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1 Introduction

Hochschild cohomology is a basic tool in the deformation theory of algebras. Gerstenhaber has
remarked that in his seminal work (we refer to [15] and references therein for that). Deformation
quantization [2, 3] in quantum field theory leads to some important problems [10, 11, 14, 40].
Motivated by that, Dito [12] has defined the Moyal product on a Hilbert space. It is easier to
work with models of stochastic analysis although they are similar to models of quantum field.
In order to illustrate the difference between these two theories, we refer to:

• The paper on Dirichlet forms in infinite dimensions of Albeverio–Hoegh–Krohn [1] which
used measures on the space of distributions, the traditional space of quantum field theory.

• The seminal paper of Malliavin [28] which used the traditional Brownian motion and the
space of continuous functions as a topological space. This allows Malliavin to introduce
stochastic differential equations in infinite-dimensional analysis, and to interpret some
traditional tools of quantum field theory in stochastic analysis.

This remark lead Dito and Léandre [13] to construct of the Moyal product on the Malliavin
test algebra on the Wiener space.

It is very classical in theoretical physics [9] that the vacuum expectation of some operator
algebras on some Hilbert space is formally represented by formal path integrals on the fields.
In the case of infinite-dimensional Gaussian measure, this isomorphism is mathematically well
established and is called the Wiener–Itô–Segal isomorphism between the Bosonic Fock space
and the L2 of a Gaussian measure. The operator algebra is the algebra of annihilation and
creation operators with the classical commutation relations. In the case of the classical Brownian
motion Bt on R, Bt is identified with At +A∗

t where At is the annihilation operator associated
to 1[0,t] and A∗

t the associated creation operator.
Let us give some details on this identification [31]. Let H be the Hilbert space of L2 maps

from R+ into R. We consider the symmetric tensor product Ĥ⊗n of H. It can be realized as
the set of maps hn from (R+)n into R such that

∫
(R+)n |hn(s1, . . . , sn)|2ds1 · · · dsn = ‖hn‖2 <∞.

Moreover these maps hn(s1, . . . , sn) are symmetric in (s1, . . . , sn). The symmetric Fock space W0
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coincides with the set of formal series
∑
hn such that

∑
n!‖hn‖2 <∞. The annihilation opera-

tors At and the creation operators are densely defined on W0, mutually adjoint and therefore
closable. To hn we associate the multiple Wiener chaos In(hn)

In(hn) =
∫

(R+)n

hn(s1, . . . , sn)δBs1 · · · δBsn ,

where s→ Bs is the classical Brownian motion on R. EdP [|In(hn)2|]for the law of the Brownian
motion dP is n!‖hn‖2. In(hn) and Im(hm) are mutually orthogonal on L2(dP ). If F belongs
to L2(dP ), F can be written in a unique way F =

∑
In(hn) where

∑
hn belongs to the symmetric

Fock space W0. This identification, called chaotic decomposition of Wiener functionals, realizes
an isometry between L2(dP ) and the symmetric Fock space. Bt can be assimilated to the densely
defined closable operator on L2(dP )

F → BtF.

This operator is nothing else but the operator At +A∗
t on the symmetric Fock space.

White noise analysis [18] is concerned with the time derivative of Bt (the white noise) as
a distribution (an element of W−∞) acting on some weighted Fock space W−∞ (we refer to
[4, 19, 35] for textbooks on white noise analysis). Let us recall namely that the Brownian
motion is only continuous! The theory of Hida distribution leads to new insight in stochastic
analysis.

One of the main points of interest in the white noise analysis is that we can compute the
elements of L(W∞−,W−∞) [20, 21, 35] in terms of kernels. We refer to [21, 27, 29] for a well
established theory of kernels on the Fock space. This theory was motivated by the heuristic
constructions of quantum field theory [5, 16, 17]. Elements of L(W∞−,W−∞) can be computed
in a sum of multiple integrals of the elementary creation and annihilation operators.

This theorem plays the same role as the theorem of Pinczon [37, 38]: the operators acting on
C(x1, . . . , xd), the complex polynomial algebra on Rd, are series of differential operators with
polynomial components. This theorem of Pinczon allowed Nadaud [32, 33] to show that the
continuous Hochschild cohomology on C∞(Rd) is equal to the differential Hochschild cohomology
of the same algebra (we refer to papers of Connes [8] and Pflaum [36] for other proofs).

