Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 5 (2009), 033, 30 pages      arXiv:0809.2574      https://doi.org/10.3842/SIGMA.2009.033
Contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions”

Elliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circle

Satoshi Tsujimoto a and Alexei Zhedanov b
a) Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
b) Donetsk Institute for Physics and Technology, Donetsk 83114, Ukraine

Received November 30, 2008, in final form March 15, 2009; Published online March 19, 2009

Abstract
Using the technique of the elliptic Frobenius determinant, we construct new elliptic solutions of the QD-algorithm. These solutions can be interpreted as elliptic solutions of the discrete-time Toda chain as well. As a by-product, we obtain new explicit orthogonal and biorthogonal polynomials in terms of the elliptic hypergeometric function 3E2(z). Their recurrence coefficients are expressed in terms of the elliptic functions. In the degenerate case we obtain the Krall-Jacobi polynomials and their biorthogonal analogs.

Key words: elliptic Frobenius determinant; QD-algorithm; orthogonal and biorthogonal polynomials on the unit circle; dense point spectrum; elliptic hypergeometric functions; Krall-Jacobi orthogonal polynomials; quadratic operator pencils.

pdf (354 kb)   ps (215 kb)   tex (29 kb)

References

  1. Akhiezer N.I., Elements of the theory of elliptic functions, 2nd ed., Nauka, Moscow, 1970 (English transl.: Translations of Mathematical Monographs, Vol. 79, American Mathematical Society, Providence, R.I., 1990).
  2. Allouche H., Cuyt A., Reliable pole detection using a deflated qd-algorithm: when Bernoulli, Hadamard and Rutishauser cooperate, Numer. Math., to appear.
  3. Amdeberhan T., A determinant of the Chudnovskys generalizing the elliptic Frobenius-Stickelberger-Cauchy determinantal identity, Electron. J. Combin. 7 (2000), Note 6, 3 pages.
  4. Baxter G., Polynomials defined by a difference system, J. Math. Anal. Appl. 2 (1961), 223-263.
  5. de Andrade X.L., McCabe J.H., On the two point Padé table for a distribution, Rocky Mountain J. Math 33 (2003), 545-566.
  6. Derevyagin M., Zhedanov A., An operator approach to multipoint Padé approximations, J. Approx. Theory 157 (2009), 70-88, arXiv:0802.3432.
  7. Faddeev D.K., Faddeeva V.N., Computational methods of linear algebra, W.H. Freeman and Co., San Francisco - London, 1963.
  8. Frobenius G., Stickelberger L., Über die Addition und Multiplication der elliptischen Functionen, J. Reine Angew. Math. 88 (1880), 146-184 (reprinted in Ferdinand Georg Frobenius Gesammelte Abhandlungen, Vol. 1, Editor J.-P. Serre, Springer, Berlin, 1968, 612-650).
  9. Frobenius G., Über die elliptischen Functionen zweiter Art, J. Reine Angew. Math. 93 (1882), 53-68 (reprinted in Ferdinand Georg Frobenius Gesammelte Abhandlungen, Vol. 2, Editor J.-P. Serre, Springer, Berlin, 1968, 81-96).
  10. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
  11. Geronimus Ya.L., Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Translation 1954 (1954), no. 104.
  12. Hendriksen E., van Rossum H., Orthogonal Laurent polynomials, Nederl. Akad. Wetensch. Indag. Math. 48 (1986), 17-36.
  13. Henrici P., Applied and computational complex analysis, John Wiley & Sons, New York, 1974.
  14. Ismail M.E.H., Masson D.R., Generalized orthogonality and continued fractions, J. Approx. Theory 83 (1995), 1-40, math.CA/9407213.
  15. Jones W.B., Thron W.J., Survey of continued fraction methods of solving moment problems, in Analytic Theory of Continued Fractions (Loen, 1981), Lecture Notes in Mathematics, Vol. 932, Springer, Berlin - New York, 1982, 4-37.
  16. Kharchev S., Mironov A., Zhedanov A., Faces of relativistic Toda chain, Internat. J. Modern Phys. A 12 (1997), 2675-2724, hep-th/9606144.
  17. Koekoek R., Swarttouw R.F., The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 94-05, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1994, math.CA/9602214.
  18. Krattenthaler C., Advanced determinant calculus, Sém. Lothar. Combin. (1999), Art. B42q, 67 pages, math.CO/9902004.
  19. Littlejohn L.L., The Krall polynomials: a new class of orthogonal polynomials, Quaestiones Math. 5 (1982), 255-265.
  20. Littlejohn L.L., On the classification of differential equations having orthogonal polynomial solutions, Ann. Mat. Pura Appl. (4) 138 (1984), 35-53.
  21. Magnus A.P., Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points, J. Comp. Appl. Math. 65 (1995), 253-265.
  22. Pastro P.I., Orthogonal polynomials and some q-beta integrals of Ramanujan, J. Math. Anal. Appl. 112 (1985), 517-540.
  23. Ruijsenaars S.N.M., Relativistic Toda systems, Comm. Math. Phys. 133 (1990), 217-247.
  24. Simon B., Orthogonal polynomials on the unit circle, American Mathematical Society Colloquium Publications, Vol. 51, American Mathematical Society, Providence, R.I., 2005.
  25. Spiridonov V.P., Zhedanov A.A., To the theory of biorthogonal rational functions, RIMS Kokyuroku (2003), no. 1302, 172-192.
  26. Spiridonov V.P., An elliptic incarnation of the Bailey chain, Int. Math. Res. Not. 2002 (2002), no. 37, 1945-1977.
  27. Spiridonov V.P., Essays on the theory of elliptic hypergeometric functions, Russ. Math. Surv. 63 (2008), 405-472, arXiv:0805.3135.
  28. Suris Yu.B., A discrete-time relativistic Toda lattice, J. Phys. A: Math. Gen. 29 (1996), 451-465, solv-int/9510007.
  29. Szegö G., Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1975.
  30. Whittaker E.T., Watson G.N., A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, reprint of 4th ed. (1927), Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.
  31. Wilson J.A., Orthogonal functions from Gram determinants, SIAM J. Math. Anal. 22 (1991), 1147-1155.
  32. Zhedanov A., The "classical" Laurent biorthogonal polynomials, J. Comput. Appl. Math. 98 (1998), 121-147.
  33. Zhedanov A., Elliptic polynomials orthogonal on the unit circle with a dense point spectrum, Ramanujan J., to appear, arXiv:0711.4696.

Previous article   Next article   Contents of Volume 5 (2009)