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Abstract. We consider the action of Vectpo)(R) by Lie derivative on the spaces of symbols
of differential operators. We study the deformations of this action that become trivial
once restricted to s1(2). Necessary and sufficient conditions for integrability of infinitesimal
deformations are given.

Key words: tensor densities, cohomology, deformations

2000 Mathematics Subject Classification: 17B56; 17B66; 53D55

1 Introduction

Let Vectpo(R) be the Lie algebra of polynomial vector fields on R. Consider the 1-parameter
action of Vectpy)(R) on the space R[x] of polynomial functions on R defined by

Lya () = Xf +2X'F,
where X, f € Rlz] and X' := %X Denote by F) the Vectpoi(R)-module structure on R[z] defined
by this action for a fixed A\. Geometrically, F) is the space of polynomial weighted densities of
weight A on R

Fr = {fda*| f € Rlz]}.

The space F) coincides with the space of vector fields, functions and differential 1-forms for
A= —1,0 and 1, respectively.

Denote by D, ,, := Homgits(F,, Fu) the Vectpo(R)-module of linear differential operators
with the Vectpy(R)-action given by the formula

LXM(A) = LM 0 A— Ao I%. (1)

Each module D, , has a natural filtration by the order of differential operators; the graded mo-
dule S, , := gD, ;, is called the space of symbols. The quotient-module D]; L / D’,fﬁ,]l is isomorphic
to the module of tensor densities F,,_,_, the isomorphism is provided by the principal symbol o
defined by

k

A=) ai(@)d, — o(A) = ay(w) (o)~
1=0

*This paper is a contribution to the Special Issue on Deformation Quantization. The full collection is available
at http://www.emis.de/journals/SIGMA /Deformation_Quantization.html
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(see, e.g., [10]). As Vectpoi(R)-module, the space S,,,, depends only on the difference § = 1 — v,
so that S, ,, can be written as Ss, and we have

Ss =P For
k=0

as Vectpo (R)-modules. The space of symbols of order < n is

ng = @fg_j.
7=0

The space D,,;, cannot be isomorphic as a Vectpol(R)-module to the corresponding space of
symbols, but is its deformation in the sense of Richardson—Neijenhuis [12]; however, they are
isomorphic as sl(2)-modules (see [9]). In the last two decades, deformations of various types
of structures have assumed an ever increasing role in mathematics and physics. For each such
deformation problem a goal is to determine if all related deformation obstructions vanish and
many beautiful techniques had been developed to determine when this is so. Deformations of
Lie algebras with base and versal deformations were already considered by Fialowski [5]. It was
further developed, with introduction of a complete local algebra base (local means a commutative
algebra which has a unique maximal ideal) by Fialowski [6]. Also, in [6], the notion of miniversal
(or formal versal) deformation was introduced in general, and it was proved that under some
cohomology restrictions, a versal deformation exists. Later Fialowski and Fuchs, using this
framework, gave a construction for the versal deformation [7].

We use the framework of Fialowski [6] (see also [1] and [2]) and consider (multi-parameter)
deformations over complete local algebras. We construct the miniversal deformation of this
action and define the complete local algebra related to this deformation.

According to Nijenhuis—Richardson [12], deformation theory of modules is closely related to
the computation of cohomology. More precisely, given a Lie algebra g and a g-module V', the
infinitesimal deformations of the g-module structure on V, i.e., deformations that are linear in
the parameter of deformation, are related to H! (g; End(V)). The obstructions to extension of
any infinitesimal deformation to a formal one are related to H? (g; End(V)). More generally,
if h is a subalgebra of g, then the h-relative cohomology space H! (g, h; End(V')) measures the
infinitesimal deformations that become trivial once the action is restricted to b (h-trivial de-
formations), while the obstructions to extension of any h-trivial infinitesimal deformation to
a formal one are related to H? (g, h; End(V)) (see, e.g., [3]).

Denote D := D(n, §) the Vectpyi(R)-module of differential operators on 5. The infinitesimal
deformations of the Vectpo(R)-module S§ are classified by the first differential cohomology
space,

H g (Vectpol(R); D) = @ xHjige (Vectpor (R); Da k)

while the obstructions for integrability of infinitesimal deformations belong to the second diffe-
rential cohomology space,

Hir (Vectpol (R); D) = @ xHigr (Vectpol(R); D rsk),

where, hereafter, § — A and k are integers satisfying § —n < A\, A+ k < 4.
Here we study the sl(2)-trivial deformations, thus we consider the differential s[(2)-relative
cohomology spaces. The first space

Hiier(Vectpor(R), 5[(2); D) = @ xHiise(Vectpor(R), 51(2); Daask)
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was calculated by Bouarroudj and Ovsienko [4]. For the second space
Hiigr (Vectpol (R), 51(2); D) = @k Haier (Vectpol (R), s1(2); Daavk)

we give, in this paper, explicit expressions of some s[(2)-relative nontrivial 2-cocycles.

This paper is organized as follows. In Section 2 we study some properties of the s[(2)-invariant
differential operators. These properties are related to the s[(2)-relative cohomology. In Section 3
we study the first and the second sl(2)-relative cohomology spaces which are closely related to
the deformation theory. Especially we explain some sl(2)-relative 2-cocycles which naturally
appear as obstructions to integrate any sl(2)-trivial infinitesimal deformation to a formal one.
In Section 4 we give an outline of the general deformation theory: definitions, equivalence,
integrability conditions and miniversal deformations. In Section 5 we give the first main result
of this paper: Theorem 2. That is, we explain all second-order integrability conditions for any
infinitesimal s[(2)-trivial deformation of the Vectpy(R)-module S§'. In Section 6 we complete the
list of integrability conditions by computing those of third-order. We prove that these conditions
are necessary and sufficient to integrate any infinitesimal s[(2)-trivial deformation to a formal
one. Moreover, we prove that any s[(2)-trivial deformation is, in fact, equivalent to a polynomial
one of degree < 2: Theorem 3. Finally, in Section 7, we complete our study by given a few
examples of deformations.