In the framework of white noise analysis we have an analogous theorem to the theorem of
Pinczon [37]. Therefore we can repeat in this framework the proof of Nadaud. We show that the
continuous Hochschild cohomology [22] of the Hida Fock space (we consider series of kernels) is
equal to the differential Hochschild cohomology (we consider finite sums of kernels).

In the first part of this work, we recall the theorem of Obata which computes the operators
on the Hida Fock space: Obata considers standard creation operators and standard annihilation
operators. We extend this theorem in the second part to continuous multilinear operators on
the Hida algebra, endowed with the normalized Wick product. This Hida test algebra was used
by Léandre [23, 24] in order to define some star products in white noise analysis.

We refer to the review paper of Léandre for deformation quantization in infinite-dimensional
analysis [25].

2 A brief review on Obata’s theorem

We consider the Hilbert space H = L2(R, dt). We consider the operator ∆ = 1 + t2 − d2/dt2. It
has eigenvalues µj = (2j + 2) associated to the normalized eigenvectors ej , j ≥ 0. We consider
the Hilbert space Hk of series f =

∑
λjej such that

‖f‖2
k =

∑
|λj |2µ2k

j <∞.
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It is the Sobolev space associated to ∆k. Since µj > 1, Hk ⊆ Hk′ if k > k′, and the system
of Sobolev norms ‖ · ‖k increases when k increases. Therefore we can define the test functional
space H∞− of functions f such that all norms ‖f‖k < ∞. A functional F with values in this
space is continuous if and only if it is continuous for all Sobolev norms ‖ · ‖k, k > 0,

H∞− = ∩k≥0Hk.

The topological dual of H∞− is the space of Schwartz distributions:

H−∞ = ∪k<0Hk.

σ is called a distribution if the following condition holds: let f be in H∞. For some k > 0, there
exists Ck such that for all f ∈ H∞−, |〈σ, f〉| ≤ Ck‖f‖k Therefore we get a Gel’fand triple

H∞− ⊆ H ⊆ H−∞.

We complexify all these spaces (We take the same notation). It is important to complexify these
spaces to apply Potthoff–Streit theorem [39].

Let A = ((i1, r1), . . . , (in, rn)) where i1 < i2 < · · · < in and ri > 0. We put

|A| =
∑

ri (1)

and

eA = ⊗̂erj

ij
,

where we consider a normalized symmetric tensor product. We introduce the Hida weight

‖A‖ =
∏

(ij ,rj)∈A

(2ij + 2)rj .

We consider the weighted Fock space Wk of series

φ =
∑
A

λAeA

such that

‖φ‖k =
∑
A

|λA|2‖A‖2k|A|! <∞

(λA is complex). These systems of norms increase when k increases.
We consider

W∞− = ∩k>0Wk

endowed with the projective topology and its topological dual (called the space of Hida distri-
butions)

W−∞ = ∪k<0Wk

endowed with the inductive topology. We get a Gel’fand triple

W∞− ⊆W0 ⊆W−∞,

W0 is the classical Fock space of quantum physics.
We consider ξ ∈ H∞− and the classical coherent vector

φξ =
∑
n∈N

ξ⊗n

n!
,

φξ belongs to the Hida test functional space W∞−.



4 R. Léandre

Definition 1. Let Ξ belong to L(W∞−,W−∞). Its symbol is the function Ξ̂ from H∞−×H∞−
into C defined by

Ξ̂(ξ, η) = 〈Ξφξ, φη〉0.

If Ξ belongs to L(W∞−,W−∞), its symbol satisfies clearly the following properties:

(P1) For any ξ1, ξ2, η1, η2 ∈ H∞−, the function

(z, w) → Ξ̂(zξ1 + ξ2, wη1 + η2)

is an entire holomorphic function on C× C.

(P2) There exists a constant K and a constant k > 0 such that

|Ξ̂(ξ, η)|2 ≤ K exp
[
‖ξ‖2

k

]
exp

[
‖η‖2

k

]
.

