Symmetry, Integrability and Geometry: Methods and Applications SIGMA 5 (2009), 062, 7 pages

On the Moore Formula of Compact Nilmanifolds

Hatem HAMROUNI

Department of Mathematics, Faculty of Sciences at Sfax,
Route Soukra, B.P. 1171, 3000 Sfax, Tunisia
E-mail: hatemhhamrouni@uoila.fr

Received December 17, 2008, in final form June 04, 2009; Published online June 15, 2009
doi:10.3842/SIGMA.2009.062

Abstract. Let G be a connected and simply connected two-step nilpotent Lie group and I’
a lattice subgroup of G. In this note, we give a new multiplicity formula, according to the
sense of Moore, of irreducible unitary representations involved in the decomposition of the
quasi-regular representation Ind< (1). Extending then the Abelian case.
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1 Introduction

Let G be a connected simply connected nilpotent Lie group with Lie algebra g and suppose G
contains a discrete cocompact subgroup I'. Let Rp = Indlq(l) be the quasi-regular representation
of G induced from I". Then Rr is direct sum of irreducible unitary representations each occurring
with finite multiplicity [3]; we will write

Rr = Z m(m,G, T, 1),
me(GT)
A basic problem in representation theory is to determine the spectrum (G : I') and the multi-
plicity function m(w, G,T',1). C.C. Moore first studied this problem in [7]. More precisely, we
have the following theorem.

Theorem 1. Let G be a simply connected nilpotent Lie group with Lie algebra g and I' a lattice
subgroup of G (i.e., T is a discrete cocompact subgroup of G and log(I") is an additive subgroup
of g). Let 7 be an irreducible unitary representation with coadjoint orbit O,Cf. Then 7 belongs to
(G :T) if and only if OF meets gt = {l € g*, (I,log(T")) C Z} where g* denotes the dual space
of 8.

Later R. Howe [4] and L. Richardson [12] gave independently the decomposition of Rp for
an arbitrary compact nilmanifold. In this paper, we pay attention to the question wether the
multiplicity formula

m(r,G,T,1) = #[0Y Ng{/T]  Vre(G:T)

required in the Abelian context, still holds for non commutative nilpotent Lie groups (we write
#A to denote the cardinal number of a set A). In [7], Moore showed the following inequality

m(r,G,T,1) < #[0% g /T]  Vre(G:T), (1)

where I' is a lattice subgroup of G, and produced an example for which the inequality (1) is
strict. More precisely, he showed that

m(r, G, T,1)% = #[0S Ngi./T]  VYre(G:T) (2)
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in the case of the 3-dimensional Heisenberg group and I' a lattice subgroup. The present paper
aims to show that every connected, simply connected two-step nilpotent Lie group satisfies
equation (2). We present therefore a counter example for 3-step nilpotent Lie groups.

2 Rational structures and uniform subgroups

In this section, we summarize facts concerning rational structures and uniform subgroups in
a connected, simply connected nilpotent Lie groups. We recommend [2] and [9] as a references.

2.1 Rational structures

Let G be a nilpotent, connected and simply connected real Lie group and let g be its Lie
algebra. We say that g (or G) has a rational structure if there is a Lie algebra gg over Q such
that g = gq ® R. It is clear that g has a rational structure if and only if g has an R-basis
{X1,...,X,} with rational structure constants.

Let g have a fixed rational structure given by gq and let h be an R-subspace of g. Define
hg = b Ngqg. We say that b is rational if h = R-span{hq}, and that a connected, closed
subgroup H of G is rational if its Lie algebra b is rational. The elements of gq (or Gq = exp(gq))
are called rational elements (or rational points) of g (or G).

2.2 Uniform subgroups

A discrete subgroup T' is called uniform in G if the quotient space G/T' is compact. The
homogeneous space G/I' is called a compact nilmanifold. A proof of the next result can be
found in Theorem 7 of [5] or in Theorem 2.12 of [11].

Theorem 2 (the Malcev rationality criterion). Let G be a simply connected nilpotent Lie
group, and let g be its Lie algebra. Then G admits a uniform subgroup I' if and only if g admits
a basis {X1,..., X, } such that

n
(X5, Xj) =) eipXp,  V1<ij<n,
k=1

where the constants c;j, are all rational. (The c;ji, are called the structure constants of g relative
to the basis {X1,...,Xn}.)

More precisely, we have, if G has a uniform subgroup I', then g (hence G) has a rational
structure such that gg = Q-span {log(I')}. Conversely, if g has a rational structure given by
some Q-algebra gg C g, then G has a uniform subgroup I" such that log(I") C gq (see [2] and [5]).
If we endow G with the rational structure induced by a uniform subgroup I' and if H is a Lie
subgroup of G, then H is rational if and only if H NI is a uniform subgroup of H. Note that
the notion of rational depends on I'.

2.3 Weak and strong Malcev basis

Let g be a nilpotent Lie algebra and let Z = {X1,...,X,} be a basis of g. We say that £ is
a weak (resp. strong) Malcev basis for g if g; = R-span {X1,..., X;} is a subalgebras (resp. an
ideal) of g for each 1 <1i <n (see [2]).