2 Invariant differential operators

In this paper we study the sl(2)-trivial deformations of the space of symbols of differential
operators which is a Vectpy(R)-module, so we begin by studying some properties of s[(2)-
invariant bilinear differential operators.

Let us consider the space of bilinear differential operators ¢ : F) x F,, — F,. The Lie algebra,
Vectpol(R), acts on this space by the Lie derivative:

Lx(C)(fdx)\, gdzt) = LTX(c(fdx)‘,gdx“)) — c(Lé((fdx)‘), gdx“) - c(fdx)‘, L%(gdw“)).

A bilinear differential operator c : F, x Fy — F, is called sl(2)-invariant if, for all X € sl(2),
we have Ly (c) = 0, or equivalently

L5 (e(fda™, gdx)‘)) = (L% (fda"), gdx)‘) + ¢(fdaT, Lﬁ}(gd:):/\)). (2)

That is, the set of such sl(2)-invariant bilinear differential operators is the subspace on which
the subalgebra s[(2) acts trivially.

Now, let us consider a linear map ¢ : Vectpo(R) — D 4, then we can see c¢ as a bilinear
differential operator ¢ : Vectpo(R) x Fy — F,, (or ¢ : F_1 x Fy — F, since Vectpy(R) is
isomorphic to F_1) defined by ¢(X, fdz*) = ¢(X)(fdz?). So, the s[(2)-invariance property (2)
of ¢ reads, for all X € s((2) and Y € Vectpo(R),

L5 oe(Y) = ¢([X,Y]) + ¢(Y) o Lk,
or equivalently
LY (e(Y) = e([X, Y)).

The sl(2)-invariant bilinear differential operators were calculated by Gordan. We recall
here the results and we need to add some precision concerning the space of the s[(2)-invariant
differential operators from Vectpyi(R) to D), vanishing on sl(2).
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Proposition 1 ([11]). There exist sI(2)-invariant bilinear differential operators, called transvec-
tants,

TN Fe X Fa— Froaprs  (pda™, ¢da?) v TN, ¢)da™ A FE

given by
TMNe0) = > iy,

i+j=k
where k € N and the coefficients c; j are characterized as follows:

i) If neither T nor X\ belong to the set {O,—%,—l, . .,—%} then

e = (<1) (27;r k) <2A;r k> 7

where (f) is the standard binomial coefficient (f) = Ze=l)(e—idl)

7!

i) If T or A € {0, —%, —1,..., —%}, the coefficients c; ; satisfy the recurrence relation
(t+ 1)@ +27)cit1,; + (T + D +2A)ci i1 = 0. (3)
Moreover, the space of solutions of the system (3) is two-dimensional if 2\ = —s and
21 = —t witht > k — s — 2, and one-dimensional otherwise.

iii) For k > 3, the space of sl(2)-invariant linear differential operator from Vectpo(R) to
Dy r+k—1 vanishing on sl(2) is one-dimensional.

Proof. We need to prove only part iii), for the other statements see, for instance, [11] or [3].
First, we recall that Vectpo(R) is isomorphic to F_; as Vectpo(R)-module. So, according
to the formulae (3), if & > 3, the space of sl(2)-invariant bilinear differential operator from
Vectpo(R) X Fx to Fa_14+k is 2-dimensional if and only if 2A € {1 — k,2 — k,3 — k}. Let us
consider the transvectant J, LA defined by, for go% € Vectpoi(R) and ¢da? € Fy,

TN )= > aijellel), (4)
i+ji=k,i>3

where the coefficients ¢; ; satisfy (3). If 2\ € {1 — k,2 — k,3 — k} the space of s[(2 ) invariant
linear differential operator from Vectpo(R) to Dy x4r—1 is spanned by J, LA and I, LA where

P if 2\ =1k,
L 0) = ¢ wplh) + Eplglk—D) if 2AN=2—F
P + k1) 4 MELD prgk=2) if 9x =3 k.

If2)\ ¢ {1—k,2—k,3—k} the corresponding space is one-dimensional and it is spanned by J, LA
We see obviously that only the operators .J, LA vanish on s[(2). Part iii) of Proposition 1 is
proved. |

3 Cohomology spaces

Let g be a Lie algebra acting on a space V' and let h be a subalgebra of g. The space of h-relative
n-cochains of g with values in V' is the g-module

C"(g,b; V) := Homy(A"(g/h); V).
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The coboundary operator 9" : C™(g,h; V) — C" (g, h; V) is a g-map satisfying 9" o 9"~ = 0.
The kernel of 9", denoted Z"(g,h; V), is the space of h-relative n-cocycles, among them, the
elements in the range of 9"~ ! are called h-relative n-coboundaries. We denote B™(g,h; V) the
space of n-coboundaries.

By definition, the n‘* h-relative cohomolgy space is the quotient space

H"(g,h;V) = Z"(g,b;V)/B"(g,h; V).

We will only need the formula of 9" (which will be simply denoted 0) in degrees 0, 1 and 2: for
v e C%g,b; V)=V ou(X):= Xv, for be Cl(g,b; V),

Ob(X,Y) = Xb(Y)—-Yb(X) —b([X,Y])
and for Q € C%(g; b, V),
NX,Y,Z):=XQY,2) - QX,Y],Z2)+ O (X,Y, Z), (5)

where O (X,Y, Z) denotes the summands obtained from the two written ones by the cyclic
permutation of the symbols X, Y, Z.
In this paper, we are interested to the differential sl(2)-relative cohomology spaces

Hjige (Vectpol (R), s1(2); Dy a+k) and  H3ir(Vectpol(R),sH(2); Daark)-

Proposition 2.

i) Any 1-cocycle c : Vectpo(R) — Dy atx vanishing on sl(2) coincides (up to a scalar factor)
with the transvectant J,;_&f‘ defined here and below by the formulae (4).
il) Any 2-cocycle vanishing on s((2) is sl(2)-invariant.
iii) Let Q € Z2(Vectpol(R),s1(2); Danrk). If Q is a s1(2)-relative 2-coboundary then (up to
a scalar factor) we have 2 = 8Jk__&i/\.