The converse of this theorem also holds. It is a result of Obata [34] which generalizes the
theorem of Potthoff–Streit characterizing distribution in white noise analysis [39]. If a function Ξ̂
fromH∞−×H∞− into C satisfies (P1) and (P2), it is the symbol of an element of L(W∞−,W−∞).
Its continuity norms can be estimated in a universal way linearly in the data of (P2).

This characterization theorem allows Obata to show that an element Ξ of L(W∞−,W−∞)
can be decomposed into a sum

Ξ =
∑
l,m

Ξl,m(kl,m),

where Ξl,m(kl,m) is defined by the following considerations.
Let A be as given above (1). Let a∗i be the standard creation operator

a∗i eA = c(ri)eAi ,

where

Ai = ((i1, r1), . . . , (il, rl), (i, ri + 1), (il+1, rl+1), . . . , (in, rn))

if il < i < il+1. If i does not appear in A, we put ri = 1. We consider the standard annihilation
operator ei defined

aieA = 0

if i does not appear in A and equals to c′(ri)eAi where

Ai = ((i1, ri), . . . , (il, rl), (i, ri − 1), . . . , (in, rn)).

The constants c(ri) and c′(ri) are computed in [31]. Their choice is motivated by the use of
Hermite polynomial on the associated Gaussian space by the Wiener–Itô–Segal isomorphism: the
role of Hermite polynomial in infinite dimensions is played by the theory of chaos decomposition
through the theory of multiple Wiener integrals. The annihilation operator ai corresponds to
the stochastic derivative in the direction of ei on the corresponding Wiener space. a∗i is its
adjoint obtained by integrating by parts on the Wiener space. We consider the operator ΞI,J

φ→ a∗i1 · · · a
∗
il
aj1 · · · ajmφ = a∗IaJφ.
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It belongs to L(W∞−,W−∞) and its symbol is [34]

exp[〈ξ, η〉0]
∏
jk∈J

〈ejk
, ξ〉0

∏
ik∈I

〈eik , η〉0.

Therefore we can consider

Ξl,m(kl,m) =
∑

|I|=l,|J |=m

λI,Ja
∗
IaJ ,

where∑
|λI,J |2‖I‖−k‖J‖−k <∞

for some k > 0. Ξl,m =
∑
λI,JeI ⊗ eJ defines an element of H⊗(l+m)

−∞ . ΞI,J can be extended by
linearty to∑

λI,JΞI,J = Ξl,m(kl,m).

Ξl,m(kl,m) belongs to L(W∞−,W−∞) if kl,m belongs to H⊗(l+m)
−∞ . This last space is ∪k>0H

⊗(l+m)
−k

endowed with the inductive topology. Ξl,m(kl,m) belongs to L(W∞−,W∞−) if kl,m belongs to
H⊗l
∞− ⊗H⊗m

−∞. This means that there exists k such that for all k′∑
|λI,J |2‖I‖k′‖J‖−k <∞

for some k > 0. The symbol of Ξl,m(kl,m) satisfies

Ξ̂l,m(kl,m)(η, ξ) = 〈kl,m, η
⊗l ⊗ ξ⊗m〉 exp[〈ξ, η〉0].

Following the heuristic notation of quantum field theory [5, 6, 16, 17, 30], the operator
Ξl,m(kl,m) can be written as

Ξl,m(kl,m) =
∫

Rl+m

k(s1, . . . , sl, t1, . . . , tm)a∗s1
· · · a∗sl

at1 · · · atmds1 · · · dsldt1 · · · dtm.

The “elementary” creation operators a∗s and the “elementary” annihilation operators at satisfy
the canonical commutation relations

[a∗s, a
∗
t ] = [as, at] = 0, [a∗s, at] = δ(s− t),

where δ(·) is the Dirac function in 0.

3 Fock expansion of continuous multilinear operators

We are motivated in this work by the Hochschild cohomology in white noise analysis. For that,
we require that W∞− is an algebra. In order to be self-consistent we will take the model of [24]
or [26].

We will take the normalized Wick product

: eA.eB := eA∪B,

where A ∪B is obtained by concatenating the indices and adding the length of these when the
same appears twice.
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W∞− is not the same space as before. We consider another Hida Fock space. Wk,C is the
space of φ =

∑
A λAeA such that

‖φ‖2
k,C =

∑
A

|λA|2C2|A|‖A‖2k|A|! <∞.

