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Abstract. The linearization problem of a second-order ordinary differential equation by the
generalized Sundman transformation was considered earlier by Duarte, Moreira and Santos
using the Laguerre form. The results obtained in the present paper demonstrate that their
solution of the linearization problem for a second-order ordinary differential equation via the
generalized Sundman transformation is not complete. We also give examples which show
that the Laguerre form is not sufficient for the linearization problem via the generalized
Sundman transformation.
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1 Introduction

The basic problem in the modeling of physical and other phenomena is to find solutions of
differential equations. Many methods of solving differential equations use a change of variables
that transforms a given differential equation into another equation with known properties. Since
the class of linear equations is considered to be the simplest class of equations, there arises the
problem of transforming a given differential equation into a linear equation. This problem is
called a linearization problem1.

The linearization problem of a second-order ordinary differential equation via point transfor-
mations was solved by Sophus Lie [3]. He also noted that all second-order ordinary differential
equations can be mapped into each other by means of contact transformations. Hence, the
solution of the linearization problem via contact transformations is trivial.

Comparing with the set of contact transformations the set of generalized Sundman trans-
formations is weaker: not any second-order ordinary differential equation can be transformed
to a linear equation. Hence, it is interesting to study an application of the set of generali-
zed Sundman transformations to the linearization problem of second-order ordinary differential
equations.

The linearization problem via a generalized Sundman transformation for second-order or-
dinary differential equations was investigated in [4]. The authors of [4] obtained that any
second-order linearizable ordinary differential equation which can be mapped into the equation
u′′ = 0 via a generalized Sundman transformation has to be of the form

y′′ + λ2(x, y)y′2 + λ1(x, y)y′ + λ0(x, y) = 0. (1)

Using the functions

λ3 = λ1y − 2λ2x, λ4 = 2λ0yy − 2λ1xy + 2λ0λ2y − λ1yλ1 + 2λ0yλ2 + 2λ2xx,

1The linearization problem has been studied in many publications. A short review can be found in [1, 2].
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they showed that equation (1) can be mapped into the equation u′′ = 0 via a generalized
Sundman transformation if the coefficients λi(x, y) (i = 0, 1, 2) satisfy the conditions:

(a) if λ3 = 0, then λ4 = 0;
(b) if λ3 6= 0, then λ4 6= 0 and the following equations have to be satisfied

λ2
4 + 2λ3xλ4 − 2λ2

3λ1x + 4λ2
3λ0y + 4λ2

3λ0λ2 − 2λ3λ4x − λ2
3λ

2
1 = 0,

λ3yλ4 + λ2
3λ1y − 2λ2

3λ2x − λ3λ4y = 0.

The generalized Sundman transformation was also applied [5, 6] for obtaining necessary and
sufficient conditions for a third-order ordinary differential equation to be equivalent to a linear
equation in the Laguerre form. Some applications of the generalized Sundman transformation to
ordinary differential equations were considered in [7] and earlier papers, which are summarized
in the book [8].

According to the Laguerre theorem in any linear ordinary differential equation the two terms
of order below next to highest can be simultaneously removed by a point transformation. For
example, the Laguerre form of a second-order ordinary differential equation is the linear equation
u′′ = 0. For obtaining this form, several point transformations are applied consecutively. Since
the composition of point transformations is a point transformation, the final transformation is
again a point transformation. This is not the case for generalized Sundman transformations:
the composition of a point transformation and a generalized Sundman transformation is not
necessarily a generalized Sundman transformation. Hence, for the linearization problem via
generalized Sundman transformations it is not sufficient to use the Laguerre form.

In this paper, we demonstrate that the solution of the linearization problem via the genera-
lized Sundman transformation of second-order ordinary differential equations given in [4] only
gives particular criteria for linearizable equations. Complete analysis of the compatibility of
arising equations is given for the case Fx = 0.

