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Abstract. The T-systems and Y-systems are classes of algebraic relations originally asso-
ciated with quantum affine algebras and Yangians. Recently the T-systems were generalized
to quantum affinizations of a wide class of quantum Kac–Moody algebras by Hernandez.
In this note we introduce the corresponding Y-systems and establish a relation between T
and Y-systems. We also introduce the T and Y-systems associated with a class of cluster
algebras, which include the former T and Y-systems of simply laced type as special cases.
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1 Introduction

The T-systems and Y-systems appear in various aspects for integrable systems [58, 39, 40, 42,
52, 43, 44, 22, 2, 41, 6, 13, 1, 12, 53, 24, 55]. Originally, the T-systems are systems of relations
among the Kirillov–Reshetikhin modules [37, 38] in the Grothendieck rings of modules over
quantum affine algebras and Yangians [3, 7, 43, 45, 8, 20, 48, 25, 28]. The T and Y-systems are
related to each other by certain changes of variables [40, 43].

The T and Y-systems are also regarded as relations among variables for cluster algebras
[17, 19, 29, 10, 36, 32, 30, 49, 11]. This identification is especially fruitful in the study of the
periodicity of these systems [58, 52, 43, 22, 21, 17, 18, 19, 57, 36, 32].

The T-systems are generalized by Hernandez [27] to the quantum affinizations of a wide
class of quantum Kac–Moody algebras studied in [15, 56, 34, 46, 47, 26]. In this paper we
introduce the corresponding Y-systems and establish a relation between T and Y-systems. We
also introduce the T and Y-systems associated with a class of cluster algebras, which include
the former T and Y-systems of simply laced type as special cases.

It will be interesting to investigate the relation of the systems discussed here to the bira-
tional transformations arising from the Painlevé equations in [50, 51], and also to the geometric
realization of cluster algebras in [5, 23].

The organization of the paper is as follows. In Section 2 basic definitions for quantum
Kac–Moody algebras Uq(g) and their quantum affinizations Uq(ĝ) are recalled. In Section 3
the T-systems associated with the quantum affinizations of a class of quantum Kac–Moody
algebras by [27] are presented. Based on the result by [27], the role of the T-system in the
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Grothendieck ring of Uq(ĝ)-modules is given (Corollary 3.8). In Section 4 we introduce the
Y-systems corresponding to the T-systems in Section 3, and establish a relation between them
(Theorem 4.4). In Section 5 we define the restricted version of T-systems and Y-systems, and
establish a relation between them (Theorem 5.3). In Section 6 we introduce the T and Y-systems
associated with a class of cluster algebras, which include the restricted T and Y-systems of simply
laced type as special cases. In particular, the correspondence between the restricted T and Y-
systems of simply laced type for the quantum affinizations and cluster algebras is presented
(Corollaries 6.20, 6.21, 6.25, and 6.26).

2 Quantum Kac–Moody algebras
and their quantum affinizations

In this section, we recall basic definitions for quantum Kac–Moody algebras and their quantum
affinizations, following [26, 27]. The presentation here is a minimal one. See [26, 27] for further
information and details.

2.1 Quantum Kac–Moody algebras

Let I = {1, . . . , r} and let C = (Cij)i,j∈I be a generalized Cartan matrix in [35]; namely, it
satisfies Cij ∈ Z, Cii = 2, Cij ≤ 0 for any i 6= j, and Cij = 0 if and only if Cji = 0. We assume
that C is symmetrizable, i.e., there is a diagonal matrix D = diag(d1, . . . , dr) with di ∈ N := Z>0

such that B = DC is symmetric. Throughout the paper we assume that there is no common
divisor for d1, . . . , dr except for 1.

Let (h,Π,Π∨) be a realization of the Cartan matrix C [35]; namely, h is a (2r − rankC)-
dimensional Q-vector space, and Π = {α1, . . . , αr} ⊂ h∗, Π∨ = {α∨1 , . . . , α∨r } ⊂ h such that
αj(α∨i ) = Cij .

Let q ∈ C× be not a root of unity. We set qi = qdi (i ∈ I), [k]q = (qk − q−k)/(q − q−1),
[k]q! = [1]q[2]q · · · [k]q, and

[
k
r

]
q

= [k]q!/[k − r]q![r]q! (0 ≤ r ≤ k).

Definition 2.1 ([14, 33]). The quantum Kac–Moody algebra Uq(g) associated with C is the
C-algebra with generators kh (h ∈ h), x±i (i ∈ I) and the following relations:

khkh′ = kh+h′ , k0 = 1, khx
±
i k−h = q±αi(h)x±i ,

x+
i x

−
j − x

−
j x

+
i = δij

kdiα∨i
− k−diα∨i

qi − q−1
i

,

1−Cij∑
r=0

(−1)r

[
1− Cij

r

]
qi

(x±i )1−Cij−rx±j (x±i )r = 0 (i 6= j).

2.2 Quantum affinizations

In the following, we use the following formal series (currents):

x±i (z) =
∑
r∈Z

x±i,rz
r,

φ±i (z) =
∑
r≥0

φ±i,±rz
±r := k±diα∨i

exp

±(
q − q−1

) ∑
r≥1

hi,±rz
±r

 .

We also use the formal delta function δ(z) =
∑
r∈Z

zr.
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Definition 2.2 ([15, 34, 27]). The quantum affinization (without central elements) of the
quantum Kac–Moody algebra Uq(g), denoted by Uq(ĝ), is the C-algebra with generators x±i,r
(i ∈ I, r ∈ Z), kh (h ∈ h), hi,r (i ∈ I, r ∈ Z \ {0}) and the following relations:

khkh′ = kh+h′ , k0 = 1, khφ
±
i (z) = φ±i (z)kh,

khx
±
i (z) = q±αi(h)x±i (z)kh,

φ+
i (z)x±j (w) =

q±Bijw − z
w − q±Bijz

x±j (w)φ+
i (z),

φ−i (z)x±j (w) =
q±Bijw − z
w − q±Bijz

x±j (w)φ−i (z),

x+
i (z)x−j (w)− x−j (w)x+

i (z) =
δij

qi − q−1
i

(
δ
(w
z

)
φ+

i (w)− δ
( z
w

)
φ−i (z)

)
,

(w − q±Bijz)x±i (z)x±j (w) = (q±Bijw − z)x±j (w)x±i (z),∑
π∈Σ

1−Cij∑
k=1

(−1)k

[
1− Cij

k

]
qi

x±i (wπ(1)) · · ·x±i (wπ(k))x
±
j (z)

× x±i (wπ(k+1)) · · ·x±i (wπ(1−Cij)) = 0 (i 6= j). (2.1)

In (2.1) Σ is the symmetric group for the set {1, . . . , 1− Cij}.

When C is of finite type, the above Uq(ĝ) is called an (untwisted) quantum affine algebra
(without central elements) or quantum loop algebra; it is isomorphic to a subquotient of the
quantum Kac–Moody algebra associated with the (untwisted) affine extension of C without
derivation and central elements [15, 4]. (A little confusingly, the quantum Kac–Moody algebra
associated with C of affine type with derivation and central elements is also called a quantum
affine algebra and denoted by Uq(ĝ).)

When C is of affine type, Uq(ĝ) is called a quantum toroidal algebra (without central ele-
ments).

In general, if C is not of finite type, Uq(ĝ) is no longer isomorphic to a subquotient of any
quantum Kac–Moody algebra and has no Hopf algebra structure.

2.3 The category Mod(Uq(ĝ))

Let Uq(h) be the subalgebra of Uq(ĝ) generated by kh (h ∈ h).

Definition 2.3 ([27]). Let Mod(Uq(ĝ)) be the category of Uq(ĝ)-modules satisfying the follo-
wing properties:

(a) V is Uq(h)-diagonalizable, i.e., V = ⊕ω∈h∗Vω, where

Vω = {v ∈ V | khv = qω(h)v for any h ∈ h}.

(b) For any ω ∈ h∗, Vω is finite dimensional.

(c) For any i ∈ I and ω ∈ h∗, Vω±rαi = {0} for a sufficiently large r.