Let I' be a uniform subgroup of G. A strong or weak Malcev basis { X7, ..., X, } for g is said
to be strongly based on T if

I' = exp(ZX;) - - exp(ZXy,).

Such a basis always exists (see [5, 2, 6]).
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A proof of the next result can be found in Proposition 5.3.2 of [2].

Proposition 1. Let ' be uniform subgroup in a nilpotent Lie group G, and let H ; H, ;
;Cé Hyi = G be rational Lie subgroups of G. Let by, ..., b1, = g be the corresponding
Lie algebras. Then there exists a weak Malcev basis {X1,..., Xy} for g strongly based on T' and
passing through bi,...,bx_1. If the H; are all normal, the basis can be chosen to be a strong
Malcev basis.

2.4 Lattice subgroups

Definition 1 ([7]). Let I be a uniform subgroup of a simply connected nilpotent Lie group G,
we say that I" is a lattice subgroup of G if log(I") is an Abelian subgroup of g.

In [7], Moore shows that if a simply connected nilpotent Lie group G satisfies the Malcev
rationality criterion, then G admits a lattice subgroup.

We close this section with the following proposition [1, Lemma 3.9].
Proposition 2. IfT' is a lattice subgroup of a simply connected nilpotent Lie group G = exp(g)
and {X1,...,Xn} is a weak Malcev basis of g strongly based on T, then {X1,..., X, } is a Z-basis
for the additive lattice log(T") in g.
3 Main result

We begin with the following definition.

Definition 2. Let G be a connected, simply connected nilpotent Lie group which satisfies the
Malcev rationality criterion, and let g be its Lie algebra.

(1) We say that G satisfies the Moore formula at a lattice subgroup I if we have

m(r,G,T,1)? = #[05 Ngi/T],  Vre(G:T)).

(2) We say that G satisfies the Moore formula if G satisfies the Moore formula at every lattice
subgroup I' of G.

Examples.

(1) Every Abelian Lie group satisfies the Moore formula.

(2) The 3-dimensional Heisenberg group satisfies the Moore formula (see [7, p. 155]).
The main result of this paper is the following theorem.

Theorem 3. Every connected, simply connected two-step nilpotent Lie group satisfies the Moore
formula.

Before proving Theorem 3, we must review more of the Corwin—Greenleaf multiplicity for-
mula.
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3.1 The Corwin—Greenleaf multiplicity formula

Using the Poisson summation and Selberg trace formulas, L. Corwin and F.P. Greenleaf [1] gave
a formula for m(w, G,T', 1) that depended only on the coadjoint orbit in g* corresponding to =
via Kirillov theory. We state their formula for lattice subgroups. Let I' be a lattice subgroup of
a connected, simply connected nilpotent Lie group G = exp(g). Let

gr={leg": (I,log(I) C Z}.
Let m; be an irreducible unitary representation of G with coadjoint orbit Og C g* such that
(‘)fl # {l}. According to Theorem 1, we have m(m;, G,I',1) > 0 if and only if Ofl Ngf # 0, so
we will suppose this intersection is nonempty. The set (‘),C,’; Mgy is I-invariant. For such I'-orbit
Q € 0% Ngt one can associate a number ¢(Q) as follows: let f € Q and g(f) = ker(By), where

1
By is the skew-symmetric bilinear form on g given by

B(X,Y) = (f,[X,Y]), X, Y eg.

Since (f,log(I')) C Z then g(f) is a rational subalgebra. There exists a weak Malcev basis
{X1,...,X,} of g strongly based on I" and passing through g(f) (see [2, Proposition 5.3.2]). We
write g(f) = R-span{Xj,..., Xs}. Let

Ay =Mat((f,[X;, X;]) : s <i,j<n). (3)

Then det(Ay) is independent of the basis satisfying the above conditions and depends only on
the T'-orbit Q. Set

c() = (det(4y)) 2.

=

Then ¢(2) is a positive rational number and the multiplicity formula of Corwin-Greenleaf is
1, if g(l) =9,
m(m, G, T, 1) = Z c(Q2), otherwise. (4)
Qel0F) Ng; /T

For details see [1].

Proof of Theorem 3. Let [ € Of Ngp. The result is obvious if g(I) = g. Next, we suppose
that g(l) # g. Since G is two-step nilpotent Lie group then g(l) is an ideal of g, and hence
we have g(I) = g(f) for every f € 0% and ¢ = [ + g(I)* (see [2, Theorem 3.2.3]). On the
other hand, as [ belongs to g then g(l) is rational. By Proposition 5.3.2 of [2] there exists
a Jordan—Holder basis B = {X1,...,X,} of g strongly based on I' and passing through g(1).
Set g(I) = R-span {Xy,..., Xs}.