2 Generalized Sundman transformations

A generalized Sundman transformation is a non-point transformation defined by the formulae

u(t) = F (x, y), dt = G(x, y)dx, FyG 6= 0. (2)

Let us explain how the generalized Sundman transformation maps one function into another.
Assume that y0(x) is a given function. Integrating the second equation of (2), one obtains

t = Q(x), where

Q(x) = t0 +
∫ x

x0

G(s, y0(s)) ds

with some initial conditions t0 and x0. Using the inverse function theorem, one finds x = Q−1(t).
Substituting x into the function F (x, y0(x)), one gets the transformed function

u0(t) = F
(
Q−1(t), y0(Q−1(t))

)
.

Conversely, let u0(t) be a given function of t. Using the inverse function theorem, one solves
the equation

u0(t) = F (x, y)

with respect to y: y = φ (x, t). Solving the ordinary differential equation

dt

dx
= G(x, φ(x, t)),
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one finds t = H(x). The function H(x) can be written as an action of a functional H = L(u0).
Substituting t = H(x) into the function φ(x, t), the transformed function y0(x) = φ(x,H(x)) is
obtained.

Notice that for the case Gy = 0 the action of the functional L does not depend on the
function u0(t). In this case the generalized Sundman transformation becomes a point transfor-
mation. Conversely, since for a point transformation the value dt in the generalized Sundman
transformation is the total differential of t, then the compatibility condition for dt to be a total
differential leads to the equation Gy = 0. Hence, the generalized Sundman transformation is
a point transformation if and only if Gy = 0.

Formulae (2) also allow us to obtain the derivatives of u0(t) through the derivatives of the
function y0(x), and vice versa.

Hence, using transformation (2), one can relate the solutions of two differential equations
Q(x, y, y′, . . . , y(n)) = 0 and P (t, u, u′, . . . , u(n)) = 0. Therefore the knowledge of the general
solution of one of them gives the general solution of the other equation, up to solving one
ordinary differential equation of first-order and finding two inverse functions.

3 Necessary conditions

We start with obtaining necessary conditions for the linearization problem.
First, one finds the general form of a second-order ordinary differential equation

y′′ = H
(
x, y, y′

)
,

which can be mapped via a generalized Sundman transformation into the linear equation

u′′ + βu′ + αu = γ, (3)

where α(t), β(t) and γ(t) are some functions. Notice that the Laguerre form of a linear second-
order ordinary differential equation corresponds to α = 0, β = 0 and γ = 0.

The function u and its derivatives u′ and u′′ are defined by the first formula (2) and its
derivatives with respect to x:

u′G = Fx + Fyy
′,

u′′G2 + u′(Gx + Gyy
′) = Fyy

′′ + 2Fxyy
′ + Fyyy

′2 + Fxx. (4)

The independent variable t is defined by the functional L(u). As noted above, if Gy 6= 0, then
the action of the functional L depends on the function u. Hence, if one of the coefficients (3) is
not constant and Gy 6= 0, then the substitution of t into equation (3) gives a functional equation.
Since the case Gy = 0 reduces the generalized Sundman transformation to a point transforma-
tion2, the irreducible generalized Sundman transformation maps equation (3) into a differential
equation only for constant coefficients α, β and γ. Thus, finding the derivatives u′, u′′ from (4),
and substituting them into (3) with constant coefficients, one has the following equation

y′′ + λ2(x, y)y′2 + λ1(x, y)y′ + λ0(x, y) = 0, (5)

where the coefficients λi(x, y) (i = 0, 1, 2) are related to the functions F and G:

λ2 = (FyyG− FyGy)/K, (6)

2Later it will be shown that in our study for Fx = 0 this case is automatically excluded from consideration
because in the process of studying the compatibility this case leads to the conditions λ3 = 0 and λ4 = 0, which
were considered in [4].
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λ1 = (2FxyG− FxGy − FyGx + FyβG2)/K, (7)

λ0 = (FxxG− FxGx + FxβG2 + αFG3 −G3γ)/K, (8)

where K = GFy 6= 0.
Equation (5) presents the necessary form of a second-order ordinary differential equation

which can be mapped into a linear equation (3) via a generalized Sundman transformation.