(d) There is a finite number of elements λ1, . . . , λs ∈ h∗ such that the weights ω ∈ h∗ of V are
in

⋃s
j=1 S(λj), where S(λ) = {µ ∈ h∗ | µ ≤ λ}.

By Condition (a), we restrict our attention to the so called ‘type 1’ modules.
Let

P = {λ ∈ h∗ | λ(α∨i ) ∈ Z}

be the set of integral weights.
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Definition 2.4 ([26]).
(1) An `-weight is a pair (λ,Ψ) with λ ∈ P and Ψ = (Ψ±

i,±r)i∈I,r≥0 such that Ψ±
i,±r ∈ C and

Ψ±
i,0 = q

±λ(α∨i )
i .

(2) A Uq(ĝ)-module V is of `-highest weight if there is some v ∈ V and `-weight (λ,Ψ) such
that x+

i,rv = 0, khv = qλ(h)v, φ±i,±rv = Ψ±
i,±rv, and Uq(ĝ)v = V . Such v and (λ,Ψ) are called

a highest weight vector and the `-highest weight of V , respectively.

By the standard argument using Verma modules, one can show that for any `-weight (λ,Ψ),
there is a unique simple `-highest weight module L(λ,Ψ) with `-highest weight (λ,Ψ) [26].

The following theorem is a generalization of the well-known classification of the simple finite-
dimensional modules of the quantum affine algebras by [7, 8].

Theorem 2.5 ([46, 47, 26]). We have L(λ,Ψ) ∈ Mod(Uq(ĝ)) if and only if there is an I-tuple
of polynomials (Pi(u))i∈I , Pi(u) ∈ C[u] with Pi(0) = 1 such that∑

m≥0

Ψ±
i,±mz

±m = qdeg Pi
i

Pi(zq−1
i )

Pi(zqi)
,

where the equality is in C[[z±1]].

We call (Pi(u))i∈I the Drinfeld polynomials of L(λ,Ψ). In the case of quantum affine algebras,
λ is also completely determined by the Drinfeld polynomials by the condition λ(α∨i ) = degPi.
This is not so in general.

Let Λi ∈ h∗ (i ∈ I) be the fundamental weights of Uq(g) satisfying Λi(α∨j ) = δij .

Example 2.6. For the following choices of (λ,Ψ), L(λ,Ψ) ∈ Mod(Uq(ĝ)) is called a fundamental
module [27].

(a) For any i ∈ I and α ∈ C×, set λ = Λi, Pi(u) = 1− αu, and Pj(u) = 1 (j ∈ I, j 6= i).
(b) Choose any λ satisfying (λ, α∨i ) = 0 (i ∈ I) and also set Pi(u) = 1 (i ∈ I). The

corresponding module L(λ,Ψ) is written as L(λ). The module L(λ) is one-dimensional; it is
trivial in the case of the quantum affine algebras.

2.4 Kirillov–Reshetikhin modules

The following is a generalization of the Kirillov–Reshetikhin modules of the quantum affine
algebras studied by [37, 38, 3, 8, 43, 9].

Definition 2.7 ([27]). For any i ∈ I, m ∈ N, and α ∈ C×, set the polynomials (Pj(u))j∈I as

Pi(u) =
(
1− αqm−1

i u
)(

1− αqm−3
i u

)
· · ·

(
1− αq1−m

i u
)

(2.2)

and Pj(u) = 1 for any j 6= i. The corresponding module L(mΛi,Ψ) is called a Kirillov–
Reshetikhin module and denoted by W (i)

m,α.

Remark 2.8. We slightly shift the definition of the polynomial (2.2) for W (i)
m,α in [27] in order

to make the identification to the forthcoming T-systems a little simpler.

3 T-systems

3.1 T-systems

Throughout Sections 3–5, we restrict our attention to a symmetrizable generalized Cartan ma-
trix C satisfying the following condition due to Hernandez [27]:

If Cij < −1, then di = −Cji = 1, (3.1)
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where D = diag(d1, . . . , dr) is the diagonal matrix symmetrizing C. In this paper, we say
that a generalized Cartan matrix C is tamely laced if it is symmetrizable and satisfies the
condition (3.1).

As usual, we say that a generalized Cartan matrix C is simply laced if Cij = 0 or −1 for any
i 6= j. If C is simply laced, then it is symmetric, da = 1 for any a ∈ I, and it is tamely laced.

With a tamely laced generalized Cartan matrix C, we associate a Dynkin diagram in the
standard way [35]: For any pair i 6= j ∈ I with Cij < 0, the vertices i and j are connected by
max{|Cij |, |Cji|} lines, and the lines are equipped with an arrow from j to i if Cij < −1. Note
that the condition (3.1) means

(i) the vertices i and j are not connected if di, dj > 1 and di 6= dj ,

(ii) the vertices i and j are connected by di lines with an arrow from i to j or not connected
if di > 1 and dj = 1,

(iii) the vertices i and j are connected by a single line or not connected if di = dj .

Example 3.1. (1) Any Cartan matrix of finite or affine type is tamely laced except for
types A(1)

1 and A(2)
2` .

(2) The following generalized Cartan matrix C is tamely laced:

C =


2 −1 0 0
−3 2 −2 −2
0 −1 2 −1
0 −1 −1 2

 , D =


3 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 .

The corresponding Dynkin diagram is

For a tamely laced generalized Cartan matrix C, we set an integer t by

t = lcm(d1, . . . , dr).

For a, b ∈ I, we write a ∼ b if Cab < 0, i.e., a and b are adjacent in the corresponding Dynkin
diagram.

Let U be either 1
t Z, the complex plane C, or the cylinder Cξ := C/(2π

√
−1/ξ)Z for some ξ ∈

C \ 2π
√
−1Q, depending on the situation under consideration. The following is a generalization

of the T-systems associated with the quantum affine algebras [43].

Definition 3.2 ([27]). For a tamely laced generalized Cartan matrix C, the unrestricted T-
system T(C) associated with C is the following system of relations for a family of variables
T = {T (a)

m (u) | a ∈ I,m ∈ N, u ∈ U},

T (a)
m

(
u− da

t

)
T (a)

m

(
u+

da

t

)
= T

(a)
m−1(u)T

(a)
m+1(u) +

∏
b:b∼a

T
(b)
da
db

m
(u) if da > 1, (3.2)

T (a)
m

(
u− da

t

)
T (a)

m

(
u+

da

t

)
= T

(a)
m−1(u)T

(a)
m+1(u) +

∏
b:b∼a

S(b)
m (u) if da = 1, (3.3)

where T (a)
0 (u) = 1 if they occur in the right hand sides in the relations. The symbol S(b)

m (u) is
defined by

S(b)
m (u) =

db∏
k=1

T
(b)

1+E
[

m−k
db

] (
u+

1
t

(
2k − 1−m+ E

[
m− k
db

]
db

))
, (3.4)

and E[x] (x ∈ Q) denotes the largest integer not exceeding x.
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Remark 3.3.
1. This is a slightly reduced version of the T-systems in [27, Theorem 6.10]. See Remark 3.7.

The same system was also studied by [54] when C is of affine type in view of a generalization
of discrete Toda field equations.

2. More explicitly, S(b)
m (u) is written as follows: For 0 ≤ j < db,

S
(b)
dbm+j(u) =

{
j∏

k=1

T
(b)
m+1

(
u+

1
t
(j + 1− 2k)

)}{
db−j∏
k=1

T (b)
m

(
u+

1
t
(db − j + 1− 2k)

)}
.