Then, for every Q € [0S Ngt/T] and for every f € Q, we have

e() = det(Af) "2 = det(A;) "2 = ¢(T' - 1),
since flig g = ll[g,g- It follows from (4) that
m(m,G,T,1) = #[05 Ng;/T] (T - 1). (5)
Next, we calculate #[0% Ngt/T]. Let (t1,...,t,) € Z" and f € O Ngi. We have

n n

(exp(_thl) T eXP(—tan)) : f = f + Z Z tj<f’ [Xja XZD Xz*

i=s+1 \j=s+1

=f+ Z Z tj<l7[vaXi]> szk?
< —
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since f|(g,q = ll[g,g- It follows that

Ff:f+ Z Zej,

Jj=s+1

where

;= > (LIX;,Xi)X;, Vs<j<n
i=s+1
Let

L=0%ngt— f = @ 7.X} and L) = z": Ze;.

s<i<n Jj=s+1

Since g(I)NR-span{Xs1,..., X, } = {0}, then the vectors es41, ..., e, are linearly independent.
Therefore, £y is a sublattice of £. It is well known that there exist €541,...,&, a linearly
independent vectors of g* and ds11,...,d, € IN* such that

g = EB Ze; and @ gy = @ d;Zz;.
s<i<n s<i<n

Consequently, we have

#[05 Ng}/T) = dst1 -+ - dy.

Let [es41,...,€n] be the matrix with column vectors 441, ...,&, expressed in the basis (X},
.., X). From
t=@ zx; = P ze,
s<i<n s<i<n

we deduce that

[€s41,---,6n] € GL(n — s,7Z).

On the other hand, let [esi1,...,e,] (vesp. [ds+1€s+1,--.,dnen]) be the matrix with column
vectors €sy1,...,6e, (resp. dsy1€511,...,dney) expressed in the basis (X7, ;,...,X}). Since
n
L= Y Zej= P diZe,
j=s+1 s<i<n

then there exists T' € GL(n — s,7Z) such that
[€s41s---s€n] = [dst1E541,s .-, dnen]T.
The latter condition can be written
YA = [est1, - . - enldiag[dsyt, . . ., dy]T.
Form this it follows that
det(A;) = dgqq1---dp.
Consequently
#[05 Ngp /T = det(A)). (6)
Substituting the last expression (6) into (5), we obtain
m(r, G,T, 1)2 = #[0C Ngt/T].
This completes the proof. |



6 H. Hamrouni

As a consequence of the above result, we obtain the following result.

Corollary 1. Let G be a connected, simply connected two-step nilpotent Lie group, let g be the
Lie algebra of G, and let I' be a lattice subgroup of G. Let ] € g* such that the representation m
appears in the decomposition of Rp. Let A; as in (3). The multiplicity of m is

L, if a(l) =g,

I''1l) =
m(T"lan ) ) { (det(Az))%, otherwise.

Remark 1. Note that in [10], H. Pesce obtained the above result more generally when I is a
uniform subgroup of G.

4 Three-step example

In this section, we give an example of three-step nilpotent Lie group that does not satisfy the
Moore formula. Consider the 4-dimensional three-step nilpotent Lie algebra

g= R—span {Xl, . ,X4}
with Lie brackets given by
(X4, Xi] = X1, 1=2,3,

and the non-defined brackets being equal to zero or obtained by antisymmetry. Let G be the
simply connected Lie group with Lie algebra g. The group G is called the generic filiform
nilpotent Lie group of dimension four. Let I' be the lattice subgroup of G defined by

I' = exp(ZX1)exp(ZX2)exp(ZX3)exp(6ZXys) = exp(ZX1 ® ZXs & ZX3 B 6ZXy).

Let | = X7. It is clear that the ideal m = R-span{Xj,..., X3} is a rational polarization at [.
On the other hand, we have (I,m Nlog(I')) C Z. Consequently, the representation m; occurs
in Rr (see [12, 4]). Now, we have to calculate #[Og Ngp/T.

Following [2] or [8], the coadjoint orbit of [ has the form

t2
0% = {Xf+tX§+2X§+sz;: s,tG]R}.

On the other hand, it is easy to verify that

1
ar :Z—span{Xf,...,Xg,GXff}.

Therefore

2
Ogﬂgl*ﬂ: {Xf+tX§+2X§+2XI: SEZ,tEQZ}.

Let

t2 S
Froso = X7 + to X5 + 50X§ + EOXZI e 0% ngj:

and

v = exp(rXa)exp(sXs)exp(6tXy) € T
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We calculate

(to — 61)2

Ad*(’y)fto,SO = X;( + (t(] - 6t>X; + 9

Xi+ (%—i—sto—i—r—&t) X7,

Then (see [8])

Ad (F)ftO:SO = {Xl + (to + 6t)X2 + MX:; + (EO + S) X4 . S,t E Z}

= {fto+6t,so+6s A Z} .

From this we deduce that #[Og Ngy/T'] =3 -6 = 18, and hence

m(m, G, T, 1)% # #[0S Ngi/T].

Therefore, the group G does not satisfy the Moore formula at T'.
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