4 Sufficient conditions

For obtaining sufficient conditions, one has to solve the compatibility problem (6)–(8), consi-
dering (6)–(8) as an overdetermined system of partial differential equations for the functions F
and G with the given coefficients λi(x, y) (i = 0, 1, 2). Notice that the compatibility conditions
(6)–(8) for the particular case α = 0, β = 0 and γ = 0 were obtained in [4]. This case corresponds
to the Laguerre form of a linear second-order ordinary differential equation. It is shown here
that for the linearization problem via generalized Sundman transformations it is not sufficient
to use the Laguerre form.

The compatibility analysis depends on the value of Fx. A complete study of all cases is
cumbersome. Here a complete solution is given for the case where Fx = 0.

Solving equations (6)–(8) with respect to Fyy, β and γ, one finds

Fyy = (GyFy + FyGλ2)/G, (9)

β = (Gx + Gλ1)/G2, (10)

γ = (−Fyλ0 + αFG2)/G2. (11)

Since Fx = 0, then differentiating Fyy with respect to x, one obtains

GGxy −GxGy + λ2xG2 = 0. (12)

Differentiating (10) and (11) with respect to x and y, one obtains the following equations

Gxx = (2G2
x + GxGλ1 − λ1xG2)/G, (13)

Gxy = Gλ3 −Gyλ1, (14)
2Gxλ0 − λ0xG = 0, (15)

α = (−Gyλ0 + G(λ0y + λ0λ2))/G3, (16)

where

λ3 = λ1y − 2λ2x.

Substituting (14) into (12), this becomes

GxGy + GyGλ1 −G2(λ2x + λ3) = 0. (17)

Comparing the mixed derivatives (Gxy)x = (Gxx)y, one obtains the equation

Gxλ3 −G(λ2xx + λ2xλ1 + λ3x) = 0. (18)

Differentiating α with respect to x and y, one has

2Gx(λ0y + λ0λ2) + Gy(λ0x + 2λ0λ1)−G(λ0xy + λ0xλ2 + 4λ2xλ0 + 2λ0λ3) = 0, (19)

2GGyyλ0 − 6G2
yλ0 + 2GyG(3λ0y + 2λ0λ2)−G2(λ4 + 2λ5 − λ1λ3) = 0, (20)

where

λ4 = 2λ0yy − 2λ1xy + 2λ0λ2y − λ1yλ1 + 2λ0yλ2 + 2λ2xx,

λ5 = λ2xx + λ2xλ1 + λ3x + λ1λ3.

Further analysis of the compatibility depends on λ3.
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4.1 Case λ3 6= 0

From equations (18), one finds

Gx = G(λ2xx + λ2xλ1 + λ3x)/λ3. (21)

Substituting Gx into equations (15), (17), (13) and (14), one obtains the equations

λ0x = 2λ0(−λ1λ3 + λ5)/λ3, (22)

λ2xxy = −λ2xyλ1 − λ3xy − 2λ2
2x − 2λ2xλ3 − λ3yλ1 + (λ3yλ5)λ−1

3 , (23)

λ2xxx = −λ3xx − λ1xλ2x − λ1xλ3 + λ2xλ2
1 + λ2

1λ3 − 2λ1λ5 + λ−1
3 λ5(λ3x + λ5), (24)

Gyλ5 −Gλ3(λ2x + λ3) = 0. (25)

4.1.1 Case λ5 6= 0

Equation (25) gives

Gy = Gλ3(λ2x + λ3)/λ5. (26)

Substituting Gy into equations (14), (19) and (20) and comparing the mixed derivatives (Gx)y =
(Gy)x, one gets

λ3λ5(6λ0yλ2x + 2λ2xyλ0 + 4λ2xλ0λ2 + 2λ3yλ0 + 4λ0λ2λ3 + λ1λ5)

− λ2
3(6λ2

2xλ0 + 12λ2xλ0λ3 − 6λ0yλ5 + 6λ0λ
2
3)− λ4λ

2
5 − 2λ3

5 = 0. (27)

4.1.2 Case λ5 = 0

Equations (22), (25), (23), (24), (19) and (20) become

λ0x = −2λ0λ1, (28)
λ2x = −λ3, (29)

2GGyyλ0 − 6G2
yλ0 + 2GyG(3λ0y + 2λ0λ2)−G2(λ4 − λ1λ3) = 0. (30)

If λ0 6= 0, then equation (30) defines

Gyy = (6G2
yλ0 − 2GyG(3λ0y + 2λ0λ2) + G2(λ4 − λ1λ3))/(2Gλ0). (31)

In this case, (Gyy)x = (Gxy)y and (Gx)yy = (Gyy)x are satisfied. Hence, there are no other
compatibility conditions. Thus, if λ3 6= 0 , λ5 = 0 and λ0 6= 0, then conditions (28) and (29) are
sufficient for equation (5) to be linearizable by a generalized Sundman transformation.