For example, for db = 1,

S(b)
m (u) = T (b)

m (u),

for db = 2,

S
(b)
2m(u) = T (b)

m

(
u− 1

t

)
T (b)

m

(
u+

1
t

)
,

S
(b)
2m+1(u) = T

(b)
m+1(u)T

(b)
m (u),

for db = 3,

S
(b)
3m(u) = T (b)

m

(
u− 2

t

)
T (b)

m (u)T (b)
m

(
u+

2
t

)
,

S
(b)
3m+1(u) = T

(b)
m+1(u)T

(b)
m

(
u− 1

t

)
T (b)

m

(
u+

1
t

)
,

S
(b)
3m+2(u) = T

(b)
m+1

(
u− 1

t

)
T

(b)
m+1

(
u+

1
t

)
T (b)

m (u),

and so on.
3. The second terms in the right hand sides of (3.2) and (3.3) can be written in a unified

way as follows [27]:

∏
b:b∼a

−Cab∏
k=1

T
(b)

−Cba+E
[

da(m−k)
db

] (
u+

db

t

(
−2k + 1
Cab

− Cba + E

[
da(m− k)

db

]
− 1

)
− dam

t

)
.

Definition 3.4. Let T(C) be the commutative ring over Z with generators T (a)
m (u)±1 (a ∈ I,

m ∈ N, u ∈ U) and the relations T(C). (Here we also assume the relation T (a)
m (u)T (a)

m (u)−1 = 1
implicitly. We do not repeat this remark in the forthcoming similar definitions.) Also, let T◦(C)
be the subring of T(C) generated by T (a)

m (u) (a ∈ I, m ∈ N, u ∈ U).

3.2 T-system and Grothendieck ring

Let C continue to be a tamely laced generalized Cartan matrix. The T-system T(C) is a family
of relations in the Grothendieck ring of modules of Uq(ĝ) as explained below.

We recall facts on Mod(Uq(ĝ)) in [27].

1. For a pair of `-highest weight modules V1, V2 ∈ Mod(Uq(ĝ)), there is an `-highest weight
module V1 ∗f V2 ∈ Mod(Uq(ĝ)) called the fusion product . It is defined by using the u-
deformation of the Drinfeld coproduct and the specialization at u = 1.

2. Any `-highest weight module in Mod(Uq(ĝ)) has a finite composition. (Here, the condi-
tion (3.1) for C is used essentially in [27].)
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3. If V1, V2 ∈ Mod(Uq(ĝ)) have finite compositions, then V1∗fV2 also has a finite composition.

Therefore, the Grothendieck ring R(C) of the modules in Mod(Uq(ĝ)) having finite compositions
is well defined, where the product is given by ∗f .

Let R′(C) be the quotient ring of R(C) by the ideal generated by all L(λ,Ψ)−L(λ′,Ψ)’s. In
other words, we regard modules in R(C) as modules of the subalgebra of Uq(ĝ) generated by x±i,r
(i ∈ I, r ∈ Z), k±diα∨i

(i ∈ I), hi,r (i ∈ I, r ∈ Z \ {0}) in Definition 2.2.

Proposition 3.5. The ring R′(C) is freely generated by the fundamental modules L(Λi,Ψ) in
Example 2.6 (a).

Proof. It follows from [27, Corollary 4.9] that R′(C) is generated by the fundamental modules
L(Λi,Ψ). The q-character morphism χq defined in [27] induces an injective ring homomorphism
χ′q : R′(C)→ Z[Y ±1

i,α ]i∈I,α∈C× . Furthermore, for L(Λi,Ψ) with Pi(u) = 1− αu, the highest term
of χ′q(L(Λi,Ψ)) is Yi,α. Therefore, the algebraic independence of L(Λi,Ψ)’s follows from that
of Yi,α’s. �

We set Ct log q := C/(2π
√
−1/(t log q))Z, and introduce alternative notation W

(a)
m (u) (a ∈ I,

m ∈ N, u ∈ Ct log q) for the Kirillov–Reshetikhin module W (a)
m,qtu in Definition 2.7.

In terms of the Kirillov–Reshetikhin modules, the structure of R′(C) is described as follows:

Theorem 3.6. Let W = {W (a)
m (u) | a ∈ I,m ∈ N, u ∈ Ct log q} be the family of the Kirillov–

Reshetikhin modules in R′(C). Let T and T(C) be the ones in Definition 3.4 with U = Ct log q.
Then,

(1) The family W generates the ring R′(C).
(2) ([27]) The family W satisfies the T-system T(C) in R′(C) by replacing T (a)

m (u) in T(C)
with W (a)

m (u).
(3) For any polynomial P (T ) ∈ Z[T ], the relation P (W ) = 0 holds in R′(C) if and only if

there is a nonzero monomial M(T ) ∈ Z[T ] such that M(T )P (T ) ∈ I(T(C)), where I(T(C)) is
the ideal of Z[T ] generated by the relations in T(C).

Proof. (1) By Proposition 3.5, R′(C) is generated by L(Λi,Ψ)’s, which belong to W .
(2) This is due to [27, Theorem 6.10].
(3) The proof is the same with that of [32, Theorem 2.8] by generalizing the height of T (a)

m (u)
therein as htT (a)

m (u) := da(m− 1) + 1. �

Remark 3.7. In [27] the T-system is considered in R(C) including fundamental modules L(λ)
of Example 2.6 (b).

As a corollary, we have a generalization of [32, Corollary 2.9] for the quantum affine algebras:

Corollary 3.8. The ring T◦(C) with U = Ct log q is isomorphic to R′(C) by the correspondence
T

(a)
m (u) 7→W

(a)
m (u).

4 Y-systems

4.1 Y-systems

Definition 4.1. For a tamely laced generalized Cartan matrix C, the unrestricted Y-system
Y(C) associated with C is the following system of relations for a family of variables Y = {Y (a)

m (u) |
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a ∈ I,m ∈ N, u ∈ U}, where Y (a)
0 (u)−1 = 0 if they occur in the right hand sides in the relations:

Y (a)
m

(
u− da

t

)
Y (a)

m

(
u+

da

t

)
=

∏
b:b∼a

Z
(b)
da
db

,m
(u)

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

if da > 1, (4.1)

Y (a)
m

(
u− da

t

)
Y (a)

m

(
u+

da

t

)
=

∏
b:b∼a

(
1 + Y

(b)
m
db

(u)
)

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

if da = 1, (4.2)

where for p ∈ N

Z(b)
p,m(u) =

p−1∏
j=−p+1


p−|j|∏
k=1

(
1 + Y

(b)
pm+j

(
u+

1
t
(p− |j|+ 1− 2k)

)) ,

and Y (b)
m
db

(u) = 0 in (4.2) if m
db
6∈ N.

Remark 4.2.
1. The Y-systems here are formally in the same form as the ones for the quantum affine

algebras [42]. However, p for Z(b)
p,m(u) here may be greater than 3.

2. In the right hand side of (4.1), da
db

is either 1 or da due to (3.1). The term Z
(b)
p,m(u) is

written more explicitly as follows: for p = 1,

Z
(b)
1,m(u) = 1 + Y (b)

m (u),

for p = 2,

Z
(b)
2,m(u) =

(
1 + Y

(b)
2m−1(u)

) (
1 + Y

(b)
2m

(
u− 1

t

)) (
1 + Y

(b)
2m

(
u+

1
t

)) (
1 + Y

(b)
2m+1(u)

)
,

for p = 3,

Z
(b)
3,m(u) =

(
1 + Y

(b)
3m−2(u)

) (
1 + Y

(b)
3m−1

(
u− 1

t

)) (
1 + Y

(b)
3m−1

(
u+

1
t

))
×

(
1 + Y

(b)
3m

(
u− 2

t

)) (
1 + Y

(b)
3m (u)

) (
1 + Y

(b)
3m

(
u+

2
t

))
×

(
1 + Y

(b)
3m+1

(
u− 1

t

)) (
1 + Y

(b)
3m+1

(
u+

1
t

)) (
1 + Y

(b)
3m+2(u)

)
,

and so on. There are p2 factors in Z(b)
p,m(u).

