod (f,0;f,0kf)

is an isomorphism of vector spaces.

4.5 Homology

The study is the same as the one of the Hochschild cohomology, and we proceed as in Section 3.5.
Here, we have

Q(0) = 4, Q(—1) = A6y @ A& @ Ag,
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Vpe N, Q(—2p) = Ad) ® Ad 616 @ Ad) 6265 © Al 165,
VpeN, Q(-2p—1) = Adl¢) ® A&y & Adlés @ Aa} ™ €166,

This defines the bases V,. The differential is dg = (§101f + &202f + {383]“)8%1
By setting Df := (0sf O1f O2f), we deduce the matrices

Matv727v71 (dé{m) = ( Vf 03,3 ),

) \% 0
w22 s (657 = (T oy )
0 0 0 0
(—2p-1)\ _ [ —pO2f poLf 0 0
Vp>1, MatV72p71aV72P (dﬁ ! ) - 0 —pdsf poaf O
pOsf 0  —pof O

The cohomology spaces read as

S B -
’ {gVf/ge A}y
A3
2={g€ A/gof=g0sf =gdf=0}

{Vfrng/ge A3}

For p > 2,

{geA®/g-Vf=0}
{Vfng/ge A3} ~

L*ZP:{geA/galfzgazfzgafﬂf:O}@

For p € N*,

L—2p—1:{g€A3/vf/\g:0} A
{9Vf/geA} (Vf)a
From now on, we assume that either f has separate variables, or f is of type Dy or E;. Then
we have {g € A/ g0 f = gOof = g03f = 0} = {0}, and according to Euler’s formula,

A Clg
(Vhia  (Vf)

Most of the spaces have already been computed in Sections 4.3 and 4.4. In particular, we have
A3 AV f ~Vf A A3. Moreover, {VfAg/ge€ A3}y C{ge A3 /g -Vf =0}, thus

dim (A* /{VfArg/ge A®}) > dim (4°/{ge A’ /g-Vf=0}).
And A% /{g € A3 /g-Vf =0} ~{g-Vf/gec A3}. Since the map

g
geAH(O)-VfG{gi/geAP’}
0

is injective, A3/ {Vf Ag/g € A3} is infinite-dimensional.
In the following table we collect the results for the Hochschild homology in the various cases

] Type H HHy= A \ HH, \ HH, \ HH,, p>3

Ay Clz]/ (22 +22+25) | VFANA3 | A3/ (VfAA3)|CFT
Dy || Clz] /(23 + 2325+ 25) | VFANA3 | A3/ (VA A3) | CEHL
FEg Clz] /(22 + 25 +25) | VFANA3| A3/ (VfAA3)|CE
E; Clz]/ (22 + 25 + 2023) | VFANA3 | A3/ (VFAA3) | CT
Es Clz] / (2} + 25 + 23) VfANA3| A3/ (VFAA3)|CB
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