If λ0 = 0, there is no other conditions.

Remark 1. If λ5 = 0, equations (22), (23), (24), (25) and (27) become conditions (28) and (29)
respectively.

Thus, sufficient conditions for equation (5) in the case λ3 6= 0 to be linearizable by generalized
Sundman transformations are (22), (23), (24) and (27).
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4.2 Case λ3 = 0

Notice that the particular case λ3 = 0 and λ4 = 0 was studied in [4]. Here the case λ3 = 0 and
λ4 6= 0 is considered.

Equation (20) for λ3 = 0 becomes

2GGyyλ0 − 6G2
yλ0 + 2GyG(3λ0y + 2λ0λ2)−G2λ4 = 0. (32)

The assumption λ0 = 0 leads to the contradiction that λ4 = 0. Hence, one has to assume
that λ0 6= 0.

Equations (18), (15) and (19) become

λ2xx = −λ2xλ1, (33)
Gx = (Gλ0x)/(2λ0), (34)
Gyλ0λ6 −G(λ6yλ0 − λ0yλ6) = 0, (35)

where

λ6 = λ0x + 2λ0λ1.

Substituting Gx into equations (14) and (13), one gets

λ6y = (λ0yλ6 + 2λ2xλ2
0)/λ0, (36)

λ6x = (3λ6(λ6 − 2λ0λ1))/(2λ0). (37)

4.2.1 Case λ6 6= 0

From equations (35), one finds

Gy = G(−λ0yλ6 + λ6yλ0)/(λ0λ6).

Substituting Gy into equations (14) and (32), and comparing the mixed derivatives (Gx)y =
(Gy)x, one obtains

λ4x = (−24λ2
2xλ3

0 − 4λ0λ1λ4λ6 + λ4λ
2
6)/(2λ0λ6). (38)

4.2.2 Case λ6 = 0

In this case equation (35) is satisfied. One needs to check the only condition (Gyy)x = (Gx)yy,
which is

λ4x = −2λ1λ4. (39)

Equation (36) becomes

λ2x = 0. (40)

Remark 2. If λ6 = 0, equation (36) becomes a condition (40).

All obtained results can be summarized in the theorem.

Theorem 1. Sufficient conditions for equation (5) to be linearizable via a generalized Sundman
transformation with Fx = 0 are as follows.

(a) If λ3 6= 0, then the conditions are (22), (23), (24) and (27).
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(b) If λ3 = 0, λ6 6= 0, then the conditions are (33), (36), (37) and (38).

(c) If λ3 = 0, λ6 = 0, then the conditions are (33), (36), (37) and (39).

Remark 3. These conditions extend the criteria obtained in [4] to the case α, β, γ 6= 0 in (3),
for restricted (Fx = 0) generalized Sundman transformations.

Remark 4. Notice that a discussion of the case λi = λi(y) (i = 0, 1, 2) and Gx = 0, is also
given in [7].

Remark 5. Recall S. Lie’s results [3] on linearization of a second-order ordinary differential
equation via a change of the independent and dependent variables (point transformations). The
necessary form of a linearizable equation y′′ = f(x, y, y′) has to be the following form

y′′ + a(x, y)y′3 + b(x, y)y′2 + c(x, y)y′ + d(x, y) = 0. (41)

Equation (41) is linearizable if and only if its coefficients satisfy the conditions

3axx − 2bxy + cyy − 3axc + 3ayd + 2bxb− 3cxa− cyb + 6dya = 0,

bxx − 2cxy + 3dyy − 6axd + bxc + 3byd− 2cyc− 3dxa + 3dyb = 0. (42)

Despite that the form (5) is a particular case of (41), sufficient conditions of linearization
via point transformations (42) and the generalized Sundman transformation differ. Hence, the
second class of equations is not contained in the first class due to differences in conditions on
arbitrary elements of the classes. At the same time, these classes have a nonempty intersection.