4.2 Relation between T and Y-systems

Let us write both the relations (3.2) and (3.3) in T(C) in a unified manner

T (a)
m

(
u− da

t

)
T (a)

m

(
u+

da

t

)
= T

(a)
m−1(u)T

(a)
m+1(u) +M (a)

m (u)

= T
(a)
m−1(u)T

(a)
m+1(u) +

∏
(b,k,v)

T
(b)
k (v)G(b,k,v; a,m,u), (4.3)

whereM (a)
m (u) is the second term of the right hand side of each relation. Define the transposition

tG(b, k, v; a,m, u) = G(a,m, u; b, k, v).
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Theorem 4.3. The Y-system Y(C) is written as

Y (a)
m

(
u− da

t

)
Y (a)

m

(
u+

da

t

)
=

∏
(b,k,v)

(
1 + Y

(b)
k (v)

)tG(b,k,v; a,m,u)(
1 + Y

(a)
m−1(u)−1

)(
1 + Y

(a)
m+1(u)−1

) .
Proof. This can be proved by case check for da > 1 and da = 1. �

For any commutative ring R over Z with identity element, let R× denote the group of all the
invertible elements of R.

Theorem 4.4. Let R be any commutative ring over Z with identity element.
(1) For any family T = {T (a)

m (u) ∈ R× | a ∈ I,m ∈ N, u ∈ U} satisfying T(C) in R, define
a family Y = {Y (a)

m (u) ∈ R× | a ∈ I,m ∈ N, u ∈ U} by

Y (a)
m (u) =

M
(a)
m (u)

T
(a)
m−1(u)T

(a)
m+1(u)

, (4.4)

where T (a)
0 (u) = 1. Then,

1 + Y (a)
m (u) =

T
(a)
m

(
u− da

t

)
T

(a)
m

(
u+ da

t

)
T

(a)
m−1(u)T

(a)
m+1(u)

, (4.5)

1 + Y (a)
m (u)−1 =

T
(a)
m

(
u− da

t

)
T

(a)
m

(
u+ da

t

)
M

(a)
m (u)

. (4.6)

Furthermore, Y satisfies Y(C) in R.
(2) Conversely, for any family Y = {Y (a)

m (u) ∈ R× | a ∈ I,m ∈ N, u ∈ U} satisfying Y(C)
with 1 + Y

(a)
m (u)±1 ∈ R×, there is a (not unique) family T = {T (a)

m (u) ∈ R× | a ∈ I,m ∈ N,
u ∈ U} satisfying T(C) such that Y (a)

m (u) is given by (4.4).

Proof. (1) Equations (4.5) and (4.6) follow from (4.3) and (4.4). We show that Y satisfies Y(C).
For da > 1, by (4.4)–(4.6), the relation (4.1) reduces to the following identity: For any p ∈ N,

T
(b)
pm

(
u− p

t

)
T

(b)
pm

(
u+ p

t

)
T

(b)
p(m−1)(u)T

(b)
p(m+1)(u)

=
p−1∏

j=−p+1


p−|j|∏
k=1

T
(b)
pm+j

(
ũ− 1

t

)
T

(b)
pm+j

(
ũ+ 1

t

)
T

(b)
pm+j−1(ũ)T

(b)
pm+j+1(ũ)

 , (4.7)

where ũ = u + 1
t (p − |j| + 1 − 2k). This is easily proved without using T(C). Similarly, for

da = 1, the relation (4.2) reduces to the following identity:

S
(b)
m

(
u− 1

t

)
S

(b)
m

(
u+ 1

t

)
S

(b)
m−1(u)S

(b)
m+1(u)

=


T

(b)
m
db

(
u− db

t

)
T

(b)
m
db

(
u+ db

t

)
T

(b)
m
db
−1(u)T

(b)
m
db

+1(u)
,

m

db
∈ N,

1, otherwise,

(4.8)

where S(b)
m (u) is defined in (3.4). Again, this is easily proved without using T(C).

(2) We modify the proof in the case of quantum affine algebras [32, Theorem 2.12] so that it is
applicable to the present situation. Here, we concentrate on the case U = 1

t Z. The modification
of the proof for the other cases U = C and C/(2π

√
−1/ξ)Z is straightforward.

Case 1. When C is simply laced. Suppose that C is simply laced. Thus, da = 1 for any
a ∈ I and t = 1. For any Y satisfying Y(C), we construct a desired family T in the following
three steps:
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Step 1. Choose arbitrarily T (a)
1 (−1), T (a)

1 (0),∈ R× (a ∈ I).
Step 2. Define T (a)

1 (−2), T (a)
1 (1) (a ∈ I) by

T
(a)
1 (u± 1) =

(
1 + Y

(a)
1 (u)−1

) M
(a)
1 (u)

T
(a)
1 (u∓ 1)

. (4.9)

Repeat it and define T (a)
1 (u) (a ∈ I) for the rest of u ∈ Z by (4.9).

Step 3. Define T (a)
m (u) (a ∈ I, u ∈ Z) for m ≥ 2 by

T
(a)
m+1(u) =

1

1 + Y
(a)
m (u)

T
(a)
m (u− 1)T (a)

m (u+ 1)

T
(a)
m−1(u)

, (4.10)

where T (a)
0 (u) = 1.

Claim. The family T defined above satisfies the following relations in R for any a ∈ I, m ∈ N,
u ∈ Z:

Y (a)
m (u) =

M
(a)
m (u)

T
(a)
m−1(u)T

(a)
m+1(u)

, (4.11)

1 + Y (a)
m (u) =

T
(a)
m (u− 1)T (a)

m (u+ 1)

T
(a)
m−1(u)T

(a)
m+1(u)

, (4.12)

1 + Y (a)
m (u)−1 =

T
(a)
m (u− 1)T (a)

m (u+ 1)

M
(a)
m (u)

. (4.13)

Proof of Claim. (4.12) holds by (4.10). (4.11) and (4.13) are equivalent under (4.12); further-
more, (4.13) holds for m = 1 by (4.9). So it is enough to show (4.11) for m ≥ 2 by induction
on m. In fact,

M
(a)
m (u)

T
(a)
m−1(u)T

(a)
m+1(u)

by (4.12)
=

(1 + Y
(a)
m−2(u))T

(a)
m−3(u)

T
(a)
m−2(u− 1)T (a)

m−2(u+ 1)

(1 + Y
(a)
m (u))T (a)

m−1(u)

T
(a)
m (u− 1)T (a)

m (u+ 1)
M (a)

m (u)

by induction
hypothesis

=
(
1 + Y

(a)
m−2(u)

)(
1 + Y (a)

m (u)
)Y (a)

m−1(u− 1)Y (a)
m−1(u+ 1)

Y
(a)
m−2(u)

M
(a)
m−2(u)M

(a)
m (u)

M
(a)
m−1(u− 1)M (a)

m−1(u+ 1)
by (4.12) and Y(C)

= Y (a)
m (u).

This ends the proof of Claim.
Now, taking the inverse sum of (4.12) and (4.13), we obtain (4.3). Therefore, T satisfies the

desired properties.
Case 2. When C is nonsimply laced. Suppose that C is nonsimply laced. Then, in Step 2

above, the factor M (a)
1 (u) in (4.9) involves the term T

(b)
da

(u) for a and b with a ∼ b, da > 1,
and db = 1. Therefore, Step 2 should be modified to define these terms together. For any Y
satisfying Y(C), we construct a desired family T in the following three steps:

Step 1. Choose arbitrarily T (a)
1 (u) ∈ R× (a ∈ I, −da

t ≤ u <
da
t ).

Step 2. Define T (a)
1 (u) (a ∈ I) for the rest of u ∈ 1

t Z as below. (One can easily check that
each step is well-defined.)

Let {1 < p1 < p2 < · · · < pk} = {da | a ∈ I}, and I = I1 t Ip1 t Ip2 t · · · t Ipk
, where

Ip := {a ∈ I | da = p}.
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Substep 1.

(i)1. Define T (a)
1 (−2

t ), T
(a)
1 (1

t ) (a ∈ I1) by

T
(a)
1

(
u± da

t

)
=

(
1 + Y

(a)
1 (u)−1

) M
(a)
1 (u)

T
(a)
1

(
u∓ da

t

) . (4.14)

(ii)1. Define T (a)
1 (u) (a ∈ I1) for the rest of −p1

t ≤ u <
p1

t by repeating (i)1.

Substep 2.