Wk,C can be identified with the Bosonic Fock space associated to the Hilbert Sobolev space
associated to the operator C∆k. W∞− is the intersection of Wk,C , k > 0, C > 0. This space is
endowed with the projective topology.

By a small improvement of [24] and [26], we get:

Theorem 1. W∞− is a topological algebra for the normalized Wick product.

Proof. The only new ingredient in the proof of [24, 26] is that

|A ∪B|! ≤ 2|A|+|B||A|!|B|!.

Let us give some details. Let us consider

φ1 =
∑
A

λ1
AeA, φ2 =

∑
A

λ2
AeA.

We have

: φ1 · φ2 :=
∑
A

µAeA, where µA =
∑

B∪D=A

λ1
Bλ

2
D.

There are at most 2|A| terms in the previous sum. By Jensen inequality

|µA|2 ≤ C
|A|
1

∑
B∪D=A

|λ1
B|2|λ2

D|2.

Therefore

‖ : φ1 · φ2 : ‖2
k,C ≤

∑
A

(C1C)2|A|C2|A|‖A‖2k|A|!
∑

B∪D=A

|λ1
B|2|λ2

D|2.

But

‖A‖2k ≤ ‖B‖2k‖D‖2k and |A|! ≤ 2|B|+|D||B|!|D|!

if the concatenation of B and D equals A. Therefore, for some C1

‖ : φ1 · φ2 : ‖2
k,C ≤

∑
A

∑
B∪D=A

(C1C)|B|+|D|‖B‖2k‖D‖2k|B|!|D|! ≤ ‖φ1‖2
k,C1C‖φ2‖2

k,C1C .

This shows the result. �

Let L(Wn
∞−,W∞−) be the space of n-multilinear continuous applications from W∞− in-

to W∞−.

Definition 2. The symbol Ξ̂ of an element Ξ of L(Wn
∞−,W∞−) is the map from Hn

∞− ×H∞−
into C defined by

ξ1 × ξ2 × · · · × ξn × η → 〈Ξ(φξ1 , . . . , φξn), φη〉0 = Ξ̂(ξ1, . . . , ξn, η).
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Ξ belongs to L(Wn
∞−,W∞−) if for any (k,C), there exists (k1, C1,K1) such that

‖Ξ(φ1, . . . , φn)‖k,C ≤ K2

∏
‖φi‖k2,C2 .

If Ξ belongs to L(Wn
∞−,W∞−), its symbol satisfies clearly the following properties:

(O1) For any elements ξ11 , . . . , ξ
n
1 , ξ12 , . . . , ξ

n
2 , η1, η2 of H∞−, the map

(z1, . . . , zn, w) → Ξ̂(z1ξ11 + ξ12 , . . . , znξ
n
1 + ξn

2 , wη1 + η2)

is an entire holomorphic map from Cn × C into C.

(O2) For all k > 0, K > 0, there exists numbers C, k1 > k, K1 > 0 such that

|Ξ̂(ξ1, . . . , ξn, η)|2 ≤ C exp

[
K1

n∑
i=1

‖ξi‖2
k1

+K‖η‖2
−k

]
.

We prove the converse of this result. It is a small improvement of the theorem of Ji and
Obata [20].

Theorem 2. If a function Ξ̂ from Cn ×C into C satisfies to (O1) and (O2), it is the symbol of
an element Ξ of L(Wn

∞−,W∞−). The different modulus of continuity can be estimated in terms
of the data in (O2).

Proof. It is an adaptation of the proof of a result of Obata [34], the result which was generalizing
Potthoff–Streit theorem. We omit all the details. This classical Potthoff–Streit theorem is the
following. Let Φ in W−∞ be the topological dual of W∞−. We define its S-transform as follows

S(ξ) = 〈Φ, φξ〉0

for ξ ∈ H−∞. The S-transform of Φ satisfies the following properties:

i) the function z → S(zξ1 + ξ2) is entire holomorphic;

ii) for some K1 > 0, K2 > 0 and some k ∈ R

|S(ξ)|2 ≤ K1 exp[K2‖ξ‖2
k].