Proof. i) The 1-cocycle relation reads:
o([X,Y]) =L oc(Y) —e(Y) o Ly — L4 o ¢(X) + ¢(X) o L.
Consider X € sl(2). Since ¢(X) = 0, one easily sees that
Lie(Y) = e([X,Y]) +¢(Y) o Lk. (6)

The equation (6) expresses the sl(2)-invariance property of the bilinear map c¢. Thus, according

to Proposition 1, the map ¢ coincides with the transvectant J, _ J:’l’\.
ii) Let Q € Z2(Vectpol(R); Dy xyk). Since Q(X,Y) = 0 for all X € sl(2), we deduce from the
2-cocycle relation (5) that, for all X € s((2) and Y, Z € Vectpy(R), we have

XQY, Z) - (X, Y], Z) - QY,[X, Z]) = 0.

This last relation is nothing but the s[(2)-invariance property of the bilinear map €.
iii) Let 2 = 9b. For all X, Y € Vectpo(R) we have

(X, Y) = LY Fb(Y) — Ly MFb(X) — b([X, V).
Since 0b(X,Y) = b(X) =0 for all X € s[(2) we deduce that b is s[(2)-invariant:
LYY = b([X, Y)).

According to Proposition 1, the space of sl(2)-invariant linear differential operator from

Vectpol(R) to Dy a1 vanishing on sl(2) is one dimensional and it is spanned by J,_ +1’1’\. Thus,

up to a scalar factor, b = J,_ _&71’\. Proposition 2 is proved. |
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The sl(2)-trivial deformations are closely related to the sl(2)-relative cohomology spaces
HYe(Vectpor(R), 51(2); Daagk) and H2(Vectpol (R), s1(2); Dy ark). Therefore, we will describe
briefly these two spaces.

3.1 The first cohomology space

Note that, by Proposition 2, we can describe the space Hl...(Vectpol(R),s(2); Dy r+k). This
space is, in fact, one-dimensional if and only if the corresponding transvectant .J, _ J:f‘ is a non-
trivial sl(2)-relative 1-cocycle, otherwise it is trivial. However, this space was computed by
Bouarroudj and Ovsienko, the result is as follows:

Theorem 1 ([4]). dimH};;(Vectpoi(R),sl(2); Dy ) =1 if
p—A=2 and A # —%,
pw—A=3 and A#£ -1,
uw—A=4 and AF# —%,
w—A=5 and A=0,—4,
p—A=6 and A= _517%/@_
Otherwise, Hl...(Vectpo(R),s[(2); Dy ) = 0.

These spaces Hl.;(Vectpoi(R), s[(2); Da a+x) are generated by the cohomology classes of the
sl(2)-relative 1-cocycles, Cy xyk : Vectpol(R) — Dy x4k that are collected in the following table.

Table 1.

Cart2(X, f) = X@) A\ _%

Copts(X, f)=XOf — 2xWf, £ 1

Canpa(X, f) = X 7 — 2 x (W pr L ABED xG) -\ £ 3
Cos(X, f) = —3XO) f 115X @ g — 10X ) f()

C41(X,f)=28XOf + 63X f 445X " + 10X G) f3)

Corart6(X, f) = XD f — 143, X6) f' — 1265, XG) 7 — 2107, XD ) 4 210X @) p4

Where
a; = —2tY 9’ o] = — +5v 97 B = +7V 9’ o= +7V 97 = -2+ 19,
5—v19 22—5+/19 31-7v/19 25—7+/19 /
a9 — , g = — === /82 = =, 72 — , To = 2 |9_

For X% € Vectpo(R) and fdz? € Fy, we write

d
CA,A—i—k(X%)(fdx)\) = Copik(X, f)da*
The maps C) y1;(X) are naturally extended to S5 = 65?:0 Fs—j.

3.2 The second cohomology space

Let g be a Lie algebra, h a subalgebra of g and V' a g-module, the cup-product is defined, for
arbitrary linear maps ¢, ¢z : g — End(V), by

[er,eol 9@ —End(V),  [e1, 2] (2,y) = [e1 (@), ca(y)] + [e2(2), cr(y)]- (7)
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Therefore, it is easy to check that for any two h-relative 1-cocycles c¢; and ¢y € Z'(g, h; End(V)),
the bilinear map [c1, c2] is a h-relative 2-cocycle. Moreover, if one of the cocycles ¢; or o is
a h-relative 1-coboundary, then [c1,cq] is a h-relative 2-coboundary. Therefore, we naturally
deduce that the operation (7) defines a bilinear map

H'(g, b; End(V)) @ H' (g, h; End(V)) — H*(g, b; End(V)).
Thus, by computing the cup-products of the 1-cocycles C x4 generating the spaces
Hyiee (Vectpol (R), 51(2); Dx at4),
we can exhibit explicit expressions of some sl(2)-relative 2-cocycles
QD a+k : Vectpol(R) — Dy xyk.
For X%, Y% € Vectpy (R) and fdz* € Fy, we write

d

d
M a+k (de, de) (fdz?) = Qg n(X, Y, fdatF,

Proposition 3.
i) The map Qx ry5 is defined by

A+ DD x45 = 2[Cri2.a+5, Crx2]

is a nontrivial s{(2)-relative 2-cocycles if and only if A € {0,—2,—4}. Moreover
—2[Cri3 245, Caag3] = A\ xy5-
ii) The map Q ry¢ is defined by

(2)\ + Q)Q)\,)\+6 = _2[[0/\+2,)\+67 C/\,)\+2]]

is a nontrivial sl(2)-relative 2-cocycles if and only if A € {73,722—541@’,22-%2\/@}'

Moreover,
522 + D) ave = =22 + D[Cryzave, Caxts] = 10[Crianse, Crnea.

Proof. By a straightforward computation we get

Qags(X, Y, f) = (XWy® - xOy @) g
Da6(X, Y, f) = (X(B)y(4) _ X(4)Y(3))f/ _ %(X(3)Y(5) . X(5)Y(3))f.