(i)2. Define T (a)
p1 (−1

t ), T
(a)
p1 (0) (a ∈ I1) by

T
(a)
m+1(u) =

1

1 + Y
(a)
m (u)

T
(a)
m

(
u− da

t

)
T

(a)
m

(
u+ da

t

)
T

(a)
m−1(u)

, (4.15)

where T (a)
0 (u) = 1.

(ii)2. Define T (a)
1 (−p1

t −
1
t ), T

(a)
1 (p1

t ) (a ∈ I1 t Ip1) by (4.14).

(iii)2. Define T (a)
1 (u) (a ∈ I1 t Ip1) for the rest of −p2

t ≤ u <
p2

t by repeating (i)2–(ii)2.

Substep 3.

(i)3. Define T (a)
p1 (−p2

t + p1

t −
1
t ), T

(a)
p1 (p2

t −
p1

t ) (a ∈ I1) by (4.15).
Define T (a)

p2 (−1
t ), T

(a)
p2 (0) (a ∈ I1) by (4.15).

(ii)3. Define T (a)
1 (−p2

t −
1
t ), T

(a)
1 (p2

t ) (a ∈ I1 t Ip1 t Ip2) by (4.14).

(iii)3. Define T (a)
1 (u) (a ∈ I1 t Ip1 t Ip2) for the rest of −p3

t ≤ u <
p3

t by repeating (i)3–(ii)3.

Substep 4. Continue to define T (a)
1 (u) (a ∈ I) for the rest of u ∈ 1

t Z.
Step 3. Define T (a)

m (u) (a ∈ I, u ∈ 1
t Z) for m ≥ 2 by (4.15).

Notice that T (a)
1 (u) is always defined by (4.14), while T (a)

m (u) for m ≥ 2 is so by (4.15).
Then, the rest of the proof can be done in a parallel way to the simply laced case by using (4.7)
and (4.8). �

Definition 4.5. Let Y(C) be the commutative ring over Z with generators Y
(a)
m (u)±1,

(1 + Y
(a)
m (u))−1 (a ∈ I, m ∈ N, u ∈ U) and the relations Y(C).

In terms of T(C) and Y(C), Theorem 4.4 is rephrased as follows (cf. [32, Theorem 2.12] for
the quantum affine algebras):

Theorem 4.6.
(1) There is a ring homomorphism

ϕ : Y(C)→ T(C)

defined by

Y (a)
m (u) 7→ M

(a)
m (u)

T
(a)
m−1(u)T

(a)
m+1(u)

.

(2) There is a (not unique) ring homomorphism

ψ : T(C)→ Y(C)

such that ψ ◦ ϕ = idY(C).
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There is another variation of Theorem 4.4. Let T×(C) (resp. Y×(C)) be the multiplicative
subgroup of all the invertible elements of T(C) (resp. Y(C)). Clearly, T×(C) is generated by
T

(a)
m (u)’s, while Y×(C) is generated by Y (a)

m (u)’s and 1 + Y
(a)
m (u)’s.

Theorem 4.7.
(1) There is a multiplicative group homomorphism

ϕ : Y×(C)→ T×(C)

defined by

Y (a)
m (u) 7→ M

(a)
m (u)

T
(a)
m−1(u)T

(a)
m+1(u)

,

1 + Y (a)
m (u) 7→

T
(a)
m

(
u− da

t

)
T

(a)
m

(
u+ da

t

)
T

(a)
m−1(u)T

(a)
m+1(u)

.

(2) There is a (not unique) multiplicative group homomorphism

ψ : T×(C)→ Y×(C)

such that ψ ◦ ϕ = idY(C)×.

5 Restricted T and Y-systems

Here we introduce a series of reductions of the systems T(C) and Y(C) called the restricted T
and Y-systems. The restricted T and Y-systems for the quantum affine algebras are important
in application to various integrable models.

We define integers ta (a ∈ I) by

ta =
t

da
.

Definition 5.1. Fix an integer ` ≥ 2. For a tamely laced generalized Cartan matrix C, the
level ` restricted T-system T`(C) associated with C (with the unit boundary condition) is the
system of relations (3.2) and (3.3) naturally restricted to a family of variables T` = {T (a)

m (u) |
a ∈ I;m = 1, . . . , ta` − 1;u ∈ U}, where T (a)

0 (u) = 1, and furthermore, T (a)
ta` (u) = 1 (the unit

boundary condition) if they occur in the right hand sides in the relations.

Definition 5.2. Fix an integer ` ≥ 2. For a tamely laced generalized Cartan matrix C, the
level ` restricted Y-system Y`(C) associated with C is the system of relations (4.1) and (4.2)
naturally restricted to a family of variables Y` = {Y (a)

m (u) | a ∈ I;m = 1, . . . , ta` − 1;u ∈ U},
where Y (a)

0 (u)−1 = 0, and furthermore, Y (a)
ta` (u)−1 = 0 if they occur in the right hand sides in

the relations.

The restricted version of Theorem 4.4 (1) holds.

Theorem 5.3. Let R be any commutative ring over Z with identity element. For any family
T` = {T (a)

m (u) ∈ R× | a ∈ I;m = 1, . . . , ta` − 1;u ∈ U} satisfying T`(C) in R, define a family
Y` = {Y (a)

m (u) ∈ R× | a ∈ I;m = 1, . . . , ta` − 1;u ∈ U} by (4.4), where T (a)
0 (u) = T

(a)
ta` (u) = 1.

Then, Y` satisfies Y`(C) in R.
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Proof. The calculation is formally the same as the one for Theorem 4.4. We have only to take
care of the boundary term

1

1 + Y
(a)
ta` (u)−1

=
M

(a)
ta` (u)

T
(a)
ta`

(
u− da

t

)
T

(a)
ta`

(
u+ da

t

) , (5.1)

which formally appears in the right hand sides of (4.1) and (4.2) for m = ta`− 1. Since

M
(a)
ta` (u) =


∏

b:b∼a

T
(b)
tb`

(u), da > 1,

∏
b:b∼a

{
db∏

k=1

T
(b)
tb`

(
u+

1
t
(2k − 1− db)

)}
, da = 1,

the right hand side of (5.1) is 1 under the boundary condition T
(a)
ta` (u) = 1 of T`(C). This is

compatible with Y (a)
ta` (u)−1 = 0. �

Unfortunately the restricted version of Theorem 4.4 (2) does not hold due to the boundary
condition of T`(C).

6 T and Y-systems from cluster algebras

In this section we introduce T and Y-systems associated with a class of cluster algebras [17, 19]
by generalizing some of the results in [19, 29, 10, 36, 32, 11]. They include the restricted T and
Y-systems of simply laced type in Section 5 as special cases.

6.1 Systems T(B) and Y±(B)

We warn the reader that the matrix B in this section is different from the one in Section 2 and
should not be confused.

Definition 6.1 ([16]). An integer matrix B = (Bij)i,j∈I is skew-symmetrizable if there is
a diagonal matrix D = diag(di)i∈I with di ∈ N such that DB is skew-symmetric. For a skew-
symmetrizable matrix B and k ∈ I, another matrix B′ = µk(B), called the mutation of B at k,
is defined by

B′
ij =

{
−Bij , i = k or j = k,

Bij + 1
2(|Bik|Bkj +Bik|Bkj |), otherwise.

(6.1)

The matrix µk(B) is also skew-symmetrizable. The matrix mutation plays a central role in
the theory of cluster algebras.

We impose the following conditions on a skew-symmetrizable matrix B: The index set I
admits the decomposition I = I+ t I− such that

if Bij 6= 0, then (i, j) ∈ I+ × I− or (i, j) ∈ I− × I+. (6.2)

Furthermore, for composed mutations µ+ =
∏

i∈I+
µi and µ− =

∏
i∈I−

µi,

µ+(B) = µ−(B) = −B. (6.3)

Note that µ±(B) does not depend on the order of the product due to (6.2).
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Lemma 6.2. Under the condition (6.2), the condition (6.3) is equivalent to the following one:
For any i, j ∈ I+,∑

k:Bik>0,Bkj>0

BikBkj =
∑

k:Bik<0,Bkj<0

BikBkj . (6.4)

The same holds for i, j ∈ I−.