5 Examples

Example 1. Consider the nonlinear ordinary differential equation

y′′ + (1/y)y′2 + yy′ + 1/2 = 0. (43)

Since this equation does not satisfy Lie criteria for linearization [3] it is not linearizable by point
transformations. Equation (43) is of the form (5) with coefficients

λ2 = 1/y, λ1 = y, λ0 = 1/2. (44)

One can check that the coefficients (44) obey the conditions (22), (23), (24) and (27). Thus,
equation (43) is linearizable via generalized Sundman transformation.

For finding the functions F and G one has to solve equations (9), (21) and (26), which become

Fx = 0, Fyy = (2Fy)/y, Gx = 0, Gy = G/y.

We take the simplest solution, F = y3 and G = y, which satisfies (9), (21) and (26). One
obtains the transformation

u = y3, dt = ydx. (45)

Equations (10), (11) and (16) give

β = 1, γ = −3/2, α = 0.

Hence equation (43) is mapped by the transformation (45) into the linear equation

u′′ + u′ + 3/2 = 0. (46)
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The general solution of equation (46) is

u = c1 + c2e
−t − 3t/2,

where c1, c2 are arbitrary constants. Applying the generalized Sundman transformation (45) to
equation (43) one obtains that the general solution of equation (43) is

y(x) = (c1 + c2e
−φ(x) − 3φ(x)/2)1/3,

where the function t = φ(x) is a solution of the equation

dt

dx
=

(
c1 + c2e

−t − 3t/2
)1/3

.

For example, if c1 = c2 = 0, then one obtains the solution of equation (43):

y = (−x)1/2.

Example 2. Consider the nonlinear ordinary differential equation

y′′ + xy′2 + yy′ + 1/e2xy = 0. (47)

Equation (47) is of the form (5) with the coefficients

λ2 = x, λ1 = y, λ0 = 1/e2xy. (48)

One can check that the coefficients (48) do not satisfy the conditions of linearizability by point
transformations, but they obey the conditions (28) and (29). Thus, equation (47) is linearizable
via a generalized Sundman transformation.

For finding the functions F and G one has to solve equations (9), (21) and (31), which become

Fx = 0, Fyy = (GyFy + FyGx)/G,

Gx = −yG, Gyy = (3G2
y + 4GyGx + 2G2x2)/G.

We take the simplest solution, F = y and G = e−xy, which satisfies (9), (21) and (31). The
linearizing generalized Sundman transformation is

u = y, dt = e−xydx. (49)

Equations (10), (11) and (16) give

β = 0, γ = −1, α = 0.

Hence equation (47) is mapped by the transformation (49) into the linear equation

u′′ + 1 = 0. (50)

The general solution of equation (50) is

u = −t2/2 + c1t + c2,

where c1, c2 are arbitrary constants. Applying the generalized Sundman transformation (49) to
equation (47) one obtains that the general solution of equation (47) is

y(x) = −φ(x)2/2 + c1φ(x) + c2,

where the function t = φ(x) is a solution of the equation

dt

dx
= e−x(−t2/2+c1t+c2).
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Example 3. Consider the nonlinear second-order ordinary differential equation

y′′ + µ3y
k3y′2 + µ2y

k2y′ + µ1y
k1 = 0, (51)

where k1, k2, k3, µ1, µ2 and µ3 6= 0 are arbitrary constants. The Lie criteria [3] show that
the nonlinear equation (51) is linearizable by a point transformation if and only if µ1 = 0 and
µ2 = 0.

From equation (51), the coefficients are

λ0 = µ1y
k1 , λ1 = µ2y

k2 , λ2 = µ3y
k3 , λ3 = µ2k2y

k2/y,

λ4 = 2µ1y
(k1+k3)+1(k1µ3 + k3µ1) + 2µ1y

k1(k2
1 − k1)− k2µ

2
2y

2k2+1/y2,

λ5 = k2µ
2
2y

2k2/y.