Potthoff–Streit theorem states the opposite [20, Lemma 3.2]: if a function S from H∞− into C
satisfies i) and ii), it is the S-transform of a distribution Φ. Moreover, there exists C depending
only of K2 such that

‖Φ‖2
−k−r,C ≤ K1

for all r > 0.
From this theorem, we deduce that there exists a distribution Φξ1,...,ξn−1,η such that

Ξ̂(ξ1, . . . , ξn, η) = 〈Φξ1,...,ξn−1,η, φξ〉0.

Moreover there exists C independent of η, ξ1, . . . , ξn−1 such that

‖Φξ1,...,ξn−1,η‖2
−k1−r,C ≤ K2 exp

[
K1

n−1∑
i=1

‖ξi‖2
k1

+K‖η‖2
−k

]
.
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If φ belongs to W∞− we put

Gφ(ξ1, . . . , ξn−1, η) = 〈Φξ1,...,ξn−1,η, φ〉0.

We have for some K2, C2, K1, k1, k2 depending only on the previous datas that

‖Gφ(ξ1, . . . , ξn−1, η)‖2 ≤ K2‖φ‖2
k2,C2

exp

[
K1

n−1∑
i=1

‖ξi‖2
k1

+K‖η‖2
−k

]
.

The two properties (O1) and (O2) are satisfied at the step n− 1. By induction, we deduce that

Gφ(ξ1, . . . , ξn−1, η) = Ξ̂φ(ξ1, . . . , ξn−1, η).

Moreover, we get that

Gφ(ξ1, . . . , ξn−1, η) = 〈Ξφ(φξ1 , . . . , φξn−1), φη〉0,

where Ξφ is an element of L(Wn−1
∞− ,W∞−) depending linearly and continuously from φ ∈W∞−.

We put

Ξ(φ1, . . . , φn−1, φ) = Ξφ(φ1, . . . , φn−1).

It remains to prove the result for n = 1. It is a small improvement of the proof of the result of
Ji and Obata [20]. Let us give some details.

By using Potthoff–Streit theorem, we deduce that there is a distribution Φη such that

Ξ̂(ξ, η) = 〈Φη, φξ〉0.

Moreover there exists C independent of η such that

‖Φη‖2
−k1−r,C ≤ K2 exp[K‖η‖2

−k]

If φ belongs to W∞−, we set

Gφ(η) = 〈Φη, φ〉0.

We have

|Gφ(η)|2 ≤ K3‖φ|2k2,C2
exp[K‖η‖2

−k]

for some k2 > 0. We apply Potthoff–Streit theorem (see [20, Lemma 3.3]). There exists an
element Ξ(φ) of Wk−r,C where k > 0 depending continuously of φ such that

Gφ(η) = 〈Ξ(φ), φη〉.

We have clearly

〈Ξ(φξ), φη〉 = Ξ̂(ξ, η).

This shows the result. �

The following statements follow closely [7, Appendix].
Let Ξ be an element of L(Wn

∞−,W∞−). Let Ξ̂ be its symbol. We put:

Ψ(ξ1, . . . , ξn, η) = exp

[
−

n∑
i=1

〈ξi, η〉0

]
Ξ̂(ξ1, . . . , ξn, η).
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Clearly Ψ satisfies to (O1) and (O2). We put

ψ(z1
1 , . . . , z

1
m1
, z2

1 , . . . , z
2
m2
, . . . , zn

1 , . . . , z
n
mn
, w1, . . . , wl)

= Ψ(z1
1ξ

1
1 + · · ·+ z1

m1
ξ1m1

, . . . , zn
1 ξ

n
1 + · · ·+ zn

mn
ξn
mn
, w1η1 + · · ·+ wlηl).

We put M = (m1, . . . ,mn) and

Kl,M (ξ11 , . . . , ξ
1
m1
, . . . , ξn

1 , . . . , ξ
n
mn
, η1, . . . , ηl)

=
1

l!m1! · · ·mn!
∂l+

∑
mi

∂z1
1 · · · ∂z1

m1
· · · ∂zn

1 · · · ∂zn
mn
∂w1 · · · ∂wl

ψ(0, 0, . . . , 0).

KL,M is an l +
∑
mi multilinear map.