Proof. Suppose that (6.3) holds. Then, for any i, j ∈ I+, µ−(B)ij = −Bij = 0 by (6.2). It
follows from (6.1) that∑

k:BikBkj>0

|Bik|Bkj = 0.

Therefore, we have (6.4). The rest of the proof is similar. �

Definition 6.3. For a skew-symmetrizable matrix B satisfying the conditions (6.2) and (6.3),
the T-system T(B) associated with B is the following system of relations for a family of variables
T = {Ti(u) | i ∈ I, u ∈ Z}:

Ti(u− 1)Ti(u+ 1) =
∏

j:Bji>0

Tj(u)Bji +
∏

j:Bji<0

Tj(u)−Bji .

For Y-systems, it is natural to introduce two kinds of systems.

Definition 6.4. For a skew-symmetrizable matrix B satisfying the conditions (6.2) and (6.3),
the Y-systems Y+(B) and Y−(B) associated with B are the following systems of relations for
a family of variables Y = {Yi(u) | i ∈ I, u ∈ Z}, respectively: For Y+(B),

Yi(u− 1)Yi(u+ 1) =

∏
j:Bji≷0

(1 + Yj(u))±Bji∏
j:Bji≶0

(1 + Yj(u)−1)∓Bji
, i ∈ I±. (6.5)

For Y−(B),

Yi(u− 1)Yi(u+ 1) =

∏
j:Bji≶0

(1 + Yj(u))∓Bji∏
j:Bji≷0

(1 + Yj(u)−1)±Bji
, i ∈ I±.

Remark 6.5. Two systems, Y+(B) and Y−(B), are transformed into each other by any of the
exchanges, Yi(u)↔ Yi(u)−1, I± ↔ I∓, or B ↔ −B. There is no preferred choice between Y+(B)
and Y−(B), a priori , and a convenient one can be used depending on the context. On the
contrary, T(B) is invariant under either I± ↔ I∓ or B ↔ −B.

Theorem 6.6. Let R be any commutative ring over Z with identity element. For any family
T = {Ti(u) ∈ R× | i ∈ I, u ∈ Z} satisfying T(B) in R, define a family Y = {Yi(u) ∈ R× | i ∈ I,
u ∈ Z} by

Yi(u) =
∏
j∈I

Tj(u)±Bji , i ∈ I±.

Then, Y satisfies Y+(B). Similarly, define a family Y by

Yi(u) =
∏
j∈I

Tj(u)∓Bji , i ∈ I±.

Then, Y satisfies Y−(B) in R.
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Proof. By Remark 6.5, it is enough to prove the first statement only. Then,

Yi(u) =

∏
j:Bji≷0

Tj(u)±Bji∏
j:Bji≶0

Tj(u)∓Bji
, i ∈ I±, (6.6)

1 + Yi(u) =
Ti(u− 1)Ti(u+ 1)∏
j:Bji≶0

Tj(u)∓Bji
, i ∈ I±, (6.7)

1 + Yi(u)−1 =
Ti(u− 1)Ti(u+ 1)∏
j:Bji≷0

Tj(u)±Bji
, i ∈ I±. (6.8)

Note that for j in the right hand side of (6.5), j ∈ I∓ by (6.2). By putting (6.6)–(6.8) into (6.5),
the right hand side of (6.5) is

∏
j∈I

{
Tj(u− 1)Tj(u+ 1)

}±Bji
∏

j:Bji≷0

{ ∏
k:Bkj≷0

Tk(u)∓Bkj

}±Bji ∏
j:Bji≶0

{ ∏
k:Bkj≶0

Tk(u)±Bkj

}±Bji

(6.4)
=

∏
j∈I

{
Tj(u− 1)Tj(u+ 1)

}±Bji ,

which is the left hand side of (6.5). �

6.2 Examples

Let us present some examples of T(B) and Y±(B).

Definition 6.7. A symmetrizable generalized Cartan matrix C = (Cij)i,j∈I is said to be bipartite
if the index set I admits the decomposition I = I+ t I− such that

if Cij < 0, then (i, j) ∈ I+ × I− or (i, j) ∈ I− × I+.

Example 6.8 ([17, 19]). Let C be a bipartite symmetrizable generalized Cartan matrix, which
is not necessarily tamely laced. Define the matrix B = B(C) by

Bij =


−Cij , (i, j) ∈ I+ × I−,
Cij , (i, j) ∈ I− × I+,
0, otherwise.

(6.9)

The rule (6.9) is visualized in the diagram:

−C

+ → −

Then, B is skew-symmetrizable and satisfies the conditions (6.2) and (6.3). The correspon-
ding T(B) and Y−(B) are given by

Ti(u− 1)Ti(u+ 1) = 1 +
∏

j:j∼i

Tj(u)−Cji ,

Yi(u− 1)Yi(u+ 1) =
∏

j:j∼i

(1 + Yj(u))−Cji ,

where j ∼ i means Cji < 0. These systems are studied in [17, 19]. When C is bipartite and
simply laced, they coincide with T2(C) and Y2(C) (for U = Z) in Section 5. When C is bipartite,
tamely laced, but nonsimply laced, they are different from T2(C) and Y2(C), because the latter
include factors depending on u+ α (α 6= 0) in the right hand sides.
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Example 6.9 (Square product [29, 10, 36, 32, 11]). Let C = (Cij)i,j∈I and C ′ =
(C ′

i′j′)i′,j′∈I′ be a pair of bipartite symmetrizable generalized Cartan matrices with I = I+ t I−
and I ′ = I ′+ t I ′−, which are not necessarily tamely laced. For i = (i, i′) ∈ I × I ′, let us write
i : (++) if (i, i′) ∈ I+ × I ′+, etc. Define the matrix B = (Bij)i,j∈I×I′ by

Bij =



−Cijδi′j′ , i : (−+), j : (++) or i : (+−), j : (−−),
Cijδi′j′ , i : (++), j : (−+) or i : (−−), j : (+−),
−δijC ′

i′j′ , i : (++), j : (+−) or i : (−−), j : (−+),
δijC

′
i′j′ , i : (+−), j : (++) or i : (−+), j : (−−),

0, otherwise.

(6.10)

The rule (6.10) is visualized in the diagram:

−C

(+−) → (−−)
−C′ ↑ ↓ −C′

(++) ← (−+)
−C

(6.11)

Since it generalizes the square product of quivers by [36], we call the matrix B the square product
B(C)�B(C ′) of the matrices B(C) and B(C ′) of (6.9).

Lemma 6.10. The matrix B in (6.10) is skew-symmetrizable and satisfies the conditions (6.2)
and (6.3) for (I × I ′)+ := (I+ × I ′+) t (I− × I ′−) and (I × I ′)− := (I+ × I ′−) t (I− × I ′+).

Proof. Let diag(di)i∈I and diag(d′i)i∈I′ be the diagonal matrices skew-symmetrizing C and C ′,
respectively, and let D = diag(did

′
i′)(i,i′)∈I×I′ . Then, the matrix DB is skew-symmetric. The

condition (6.2) is clear from (6.11). To show (6.4), suppose, for example, that i = (i, i′) : (++)
and j = (j, j′) : (−−). Then, BikBkj 6= 0 only for k = (i, j′) or k = (j, i′); furthermore,
Bik, Bkj ≥ 0 (resp. ≤ 0) for k = (i, j′) (resp. k = (j, i′)), and BikBkj = CijC

′
i′j′ for both. Thus,

(6.4) holds. The other cases are similar. �

The corresponding T(B) and Y+(B) are given by

Tii′(u− 1)Tii′(u+ 1) =
∏

j:j∼i

Tji′(u)−Cji +
∏

j′:j′∼i′

Tij′(u)
−C′

j′i′ ,

Yii′(u− 1)Yii′(u+ 1) =

∏
j:j∼i

(1 + Yji′(u))−Cji

∏
j′:j′∼i′

(1 + Yij′(u)−1)−C′
j′i′
,

where j ∼ i and j′ ∼ i′ means Cji < 0 and C ′
j′i′ < 0, respectively. These systems slightly

generalize the ones studied in connection with cluster algebras [29, 10, 36, 32, 11]. When C
is bipartite and simply laced, and C ′ is the Cartan matrix of type A`−1 with I ′+ = {1, 3, . . . }
and I ′− = {2, 4, . . . }, T(B) and Y+(B) coincide with T`(C) and Y`(C) in Section 5. (The choice
of I ′± is not essential here.) As in Example 6.8, when C is bipartite, tamely laced, but nonsimply
laced, and C ′ is the Cartan matrix of type A`−1, they are different from T`(C) and Y`(C).