Moreover, we show also by a direct computation that

3005 = A2+ 6MA +8)Qays,  and 39070 = (4A3 4 3002 + 56X + 15)Q 116
where

Jg () = 3X DSOS DX 4 O DA+ DXO - AREREXO
and

J’Y—I,A(X)(f) _ X(3)f(4) - (2A + 3)X(4)f(3) + 6)\2+é5>\+9X(5)f//

CANSHI2D2411A+3 v (6) pr | AMN3HF12X02411A43) +(7)
15 X f + 210 X f

Thus, we conclude by using Proposition 2. |
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In the following proposition we prove that the space HZ(Vectpol(R),s1(2); Dy i) is, at
least, 2-dimensional. Thus, Theorem 1 of [3] is not entirely correct.

Proposition 4. For A ¢ {0, —6}, the cup products [Cxysx+7, Caat3] and [Caiari7, Cxr44]
are nontrivial sl(2)-relative 2-cocycles and they are non-cohomologous. Thus,

dimH3;¢(Vectpol (R), s1(2), Dy agr) > 2.
Proof. The transvectant Jg_l’)‘ is given by, for X% € Vectpy(R) and fdz € Fy,

Jg X)) = XO O — 5+ 2)XW @ 1 (A 2)2A + 3)X O fO)
—IAH DA+ A+3)XO 4 L+ DA +2)(2A +3)(2A + XD f
— s A A+ DA+2)2A+3)2A+ )X 1.

Therefore, by a direct computation, we show that
aJ N X, Y)(f) = %A((A F 1)+ 2)(2A + 3)(2X + 11) + 30)X<3>Y<6>f
A+ 2)( — LA+ 1) +3) 2N+ 1) +2) + H)X@)Y@f
- ((A+ D2A+3)(AA+ DA+ 1) +30+1) =53 — 1) XOy ) !

5(()\+2)[%()\+1)(2>\+3)+3/\+2] TN+ ) XOy@ e _(x oy,
Let us define Q) y47 and fvl,\wg by

D7 = [Corgspe7, Cra43] and Qa7 = [Chpanst, Caagal
Thus,

D7 (X, Y, f) = MX(S)W@ _ ) [ wX(E’)Y( ) f

)\-‘r 4)f// (X — Y),
X @)y (6) _ %x(@y@)) f + QDD x @)y 6) g

Qi (X, Y, f) =

+ —~ + —
>
~
>
+

57/\X(3)Y(4) /. (X PN Y)

Now, it is easy to show that the three maps GJS_I’A, )\ a+7 and ?2)\7>\+7 are linearly independent
if and only if A ¢ {—6, 0}. So, according to Proposition 2, the maps Q) xy7 and Qy 47 are
nontrivial s[(2)-relative 2-cocycles and they are non-cohomologous. |

Proposition 5. The cup product [Cy xy4, Cryar+s] is a nontrivial sI(2)-relative 2-cocycle.

Proof. Let Q) xy8 = [Cxa+4, Cryar4s8]. By a straightforward computation we show that

Das(X Y, f) = — (A(2A+127)0(2A+9)X( )y (6) _ )‘(%OH)X(?’)Y(U) !

9(2A+1) (2249 22+1)(2A—5
_ ( DA x (5)y (4) _ (2A+1)C )X(3)y(6)> Ji
+ 18(15+/\)X(5)y(3)f// —6XWY® @) _ (X o v).

As before, we show that this 2-cocycle €2y y;g is nontrivial: 2y \yg # 8J9_1’/\. |
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Now, we collect in the following proposition some s[(2)-relative nontrivial 2-cocycles Q) x4k
for k = 9,10 and for singular values of .

Proposition 6. The following cup-products are sl(2)-relative nontrivial 2-cocycles

Q0,0 = [Cos, C59], Q45 = [C_40,Co5],
Q*S,l = [[078,*47 074,1]]3 Qai,ai+9 = [[Cai,a¢+63 Cai+6,ai+9]]a
QaifB,ai+6 = [[CaifS,aia Cai,aiJrG]]a Qai,aﬂrli) = [[Cai,aiJrGa Cai+6,ai+10]]7

Qai—4,ai+6 — [[Cai—4,aia Cai,ai"rG]]'

4 The general framework

In this section we define deformations of Lie algebra homomorphisms and introduce the notion
of miniversal deformations over complete local algebras. Deformation theory of Lie algebra
homomorphisms was first considered with only one-parameter deformation [7, 12, 15]. Recently,
deformations of Lie (super)algebras with multi-parameters were intensively studied (see, e.g., [1,
2, 13, 14]). Here we give an outline of this theory.

4.1 Infinitesimal deformations

Let pp : g — End(V) be an action of a Lie algebra g on a vector space V and let h be a sub-
agebra of g. When studying h-trivial deformations of the g-action pg, one usually starts with
infinitesimal deformations

p:p0+tca

where C' : g — End(V) is a linear map vanishing on h and ¢ is a formal parameter. The
homomorphism condition

[p(z), p(y)] = p([z,Y]),

where x,y € g, is satisfied in order 1 in ¢ if and only if C' is a h-relative 1-cocycle. That is, the
map C satisfies

[po(2), C(y)] = [po(y), C(x)] = C([z,y]) = 0.