Since ψ is holomorphic, we have a Cauchy type representation of the considered expression
Kl,M (ξ11 , . . . , ξ

1
m1
, . . . , ξn

1 , . . . , ξ
n
mn
, η1, . . . , ηl)

Kl,M (ξ11 , . . . , ξ
1
m1
, . . . , ξn

1 , . . . , ξ
n
mn
, η1, . . . , ηl) =

1
l!m1! · · ·mn!

n∏
j=1

mj∏
i=1

1
2π

∫
|zj

i |=rj
i

|dzj
i |

(zj
i )2

×
l∏

k=1

∫
|wk|=sk

|dwk|
w2

k

ψ(z1
1 , . . . , z

1
m1
, . . . , zn

1 , . . . , z
n
mn
, w1, . . . , wl).

We deduce from (O)2 a bound of Kl,M of the type (D.5) in [7]

|Kl,M (ξ11 , . . . , ξ
1
m1
, . . . , ξn

1 , . . . , ξ
n
mn
, η1, . . . , ηl)| ≤

C

l!
∏
mi!

1
r11 · · · r1m1

· · · rn
1 · · · rn

mn
s1 · · · sl

× exp

K1

∑
i,j

rj
i ‖ξ

j
i ‖k1


2 exp

K
∑

j

sj‖ηj‖−k


2

for some k1 > k and K, k > 0 and some K1 > 0.
According to [7, (D.6)], we choose

rj
i =

R

Cmj‖ξj
i ‖k1

, sj =
S

Cl‖ηj‖−k

and we deduce a bound of Kl,M in

C

l!
∏
mi!

∏(
Cmi

R

)mi
(
Cl

S

)l ∏
‖ξj

i ‖k1

∏
‖ηi‖−k exp

[
KR2

]
exp

[
KS2

]
. (2)

Clearly, Kl,M is a multilinear application in ξj
i , wk. By (2), Kl,M is continuous. Therefore Kl,M

can be identified with an element of H⊗l
∞− ⊗H

⊗
∑

mi
−∞ . We consider

Ξ̂l,M (ξ1, . . . , ξn, η) = Kl,M (ξ1, . . . , ξ1, ξ2, . . . , ξ2, . . . , ξn, . . . , ξn, η, . . . , η),

where ξi is taken mi times and η l times.
By holomorphy,

Ξ̂ =
∑

Ξ̂l,M exp

[
n∑

i=1

〈ξi, η〉0

]
.
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and the series converges in the sense of (O1) and (O2). Only the second statement presents some
difficulties. We remark for that by [7, page 557] (α(n) = 1, Gα(s) = exp[s])

inf
s>0

exp[s]s−n ≤ Cn!n−2n.

We deduce a bound analog to the bound (D.7) in [7]

|Ξ̂l,M |2 ≤
1

(ll
∏
mmi

i )
C l

∏
Cmi exp

[
D

∑
‖ξi‖2

k1
+D1‖η‖2

−k

]
.

xn exp[−D1x
2] has a bound in exp[−C1n]Cnnn/2. If D1 is large, C can be chosen very small

and C1 very large. We deduce the following bound

|Ξ̂l,M |2 ≤ C lC
∑

mi exp
[
−C1l − C1

∑
mi

]
exp

[
D2

∑
‖ξi‖2

k1
+D2‖η‖2

−k

]
.

We remark if D2 is very large that C can be chosen very small and C1 can be chosen very large.
We remark if C1 is large∑

l,M

exp
[
−C1l − C1

∑
mi

]
<∞

in order to see that the series Ξl,M converges in L(Wn
∞−,W∞−).

Definition 3. The series
∑

l,M Ξl,M = Ξ is called the Fock expansion of the element Ξ belonging
to L(Wn

∞−,W∞−).

4 Isomorphism of Hochschild cohomology theories

In this part, we prove the main theorem of this work.

Lemma 1. If ξ belongs to H∞−,

ξ⊗n =: ξ :n .

Proof. We put ξ =
∑
λiei such that

ξ⊗n =
∑

i1,...,in

λi1 · · ·λinei1 ⊗0 · · · ⊗0 ein ,

where ⊗0 denotes the traditional tensor product. By regrouping various element, we deduce
that

ξ⊗n =
∑

i<1<···<ir; n1 6=0,...,nr 6=0;
n1+···+nr=n

λn1
i1
· · ·λnr

ir

n!
n1! · · ·nr!

e⊗n1
i1

⊗̂ · · · ⊗̂enr
ir

=
∑

i<1<···<ir; n1 6=0,...,nr 6=0;
n1+···+nr=n

λn1
i1
· · ·λnr

ir

n!
n1! · · ·nr!