Example 6.11. Let us give an example which does not belong to the classes in Examples 6.8
and 6.9. Let B = (Bij)i,j∈I with I = {1, . . . , 7} be the skew-symmetric matrix whose positive
components are given by

B21 = B13 = 2, B34 = B35 = B36 = B37 = B42 = B52 = B62 = B72 = 1.
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The matrix B is represented by the following quiver:

With I+ = {2, 3} and I− = {1, 4, 5, 6, 7}, the matrix B satisfies the conditions (6.2) and (6.3).

6.3 T(B) and Y±(B) as relations in cluster algebras

The systems T(B) and Y±(B) arise as relations for cluster variables and coefficients, respectively,
in the cluster algebra associated with B. See [19, 36] for definitions and information for cluster
algebras.

6.3.1 T(B) and cluster algebras

We start from T-systems.

Definition 6.12. For a skew-symmetrizable matrix B satisfying the conditions (6.2) and (6.3),
let T(B) be the commutative ring over Z with generators Ti(u)±1 (i ∈ I, u ∈ Z) and the
relations T(B). Also, let T◦(B) be the subring of T(B) generated by Ti(u) (i ∈ I, u ∈ Z).

Let ε : I → {+,−} be the sign function defined by ε(i) = ε for i ∈ Iε. For (i, u) ∈ I × Z, we
set the ‘parity conditions’ P+ and P− by

P± : ε(i)(−1)u = ±,

where we identify + and − with 1 and −1, respectively. For ε ∈ {+,−}, define T◦(B)ε to
be the subring of T◦(B) generated by those Ti(u) with (i, u) satisfying Pε. Then, we have
T◦(B)+ ' T◦(B)− by Ti(u) 7→ Ti(u+ 1) and

T◦(B) ' T◦(B)+ ⊗Z T◦(B)−.

Let A(B, x) be the cluster algebra with trivial coefficients, where (B, x) is the initial seed [19].
We set x(0) = x and define clusters x(u) = (xi(u))i∈I (u ∈ Z) by the sequence of mutations

· · · µ−←→ (B, x(0))
µ+←→ (−B, x(1))

µ−←→ (B, x(2))
µ+←→ · · · . (6.12)

Definition 6.13. The T-subalgebra AT (B, x) of A(B, x) associated with the sequence (6.12) is
the subring of A(B, x) generated by xi(u) (i ∈ I, u ∈ Z).

The ring AT (B, x) is no longer a cluster algebra in general, because it is not closed under
mutations.

Lemma 6.14.
(1) xi(u) = xi(u∓ 1) for (i, u) satisfying P±.
(2) The family x = {xi(u) | i ∈ I, u ∈ Z} satisfies the T-system T(B) by replacing Ti(u)

in T(B) with xi(u).

Proof. This follows from the exchange relation of a cluster x by the mutation µk [19]:

x′i =


xi, i 6= k,

1
xk

 ∏
j:Bji>0

xBji +
∏

j:Bji<0

x−Bji

 , i = k.
�
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Theorem 6.15 (cf. [32, Proposition 4.24]). For ε ∈ {+,−}, the ring T◦(B)ε is isomorphic
to AT (B, x) by the correspondence Ti(u)→ xi(u) for (i, u) satisfying Pε.

Proof. This follows from Lemma 6.14 using the same argument as the one for [32, Proposi-
tion 4.2]. �

6.3.2 Yε(B) and cluster algebras

We present a parallel result for Y-systems.
A semifield (P,+) is an abelian multiplicative group P endowed with a binary operation of

addition + which is commutative, associative, and distributive with respect to the multiplication
in P [19, 31]. (Here we use the symbol + instead of ⊕ in [19] to make the description a little
simpler.)

Definition 6.16. For ε ∈ {+,−} and a skew-symmetrizable matrix B satisfying the condi-
tions (6.2) and (6.3), let Ỹε(B) be the semifield with generators Yi(u) (i ∈ I, u ∈ Z) and
the relations Yε(B). Let Ỹ◦ε(B) be the multiplicative subgroup of Ỹε(B) generated by Yi(u)
and 1 + Yi(u) (i ∈ I, u ∈ Z). (We use the notation Ỹ to distinguish it from the ring Y in
Definition 4.5.)

Define Ỹ◦ε(B)+ (resp. Ỹ◦ε(B)−) to be the subgroup of Ỹ◦ε(B) generated by those Yi(u) and
1 + Yi(u) with (i, u) satisfying P+ (resp. P−). Then, we have Ỹ◦ε(B)+ ' Ỹ◦ε(B)− by Yi(u) 7→
Yi(u+ 1) and

Ỹ◦ε(B) ' Ỹ◦ε(B)+ × Ỹ◦ε(B)−.

Let A(B, x, y) be the cluster algebra with coefficients in the universal semifield Qsf(y), where
(B, x, y) is the initial seed [19]. To make the setting parallel to T-systems, we introduce the
coefficient group G(B, y) associated with A(B, x, y), which is the multiplicative subgroup of the
semifield Qsf(y) generated by all the elements y′i of coefficient tuples of A(B, x, y) together with
1 + y′i.

We set x(0) = x, y(0) = y and define clusters x(u) = (xi(u))i∈I and coefficient tuples
y(u) = (yi(u))i∈I (u ∈ Z) by the sequence of mutations

· · · µ−←→ (B, x(0), y(0))
µ+←→ (−B, x(1), y(1))

µ−←→ (B, x(2), y(2))
µ+←→ · · · . (6.13)

Definition 6.17. The Y-subgroup GY (B, y) of G(B, y) associated with the sequence (6.13) is the
multiplicative subgroup of G(B, y) generated by yi(u) and 1 + yi(u) (i ∈ I, u ∈ Z).

Lemma 6.18.
(1) yi(u) = yi(u± 1)−1 for (i, u) satisfying P±.
(2) For ε ∈ {+,−}, the family yε = {yi(u) | (i, u) satisfying Pε} satisf ies the Y-system

Yε(B) by replacing Yi(u) in Yε(B) with yi(u).

Proof. This follows from the exchange relation of a coefficient tuple y by the mutation µk [19]:

y′i =


yk

−1, i = k,

yi(1 + yk
−1)−Bki , i 6= k, Bki ≥ 0,

yi(1 + yk)−Bki , i 6= k, Bki ≤ 0.

�

Theorem 6.19. The group Ỹ◦+(B)± is isomorphic to GY (B, y) by the correspondence Yi(u) 7→
yi(u)±1, 1 + Yi(u) 7→ 1 + yi(u)±1 for (i, u) satisfying P±. Similarly, the group Ỹ◦−(B)± is
isomorphic to GY (B, y) by the correspondence Yi(u) 7→ yi(u)∓1, 1 + Yi(u) 7→ 1 + yi(u)∓1 for
(i, u) satisfying P±.
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Proof. Let us show that Ỹ◦+(B)+ ' GY (B, y). Let f : Qsf(y) → Ỹ+(B) be the semifield
homomorphism defined by

f : yi 7→

{
Yi(0), i ∈ I+,
Yi(−1)−1, i ∈ I−.