Moreover, two h-trivial infinitesimal deformations p = pp+t C1, and p = pp+t Cs, are equivalents
if and only if C; — (5 is h-relative coboundary:

(C1— Co)(z) = [po(x), A] := 0A(x),

where A € End(V)" and 0 stands for differential of cochains on g with values in End(V). So, the
space H!(g, b; End(V)) determines and classifies the h-trivial infinitesimal deformations up to
equivalence. (see, e.g., [8, 12]). If H!(g, h; End(V)) is multi-dimensional, it is natural to consider
multi-parameter h-trivial deformations. More precisely, if dimH! (g, b; End(V)) = m, then choose
b-relative 1-cocycles Cj,...,Cy, representing a basis of H'(g, h; End(V)) and consider the b-
trivial infinitesimal deformation

m
p=po+ Z t;C;,
i—1

with independent parameters tq, ..., ;.
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In our study, we are interested in the infinitesimal s[(2)-trivial deformation of the Vectpe(R)-
action on 8§ = @?:0 Fs—;, the space of symbols of differential operators, where n € N and
§ € R. Thus, we consider the sl(2)-relative cohomology space Hl...(Vectpo(R),sl(2); D). Any
infinitesimal s[(2)-trivial deformation is then of the form

ﬁX:Lx—I—ﬁ;), (8)

where Lx is the Lie derivative of S§ along the vector field X % defined by (1), and

6
£Y =33 tariCaags(X) 9)

A =2

and where t y;; are independent parameters, 6—A € N, 6—n < A\, A4j < 6 and the sl(2)-relative
1-cocycles C) 4, are defined in Table 1.
Note that for (j,A) = (2,-3),(3,—1),(4,-2), or j = 5 and A ¢ {0,—4} or j = 6 and

A# —&T V19 we have Cx+j = 0, then there are no corresponding parameters £ x4 ;.

4.2 Integrability conditions

Consider the problem of integrability of infinitesimal deformations. Starting with the infinite-
simal deformation (8), we look for a formal series

Lx=Lx+LP+LP+c+.., (10)

where £g§) is an homogenous polynomial of degree k in the parameters (f)ri;) and with

coefficients in D such that Eg?) =0if X % € s((2). This formal series (10) must satisfy
the homomorphism condition in any order in the parameters () x4;)

[Lx, Ly] = Lixy)- (11)
The homomorphism condition (11) gives the following (Maurer-Cartan) equations

oLk — —i Z [£9, £0)]. (12)
i+j=k

However, quite often the above problem has no solution. Note here that the right side
of (12) must be a coboundary of a l-cochain vanishing on s((2), so, the obstructions for in-
tegrability of infinitesimal deformations belong to the second sl(2)-relative cohomology space
H2.¢ (Vectpo (R), 51(2); D).

Following [7] and [2], we will impose extra algebraic relations on the parameters (tx ;).
Let R be an ideal in C[[t) x4;]] generated by some set of relations, the quotient

A =C[[tarll/R (13)

is a complete local algebra with unity, and one can speak about deformations with base A, see [7]
for details.

Given an infinitesimal deformation (8), one can always consider it as a deformation with
base (13), where R is the ideal generated by all the quadratic monomials. Our aim is to find A
which is big as possible, or, equivalently, we look for relations on the parameters () ;) which
are necessary and sufficient for integrability (cf. [1, 2]).
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4.3 Equivalence and the miniversal deformation

The notion of equivalence of deformations over complete local algebras has been considered
in [6].

Definition 1. Two deformations, p and p’ with the same base A are called equivalent if there
exists an inner automorphism W of the associative algebra End(V') ® A such that

Vop=p and U(I) =1,
where I is the unity of the algebra End(V) ® A.

The following notion of miniversal deformation is fundamental. It assigns to a g-module V'
a canonical commutative associative algebra A and a canonical deformation with base A.

Definition 2. A deformation p with base A is called miniversal, if

(i) for any other deformation, p’ with base (local) A’, there exists a homomorphism ¢ : A" — A
satisfying ¥ (1) = 1, such that

p=(d®p)op.
(ii) in the notations of (i), if \A is infinitesimal then v is unique.
If p satisfies only the condition (i), then it is called versal.

The miniversal deformation corresponds to the smallest ideal R. We refer to [7] for a con-
struction of miniversal deformations of Lie algebras and to [2] for miniversal deformations of
g-modules.

5 Second-order integrability conditions

In this section we obtain the integrability conditions for the infinitesimal deformation (8). We
will give all necessary conditions, but, any space of symbols of differential operators, Sy, is
concerned only by relations between monomials ¢ x4 ;tx4j 4k, Where 6 —n < A A+ k <0 and
2 < j <k <10. Assume that the infinitesimal deformation (8) can be integrated to a formal
deformation

EX:Lx+£§)+£g?)+£g?)+"'v

where .Cg}) is given by (9) and L’g?) is a quadratic polynomial in ¢ whose coefficients are elements
of D vanishing on s[(2). We compute the conditions for the second-order terms £3). The

homomorphism condition
[Lx,Ly] = Lixy)s
gives for the second-order terms the following (Maurer—Cartan) equation
9L® = 1™ W7, (14)

The right hand side of (14) is a cup-product of sl(2)-relative 1-cocycles, so it is automatically
a sl(2)-relative 2-cocycle. More precisely, the equation (14) can be expressed as follows

6 6
oL? = -1 [[Z Z i Oxats Z Z tExats Oaatsls (15)

A j=2 A =2
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therefore, let us consider the sl(2)-relative 2-cocycles By a1k € Zxg(Vectpol(R), s(2), Dy a+k),
for k =4,...,10, defined by
k
Btk = — Z Exridtkiaz+i [Ortjrths Caresl
j=2
It is easy to see that By 44 = 0. The second order integrability conditions follow from the fact
that any map 2-cocycles By yyk, for k =5,...,10, must be a s[(2)-relative 2-coboundary. More

precisely, By x4, must coincide, up to a scalar factor, with 9.J;_ J:’l’\. We split these conditions in
two family which we explain in the two following propositions. Let us first consider the following
functions in ¢ where ¢ is the family of parameters (tx x+;)

warts(t) = 2 rotaro s — SEaa+star3A4ss
)= *%tx,xwt,\w,ﬂﬁ‘ — 2ty a+atats e ”TJrltA,A+4tA+4,A+6,
wo,7(t) = —1 (htostsr + toatar + 3tostsy)
w_g1(t) = 15 (t—6,—3t—3,1 — 6t_g—at—41 + Bt _2t_21),
wos(t) = Ztosts s,
wor1(t) = Etr_at_a;.
These functions wy x+x(t), k = 5,6, 7, will appear as coefficients for some maps from Fy to Fyi

and they will be used in the expressions of integrability conditions. More precisely, we will show
that the second term £®) is of the form £?2) = DAk w,\’,\+k(t)J,;_:’1/\.