: ei1 :⊗n1 · · · : eir :nr=: ξ :n .

This shows the result. �

Corollary 1. If ξ1 ∈ H∞− and if ξ2 ∈ H∞−

φξ1+ξ2 =: φξ1φξ2 : .
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Definition 4. Let Ξ belong to L(W r
∞−,W∞−). Its Hochschild coboundary δr is defined as

follows:

δrΞ(φ1, . . . , φr+1) =: φ1Ξ(φ2, . . . , φr)

+
r∑

i=1

(−1)iΞ(φ1, . . . , : φiφi+1 :, . . . , φr+1) + (−1)r+1 : Ξ(φ1, . . . , φr)φr+1 : .

Classically δr+1δr = 0.

Definition 5. We say that an element Ξ of L(W r
∞−,W∞−) is a homogeneous polydifferential

operator of order (l,m) if its symbol Ξ̂(ξ1, . . . , ξr, η) is equal to

Ψ(ξ1, . . . , ξr, η) exp
[∑

〈ξi, η〉
]
, (3)

where Ψ is a homogeneous polynomial in the ξi of degree m and in η of degree l.

Proposition 1. If Ξ is an r-polydifferential operator of degree (l,m), δrΞ is an (r + 1)-poly-
dif ferential operator of degree (l,m).

Proof. Since : φξ1φξ2 := φξ1+ξ2 , the only problem is to show that

(φ1, . . . , φr+1) →: φ1Ξ(φ2, . . . , φr+1) :

is still a polydifferential operator of degree (l,m).
Let η ∈ H∞− be such that ‖η‖0 = 1. Let us compute

〈Ξ(φξ2 , . . . , φξr+1), φλη)〉0 = Ψ(ξ2, . . . , ξr+1, λη) exp

[
λ

r+1∑
i=2

〈ξi, η〉

]
.

If we compute the component of Ξ(φξ2 , . . . , φξr+1) along η⊗n

n! , it is the element of degree n in the
expansion in λ of the (3). Since Ψ is homogeneous of degree l in η, the term of degree n in the
expansion in λ of (3) is

r+1∑
i=2

〈ξi, η〉n−l

n− l!
Cl(ξ2, . . . , ξr+1, η).

Because the component of φξ1 along η⊗n

n! is 〈ξ1,η〉n
n! , this shows that the component of

: φξ1Ξ(φξ2 , . . . , φξr+1 , λη) :

along η⊗n

n! is

Cl(ξ2, . . . , ξr+1, η)
∑

n1+n2=n

〈
r+1∑
i=2

ξi, η〉n1−l

(n1 − l)!
〈ξ1, η〉n2

n2!
= Cl(ξ2, . . . , ξr+1, η)

〈
r+1∑
i=1

ξi, η〉n−l

(n− l)!
.

The result follows directly. �

Definition 6. The continuous Hochschild cohomology Hr
cont(W∞−,W∞−) of the Hida test al-

gebra is the space Ker δr/Im δr−1, where the Hochschild coboundary acts on L(W r
∞−,W∞−).



12 R. Léandre

We consider cochains which are finite sums of polydifferential operators of degree (l,m) ∈
(N × N). We call the space of polydifferential operators Ldif(W r

∞−,W∞−). By the previous
proposition, δr applies Ldif(W r

∞−,W∞−) into Ldif(W r+1
∞− ,W∞−).

Definition 7. The differential Hochschild cohomology Hr
dif(W∞−,W∞−) of the Hida test al-

gebra is the space Ker δr/Im δr−1 where δr acts on Ldif(W r
∞−,W∞−).

We get the main theorem of this work:

Theorem 3. The differential Hochschild cohomology groups of the Hida test algebra are equal
to the continuous Hochschild cohomology groups of the Hida test algebra.

Proof. This comes from the Fock expansion of the previous part and from the following fact:
if δΞ is a polydifferential operator for a continuous cochain Ξ, there exists a polydifferential
operator Ξ1 such that δΞ = δΞ1 by Proposition 1. �
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