Then, due to Lemma 6.18 (2), it can be shown by induction on ±u that we have f : yi(u) 7→ Yi(u)
for any (i, u) satisfying P+, and f : yi(u) 7→ Yi(u − 1)−1 for any (i, u) satisfying P−. By the
restriction of f , we have a multiplicative group homomorphism f ′ : GY (B, y)→ Ỹ◦+(B)+. On the
other hand, by Lemma 6.18 (2) again, a semifield homomorphism g : Ỹ+(B)→ Qsf(y) is defined
by Yi(u) 7→ yi(u)±1 for (i, u) satisfying P±. By the restriction of g, we have a multiplicative
group homomorphism g′ : Ỹ◦+(B)+ → GY (B, y). Then, f ′ and g′ are the inverse to each other
by Lemma 6.18 (1). Therefore, Ỹ◦+(B)+ ' GY (B, y). The other cases are similar. �

6.4 Restricted T and Y-systems and cluster algebras: simply laced case

The restricted T and Y-systems, T`(C) and Y`(C), introduced in Section 5 are special cases
of T (B) and Y±(B), if C is simply laced. Therefore, they are also related to cluster algebras.

6.4.1 Bipartite case

Suppose that C is a simply laced and bipartite generalized Cartan matrix. Then, we have already
seen in Examples 6.8 and 6.9 that T`(C) and Y`(C) coincides with T (B) and Yε(B) for some B
and ε. Therefore, we immediately obtain the following results as special cases of Theorems 6.15
and 6.19.

Corollary 6.20. Let C be a simply laced and bipartite generalized Cartan matrix with I =
I+ t I−. For ε ∈ {+,−}, let T◦` (C)ε be the subring of T◦` (C) for U = Z generated by T (a)

m (u)
(a ∈ I;m = 1, . . . , `− 1;u ∈ Z) satisfying ε(a)(−1)m+1+u = ε. Then, we have the following:

(1) T◦2(C)ε is isomorphic to AT (B, x) with B = B(C) by the correspondence T (a)
1 (u) 7→ xa(u).

(2) For ` ≥ 3, T◦` (C)ε is isomorphic to AT (B, x) with B = B(C)�B(C ′) by the correspon-
dence T (a)

m (u) 7→ xam(u), where C ′ is the Cartan matrix of type A`−1 with I ′+ = {1, 3, . . . } and
I ′− = {2, 4, . . . }.

Corollary 6.21. Let C be a simply laced and bipartite generalized Cartan matrix with I =
I+ t I−. Let Ỹ`(C) be the semifield with generators Y (a)

m (u) (a ∈ I;m = 1, . . . , ` − 1;u ∈ Z)
and the relations Y`(C) for U = Z. Let Ỹ◦` (C) be the multiplicative subgroup of Ỹ`(C) generated
by Y (a)

m (u) and 1 + Y
(a)
m (u) (a ∈ I;m = 1, . . . , ` − 1;u ∈ Z). For ε ∈ {+,−}, let Y◦`(C)ε be the

multiplicative subgroup of Ỹ◦` (C) generated by Y (a)
m (u) and 1 + Y

(a)
m (u) (a ∈ I;m = 1, . . . , `− 1;

u ∈ Z) satisfying ε(a)(−1)m+1+u = ε. Then, we have the following:
(1) Ỹ◦2(C)± is isomorphic to GY (B, y) with B = B(C) by the correspondence Y

(a)
1 (u) 7→

ya(u)∓1, 1 + Y
(a)
1 (u) 7→ 1 + ya(u)∓1.

(2) For ` ≥ 3, Ỹ◦` (C)± is isomorphic to GY (B, y) with B = B(C)�B(C ′) by the correspon-
dence Y (a)

m (u) 7→ yam(u)±1, 1 + Y
(a)
m (u) 7→ 1 + yam(u)±1, where C ′ is the Cartan matrix of type

A`−1 with I ′+ = {1, 3, . . . } and I ′− = {2, 4, . . . }.

The slight discrepancy of the signs between ` = 2 and ` ≥ 3 is due to the convention adopted
here and not an essential problem.
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6.4.2 Nonbipartite case

Let us extend Corollaries 6.20 and 6.21 to a simply laced and nonbipartite generalized Cartan
matrix C. The Cartan matrix of type A(1)

2r is such an example. In general, a generalized Cartan
matrix C is bipartite if and only if there is no odd cycle in the corresponding Dynkin diagram.
Without loss of generality we can assume that C is indecomposable; namely, the corresponding
Dynkin diagram is connected.

Definition 6.22. Let C = (Cij)i,j∈I be a simply laced, nonbipartite, and indecomposable
generalized Cartan matrix. We introduce an index set I# = I#

+ t I
#
− , where I#

+ = {i+}i∈I and
I#
− = {i−}i∈I , and define a matrix C# = (C#

αβ)α,β∈I# by

C#
αβ =


2, α = β,

Cij , (α, β) = (i+, j−) or (i−, j+),
0, otherwise.

We call C# the bipartite double of C.

It is clear that C# is a simply laced and indecomposable generalized Cartan matrix; further-
more, it is bipartite with I# = I#

+ t I
#
− .

Example 6.23. Let C be the Cartan matrix corresponding to the Dynkin diagram in the left
hand side below. Then, C# is the Cartan matrix corresponding to the Dynkin diagram in the
right hand side.

Here is another example.

Proposition 6.24. Let C = (Cij)i,j∈I be a simply laced, nonbipartite, and indecomposable
generalized Cartan matrix, and C# be its bipartite double.

(1) Let T◦` (C
#)+ be the ring defined in Corollary 6.20. Then, T◦` (C) is isomorphic to T◦` (C

#)+
by the correspondence T (a)

m (u) 7→ T
(a±)
m (u) for (−1)m+1+u = ±.

(2) Let Ỹ◦`(C
#)+ be the multiplicative group defined in Corollary 6.21. Then, Ỹ◦`(C) is iso-

morphic to Ỹ◦`(C
#)+ by the correspondence Y (a)

m (u) 7→ Y
(a±)
m (u), 1+Y

(a)
m (u) 7→ 1+Y

(a±)
m (u) for

(−1)m+1+u = ±.

Proof. The generators and relations of the both sides coincide under the correspondence. �

Combining Corollaries 6.20, 6.21, and Proposition 6.24, we have the versions of Corolla-
ries 6.20 and 6.21 in the nonbipartite case.

Corollary 6.25. Let C and C# be the same ones as in Proposition 6.24.
(1) T◦2(C) is isomorphic to AT (B, x) with B = B(C#) by the correspondence T

(a)
1 (u) 7→

xa±(u) for (−1)u = ±.
(2) For ` ≥ 3, T◦` (C) is isomorphic to AT (B, x) with B = B(C#)�B(C ′) by the correspon-

dence T (a)
m (u) 7→ xa±,m(u) for (−1)m+1+u = ±, where C ′ is the Cartan matrix of type A`−1 with

I ′+ = {1, 3, . . . } and I ′− = {2, 4, . . . }.
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Corollary 6.26. Let C and C# be the same ones as in Proposition 6.24.
(1) Ỹ◦2(C) is isomorphic to GY (B, y) with B = B(C#) by the correspondence Y

(a)
1 (u) 7→

ya±(u)−1, 1 + Y
(a)
1 (u) 7→ 1 + ya±(u)−1 for (−1)u = ±.

(2) For ` ≥ 3, Ỹ◦`(C) is isomorphic to GY (B, y) with B = B(C#)�B(C ′) by the correspon-
dence Y (a)

m (u) 7→ ya±,m(u), 1 + Y
(a)
m (u) 7→ 1 + ya±,m(u) for (−1)m+1+u = ±, where C ′ is the

Cartan matrix of type A`−1 with I ′+ = {1, 3, . . . } and I ′− = {2, 4, . . . }.

6.5 Concluding remarks

One can further extend Corollaries 6.20, 6.21, 6.25, and 6.26 to the tamely laced and nonsimply
laced case by introducing T and Y-systems associated with another class of cluster algebras1.
Therefore, we conclude that all the restricted T and Y-systems associated with tamely laced
generalized Cartan matrices introduced in Section 5 are identified with the T and Y-systems
associated with a certain class of cluster algebras.

The following question is left as an important problem: What are the T and Y-systems
associated with nontamely laced symmetrizable generalized Cartan matrices?
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