Proposition 7. For k = 5,6,7, we have the following second-order integrability conditions of
the infinitesimal deformation (8)

w)\,)\+5(t> =0 Zf A € {07 _27 _4}7

wixa+6(t) =0 if A€ {—Lﬁ,—g},

Exa+3ta+3 a7 = 0 if A¢{0,-2,—4,—6},

Exrtatarar+r =0 if A¢{0,-6},

10t_20to5 — t—2,1t1,5 = 0,

106 _41t13 +t_41t_13=0. (16)

Proof. 1) For k =5, we have

Byys = =t ar2trr2 45 [Cri2.a45, Cxat2] — tap+3tatzats [Coarsaes, Carsl,
hence, according to Proposition 3, we have

Baats = waa5(6) Q2 at5-

Thus, by Proposition 3, the sl(2)-relative 2-cocycle €2y y15 is nontrivial if and only if A €
{0, -2, —4}. Hence, for A € {0, —2, —4}, the condition wy y45(¢) = 0 holds.
2) For k = 6, as before, we have

By at6 = War6(t) 2 at6-

Thus, if A € {—5i§/ﬁ, —%} the condition wy x16(t) = 0 must be satisfied.
3) Let k = 7. Note that, hereafter, some singular values of the parameter A appear because the
s(2)-relative 2-cocycles C) y45 exist only for A = 0, —4 and C) 46 exist only for A = —%.
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i) For A ¢ {0,—2,—4, —6}, we have

Bar = —taarstars im0t — aaratara 7217

Therefore, the following conditions follow from Proposition 4
Exa3tat3a+7 = Eartatapartr = 0.
ii) By a direct computation, we show that
1,0 o ~1,-6
B(]j = W()j(t)ajg and B_6,1 = w_ﬁ,l(t)é?Js .

Hence, there are no conditions on By 7 and B_g 1.
iii) For the other two singular values of A we have

B_95 = —t_20t05[Cos5,C-2,0] —t—21t150-25 —t_22t2 502 235,
B_y3=—t_41t13[C13,C_a1] —t—a,-1t_13Q_43 —t_40t0302_43.

But, we show that [[0075,07270]] = *1097275 and [[0173,617471]] = 10972’5. SO, the following
integrability conditions follow again from Proposition 4

10t _90to,5 —t—21t1,5 = t_22to5 = 10t 41813+t 4 1113 =1 _40t0,3 = 0.
Therefore, the previous equation: ¢ x44txt4.1+7 = 0 holds also for A = -2, —4. |

Proposition 8. For k = 8,9,10, we have the following second-order integrability conditions of
the infinitesimal deformation (8), where in the first line A ¢ {0,—3,—4, -7},

Exaratrra s = 1ligatss + 10t 5t58 = 0,

t_31t15 — 10t _30to5 = t—g0t04 + 10t_41t14 =0,

1t 7 —3t—31 — 10t_7 —4t—41 = ta; a;+6ta;+6,0;+8 = 0,

ta;—2,a;ta;,a;+6 = to5t59 = 0,

t—g0tos —t-a1t15 =t-8—at—41 =0,

ta;ai+6ta;+6,0,49 = ta;~3,a;ta;,a,46 = 0,

ta;,a;+6ta;+6,0;+10 = ta;—4,a;ta;,a;+6 = O (17)

Proof. 1) For k = 8, we first recall that the cup-product Qx x18 = [Cx 44, Crya r+8] is a s[(2)-
relative nontrivial 2-cocycle. Moreover, for A ¢ {0, -3, —4,—7,a1, az,a1 — 2, a2 — 2}, we have

Bxats = —taatatrrartsSays-
For the singular values, we easily check that
10 2 9710
[C58,Cos] = 17,8 + 7799 7, [Cos,C30] =109 335,
2 1
[[0—4,1) 0—7,—4H = %9—7,1 + 1—5&]9 L 7, [[0174, C_471]] = —109_4,4

and we show that [Co,16,0,48; Ca;ait6], and [Co, a,46, Ca;—2.q,] are also nontrivial 2-cocycles.
Thus, we deduce all integrability conditions corresponding to the case k = 8.
2) For k = 9, the integrability conditions follow from the fact that any corresponding cup-
product of 1-cocycle is nontrivial. Moreover, we have only singular cases and we also show that

[Ci5,C_41] = —[Cos5,C-10].
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3) For k =10 and A # a;,a; — 4 we have By 4190 = 0. For X\ = a;,a; — 4 we have

Bai,ai—‘rlO = _tai,ai+6tai+6,a,-+10 [[Cai,ai-i-ﬁa Cai+6,ai+10]] = _tai,ai+6tai+6,ai+1OQai,ai+107
Bai—47ai+6 = _tai—4,aitai,ai+6 [[Cai—4,ai7 Cai,ai—‘rﬁ]] = _tai—4,aitai,ai+69ai—4,ai+6-

Like in the previous case we prove that the 2-cocycles €, 4,410 and €4,_44,4+6 are nontrivial
and then we deduce the corresponding integrability conditions. |

Our main result in this section is the following

Theorem 2. The conditions (16) and (17) are necessary and sufficient for second-order inte-
grability of the sl(2)-trivial infinitesimal deformation (8).