If µ2 6= 0 and µ1 = 0, then λ3 6= 0 and λ5 6= 0. One can check that the coefficients obey the
conditions (22), (23), (24) and (27). Thus, equation

y′′ + µ3y
k3y′2 + µ2y

k2y′ = 0 (52)

is linearizable by a generalized Sundman transformation.
For finding the functions F and G one has to solve equations (9), (21) and (26), which become

Fx = 0, Fyy = Fy(µ3y
k3+1 + k2)/y, Gx = 0, Gy = Gk2/y.

For example, if k2 = k3, one takes the simplest solution, F = 1
µ3

e
µ3yk2+1

k2+1 and G = yk2 , and
the generalized Sundman transformation becomes

u =
1
µ3

e
µ3yk2+1

k2+1 , dt = yk2dx. (53)

Equations (10), (11) and (16) give

β = µ2, γ = 0, α = 0.

Hence equation (52) is mapped by the transformation (53) into the linear equation

u′′ + µ2u
′ = 0.

If µ3 = 0, then equation (51) is

y′′ + µ2y
k2y′ + µ1y

k1 = 0, (54)

where µ2 6= 0. The Lie criteria [3] show that the nonlinear equation (54) is linearizable by
a point transformation if and only if k1 = 3, k2 = 1 and µ1 = (µ2/3)2. In the particular case,
k1 = 3, k2 = 1, µ1 = 1 and µ2 = 3, one has the equation

y′′ + 3yy′ + y3 = 0. (55)

Equation (55) arises in many areas. Some of these are the analysis of the fusion of pellets, the
theory of univalent functions, the stability of gaseous spheres, operator Yang–Baxter equations,
motion of a free particle in a space of constant curvature, the stationary reduction of the second
member of the Burgers hierarchy [9].

Remark 6. Equation (55) is linearizable by a point transformation and by a generalized Sund-
man transformation into the equation u′′ = 0 and u′′ + 3u′ + 2u = 0, respectively.
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Without loss of the generality3, one can assume that µ2 = 1. Hence, equation (54) becomes

y′′ + yk2y′ + µ1y
k1 = 0. (56)

For this equation the coefficients are

λ0 = µ1y
k1 , λ1 = yk2 , λ2 = 0, λ3 = k2y

k2−1,

λ4 = µ1k1(k1 − 1)yk1−2 − k2y
2k2−1, λ5 = k2y

2k2+1.

If k2 = 0, then λ5 = 0 and equation (56) is linearizable by a generalized Sundman transfor-
mation.

If k2 6= 0, then λ5 6= 0 and conditions (22), (23), (24), (27) are reduced to

µ1(2k2 + 1− k1)(k2 − k1) = 0. (57)

If conditions (57) are satisfied, then equation (56) is linearizable by a generalized Sundman
transformation. Notice that in the case µ1(k2 − k1) = 0, equation (56) is trivially integrated by
using the substitution y′ = H(y). A nontrivial case is k1 = 2k2 +1. In this case the functions F
and G are solutions of the compatible overdetermined system of equations

Fx = 0, Fyy = k2Fy/y, Gx = 0, Gy = k2G/y. (58)

The general solution of equations (58) depends on the value of the constant k2. For example, if
k2 6= −1, then a particular solution of system (58) is

F = yk2+1, G = yk2 .

Thus, the generalized Sundman transformation reduces equation (56) into the linear equation

u′′ + u′ + (µ1(k2 + 1))u = 0.

Remark 7. Since equations (43), (51) and (54) are autonomous, their order can be reduced by
the substitution y′ = f(y). It is worth to note that for equations (51) and (54) the difficulties
in using the generalized Sundman transformation are similar to solving the original equation by
this reduction.

6 Conclusion

Application of the generalized Sundman transformation for the linearization problem was ana-
lyzed in the paper. Since the method is well-known, the efficiency of the method is not discussed
in the paper. The paper just warns that a researcher has to be careful when using the well-
known method for the linearization problem. In particular, our examples show that, in contrast
to point transformations (S. Lie results), for a linearization problem via the generalized Sundman
transformation one needs to use the general form of a linear second-order ordinary differential
equation instead of the Laguerre form.
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