Proof. Of course, these conditions are necessary as, it was shown in Proposition 7 and Propo-
sition 8. Now, under these conditions, the second term £?) of the the s[(2)-trivial infinitesimal
deformation (8) is a solution of the Maurer-Cartan equation (15). This solution is defined up
to a l-coboundary and it has been shown in [7, 2] that different choices of solutions of the
Maurer—Cartan equation correspond to equivalent deformations. Thus, we can always choose

—1\ -1,
£® =1 Z s + 3 Z Wxats(t)J7
A#£0,-2,—4

)\#ai,—2
1 1A 1 “1A
+ 3 w7 T 5 ) waaas(®)dy
A=0,-6 A=0,-7

Of course, any t) x4+, appear in the expressions of LY or £ if and only if § — A and k are
integers satisfying § —n < A, A+ k < J. Theorem 2 is proved. |

6 Third-order integrability conditions

6.1 Computing the third-order Maurer—Cartan equation

Now we reconsider the formal deformation (10) which is a formal power series in the parame-
ters ty a4+ with coefficients in D. We suppose that the second-order integrability conditions are
satisfied. So, the third-order terms of (10) are solutions of the (Maurer—Cartan) equation

oL® =—12 3" [, O] (18)
i+j=3

As in the previous section we can write

oLt = -1 Z Ex ik, (19)
kox

where Ey \yx are maps from Vectpo(R) x Vectpol (R) to Dy a4x. The third-order term L3 of the
s[(2)-trivial formal deformation (10) is a solution of (19). So, the 2-cochains F) , must satisfy
Ey\r=0J,. +1’1>‘ and then the third-order integrability conditions are deduced from this fact.

It is easy to see that F\ x4y = 0 for k < 6 or k > 13, so we compute successively the Fy ), for
k=17,...,12 and we resolve E) \y1 = 0J)_ if‘ to get the corresponding third-order integrability
conditions.

Here, we mention that the maps F) )i, are 2-cochains, but they are not necessarily 2-
cocycles because they are not cup-products of 1-cocycles like the maps By y4%. Indeed, £3 s
not necessarily 1-cocycle.
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6.2 Third-order integrability conditions

Proposition 9. For k = 7,8, we have the following third-order integrability conditions of the
infinitesimal deformation (8), for all A

Exa+2wat2,04+7(t) = waas()tarsaer = 0,
Ex a2 a2 a+8(t) = want6(t)trte.a+8 = 0,
taarswaraats(t) = wanss()trisars = 0. (20)

Proof. For k =7 and X ¢ {0,—2,—4, —6} we have
Byt = bosawneanr(1g 2, Coal + s arrwanss(O[Cxsasr J5 7,
Eor = toawar()[J5 7, Cozl, E_g1=t_11w_6_1(t)[C_11, Jg " °]

and

E o5=FE_43=0.

By a direct computation, we show that the three maps [[ng’)‘JrQ, Cx+2]s [Cres 47, Jﬁ_l’)‘]]
and 0Jg LA are linearly independent, for all A. Thus,

Exar2wry2at7(t) = 0, for A # —2,-4,-6,
ExrsarrwaN+5(t) =0, for \#0,-2,—4.

But, under the second-order integrability conditions: wy x45(t) = 0 for A € {0,—2,—4}, the
conditions

tartewrt2a+7(t) = waats(t) =0
hold for all \.
Now, for k = 8 and A ¢ {a1,a2,—3,a1 — 2,a2 — 2,—3,0,—2,—4, -3, -5, —7} we have
. —1,24+2 —1A
Exa+s = tayrowate s () [J7 , Cang2] + e rrswan+6(t) [Carepts, J7 7]

143 1A
+ taarswaisas O 7 Canasl + tarsasswanss (O[O s ars, Jg ]

As before, we show that

Exa+2wa+2,048(1) = tx ap3wat3a+8(t) = tars arswans(t) = tare arswarte(t) = 0.

We get the same results for A € {ay, as, —%,al —2,a0 — 2, —%,0, —2,—4,—-3,—5,—7} by consi-

dering the second-order integrability conditions. |

Proposition 10. For k = 9, we have the following third-order integrability conditions of the
infinitesimal deformation (8)

Exa3wWAr3A+9(t) = warre(t)trre o =0 for all X,
a4 +9(t) = waas(B)irisaeo =0, forall A,
tr—a i +7(t) = w17 ()7 a9 = 0, for A=0,-6. (21)

Proof. For k =9 and X ¢ {0,—2,—4, -6, -8, a;, —%,ai -3, —%} we have

1A 1A
Expto = taawntanto O[T 2 Coagal + taapawntanso (O[T M Ox gl

—1) -1,
+tapsasowants(D[Cxisaro, Jo ]+ tarearown s (D [Carsrro, J7 ]
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The equation E) y;9 = 8J1_01’)‘ gives

EaA+3WA+3 49 (1) = D pawWrtanto(t) = tays arowra+5(t) = tarearowarre(t) = 0.

By considering the second-order integrability conditions, we get the same results for each \ €
{07727 745 767787047:77%’6”7377%}' |

Proposition 11. For k = 10, we have the following third-order integrability conditions of the
infinitesimal deformation (8)

tr—a pwa+8(t) = wars(t)trsg a+10 =0 for A=0,-T7,

tr—s i +7(t) = w47 (t)trs7a+10 =0 for XA =0,-6,

tartawr+aa+10() = war+6(Dtarert10 =0 forall A,

t,\,)\+5w>\+57>\+10(t) = w,\_5,>\(t) taarrs =0 for A=0,—4. (22)

Proof. For k = 10 and \ ¢ {—9,—7,—%,—6,—5, —4, -3, —2,—%,0,(11,(11 —4,a9,a9 — 4} we
have

—1,2+4 —1LA
Ex 410 = taapawrsan+10(t)[J7 , Oxxpa] + e rr100a 3460 [Crye r10, 7 7]
The equation E) y10 = 8J1_11”\ gives the conditions

ExarawWrrar+10(t) = txrear10wrat6(t) = 0.

We check that, for A € {9, -7, —%, —6,—5,—4, -3, -2, —%, 0,a1,a; —4,as,a2 —4}, these latter
conditions must be also satisfied. The others conditions follow from the singular values of A. W

Proposition 12. For k = 11, we have the following second-order integrability conditions of the
infinitesimal deformation (8)

taarewrreatil(t) = wa sa(t)tarse =0  for A= 5=/

taats Watsa+11(t) = wr—er(B)tarts =0 for A=0,—4,

ta—ap waa7(t) = w7tz arr =0 Jor A=0,-6,

Ex—s wa +8(t) = war8(t)trsga+11 =0 Jor A=0,-T. (23)

Proposition 13. For k = 12, we have the following third-order integrability conditions of the
infinitesimal deformation (8)

barewrre +12(8) = wr—ea(t)tarte =0  for A= —5i5@,

Er—apwaz48(t) = waars(t)brgrr12 =0 for A =0,-T7. (24)

Proof. For k = 11 and k = 12, the 2-cochains E) )y are defined only for some particular
values of A. We compute these 2-cochains and then we check the corresponding integrability
conditions. |

The following theorem is our main result.

Theorem 3. The second-order integrability conditions (16) and (17) together with the third-
order conditions (20)—(24) are necessary and sufficient for the complete integrability of the in-
finitesimal deformation (8). Moreover, any formal s\(2)-trivial deformation of the Lie deriva-
tive Lx on the space of symbols S is equivalent to a polynomial one of degree equal or less
than 2.
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Proof. Clearly, all these conditions are necessary. So, let us prove that they are also sufficient.
As in the proof of Theorem 2, the solution £®3) of the Maurer-Cartan equation (18) is defined
up to a l-coboundary, thus, we can always reduce £3) to zero by equivalence. Moreover, by
recurrence, the highest-order terms £ satisfy the equation £ = 0 and can also be reduced
to the identically zero map. This completes the proof of Theorem 3. |

Remark 1. The majority of integrability conditions concern some parameters ¢ )4, with sin-
gular values of A. All these singular values of A are negatives. So, let us consider the space Sy
with generic 0, for example, § —n > 0. In this case, the second-order integrability conditions
are reduced to the following equations

EAA+3EAL3A+7 = Eaatabatar+7 = Exaralarants = 0,
and the third-order integrability conditions are reduced to

Exar2war2 a1 7(t) = waars (irisarr = baarawareass(t) = waaretarerss(t) =0,

~— —

3wt a+s(t) = waars(B)irisars = barrswaraaso(t) = txrearowarie(t) =0,

W5 () A5 249 = Watar+9 () Eaata = D arawrtar+10(t) = wrxar6(t)trre r+10 = 0.

7 Examples

Example 1. Let us consider the space of symbols Si‘ e

Proposition 14. Any formal sl(2)-trivial deformation of the Vectpo(R)-action on the spa-
ce Sf\l 44 18 equivalent to his infinitesimal part, without any conditions on the parameters (in-
dependent parameters). That is, the miniversal deformation is here with base C[[t]] where t
designates the family of all parameters.

Proof. The infinitesimal s[(2)-trivial deformation, in this case, is given by
L=1L+LW,
where Lx is the Lie derivative of S} 44 along the vector field X % defined by (1), and
LW = 20 a2 F I a+30A 2 13 + Iar14Cx a4
+ D1 2 30010 +3(X) + 10140041 0+4 + Err2 2440042 044

There are no conditions to integrate this infinitesimal deformation to a formal one. The solu-
tion £2) of (12) is defined up to a 1-coboundary and different choices of solutions of the Maurer—
Cartan equation correspond to equivalent deformations. Thus, we can always reduce £2) to
zero by equivalence. Then, by recurrence, the highest-order terms £(™) satisfy the equation
L™ =0 and £™) can also be reduced to the identically zero map. |

Remark 2. We have the same results for S/’\c k if & < 4. Indeed, for k < 4 there are no
integrability conditions.

Example 2. Let us consider the Vectpy(R)-module SE.

Proposition 15. Any formal s1(2)-trivial deformation of the Vectpo (R)-action on the space S
18 equivalent to

Lx=L+LW 423 (25)
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where

LY =11 30134 t14C014 +t15C15 + ta4Coa + t25C25 + t26Co6
+1t35C35 + 136036 + 137037 +t46Ca6 + t47Ca 7

and

L® = Loy (t)Jg " + Jwar()Jg 7 + Jwr () I

The formal deformation (25) is defined without any condition on the parameters (independent
parameters). That is, the miniversal deformation is here with base Cl[t]] where t designates the
family of all parameters.

For k < 6, generically there are no integrability conditions which is the case of the previous
example (see Remark 1). Now, we study a generic example with k = 7.

Example 3. Let us consider the S; 7 for generic A, (for example A > 0).

Proposition 16. The Vectp,)(R)-module S;H admits four sl(2)-trivial deformations with 11 in-
dependent parameters. It admits a miniversal sl(2)-trivial deformations with 15 parameters.
These deformations are polynomial of degree 2.

Proof. Any formal sl(2)-trivial deformation of the Vectpo(R)-action on the space S7,; is
equivalent to

L=L+LY4+L?,
where

1
LY =ty 3120 av2 + taarzCrnss + EaniaCrnra + tar1ar3Cri1ars
F a1 a+400 11044 T 12500110405 + a2 araCrp2 aa + a2 2150 12045
+ a2 20+6C012. 046 + Iar32+50 43 2345 T Err3216CA+323+6 T I3 +7CN43 047

+ tara r+6Crta 246 T Iarar+70Na 17 + a5 A 170N 15047

and

JoLA+2

—1,\ —1\
LE = Joas (5 + goaripss (0I5 N+ Junaasr(6) T

—1,A —1,2+1
+ %W)\7)\+6(t)e]7 + %W)\J'_l,)\_l,_?(t)e]? +
There are only 4 integrability conditions

ExA+3tA+323+7 = Daarabrrantt = bxapewat2a+7(t) = waags(t)tagsaer = 0.

The formal sl(2)-trivial deformations with the greatest number of independent parameters are
those corresponding to £y xy3ta+3a+7 = taa+abr+ar+7 = tar+2 = tapsa+7 = 0. So, we must
kill at least four parameters and there are four choices. Thus, there are four deformations
with 11 independent parameters. Of course, there are many formal deformations with less then
11 independent parameters. The deformation £ = L + £1) 4+ £2) is the miniversal s[(2)-trivial
deformation of S, ; with base A = C[t]/R, where t is the family of all parameters given in the
expression of £(1) and R is the ideal generated by the polynomials EANF3EAL3 AT EANFATAFA AT
Eaat2wrt2.2+7(t) and wx xy5()Eatsa47- u
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