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Abstract. We calculate the low temperature asymptotics of a function  that generates
the temperature dependence of all static correlation functions of the isotropic Heisenberg
chain.
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1 Introduction

Over the past few years the mathematical structure of the static correlation functions of the
X X7 chain was largely resolved. After an appropriate regularization by a disorder parameter
they all factorize into polynomials in only two functions p and w [8]. These are the one-point
function and a special neighbor two-point function which, in turn, can be represented as integrals
over solutions of certain linear and non-linear integral equations [2]. This resembles much the
situation with free fermions, and what is behind is indeed a remarkable fermionic structure on
the space of quasi-local operators acting on the spin chain [5]. It allows us, for instance, to
calculate short-range correlators with high numerical precision directly in the thermodynamic
limit [1, 12].

The low temperature asymptotics of p and w universally determines the low temperature
properties of all static correlation functions. In this short note we obtain the low temperature
asymptotics in the special case of the isotropic Hamiltonian

H = JZ (0§ 107 + U;J_lag + 0% 40%) (1.1)
J

with no magnetic field applied and vanishing disorder parameter. Then p = 1 and we are left
with only one function (and its derivatives) which, up to a trivial factor, is the function -y defined
in [3].

2 Definition of the basic function ~

For our purpose here it is convenient to introduce the function v within the context of a special
realization of a six-vertex model (see e.g. [4]) and its associated quantum transfer matrix [10].
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By definition the latter has 2(AN 4+ .M) vertical lines alternating in direction and carrying spectral
parameters

/ !/ !/ !/ /
Uy = Uy Uy = Uy ooy —U U+ [, U] — WU+ 1, ] — Uy ey ] — U

2N 2M

The spectral parameter on the horizontal line will be denoted po. We consider this system in
the limit N, M — +oo with the fine tuning uN = z% and v M = i%. With an appropriate
overall normalization the largest eigenvalue A(p2, p1) is given by

4nJ

(A2, ) = K (1) + 0 K 2 — )

+ /oo dtln [(1 + b(ta :ul))(l +E(t7:u1))]
o 2 cosh(m(pg —t)) ’
Let us note that we recover the familiar system of equations, allowing us to study the thermo-

dynamical properties of the Hamiltonian (1.1), by setting 6 = 0. The function K(z) is defined
as

(2.1)

1 00 e—ik:v
K@)=— | dk -
(@) =5, /Oo 1+ el¥l

“ (0 (57) o (57) e ),

where 1 is the digamma function. The auxiliary functions b(x, ) and b(z, 1) are solutions of
a pair of non-linear integral equations given by

In(b(z, 1)) = —ch;{m) - Tcosh(i?i 5y /_Z dtK (z — t)In(1 + b(t, u1))
- /OO QK (z —t + ) In(1 + B(t, 1)) (2.2)

and a similar equation obtained by exchanging b «» b and i «» —i in (2.2). The function 7 can
now be introduced as

Y01, p2) = —1+ (1+ (1 — 12)?) T In(A a2, ) (23)

0

It has been conjectured [3] that the correlation functions of the isotropic Heisenberg chain at
any finite temperature (for vanishing magnetic field) are polynomials in + and its derivatives
evaluated at (0,0). A similar statement (involving a function w and its derivative with respect
to the disorder parameter) was proved for the anisotropic XXZ chain [5, 8, 2]. Amazingly the
isotropic limit seems non-trivial and is still a subject of ongoing work. Here we would only like
to mention that the nearest- and next-to-nearest-neighbor two-point functions were expressed
in terms of ~ in [3] starting from the multiple integral representation for the density matrix of
the Heisenberg chain obtained in [7]. The formulae for the longitudinal two-point functions are,
for instance,

6=0

z _Z 1

(ofo5)T = —5’7(070)7 (2.4)
2 1 1 1

<Ulg3>T = _57(07 O) - 6'7:%(070) + g’hy(oy 0)~ (2.5)

They will be used below to test our results for the low-temperature expansion. We denoted
derivatives with respect to the first (resp. second) argument by the subscript x (resp. y). Similar
results for four sites can be obtained from [1] in the isotropic limit. In previous work [13] the
high-temperature expansion (up to order 25) of the two-point functions was obtained analytically
based on (2.4) and (2.5).
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3 Low-temperature expansion

To compute the low-temperature expansion of v, we follow the line of reasoning of the article [9],
where a similar task was performed for the free energy. There are, however, two differences
between the usual equations and the ones used in this note: the additional driving term in (2.2)
proportional to d and the shift uo in the kernel of the integration in (2.1).

The computation is based on the introduction of a shift £ = %ln (71'%) in the auxiliary
functions:

be(z) =b(z+L) and  be(z) =b(—z — L).

In the low-temperature limit these functions satisfy
)
Inbe(r, ) ~ —de ™™ — 45 T 4 Dy(r)
4 [t = O+ bt ) — Ko — 4+ ) a1+ Bt )], (31
-

where D, (x) is the rest of the integral which does not contribute to the low-temperature limit,
when the magnetic field vanishes (see [9]). A similar relation holds with b <+ b and i < —i
exchanged.

In terms of the shifted functions the largest eigenvalue becomes

A J 47d
In(A(pz, p1)) ~ TK(/@) + TK(/@ — 1)
+—— [ dte™ DI [(1 4 br(t, p1)) (1 + be(t, 1n))]
Jr iy

T - =
T dte” ™02 In [(1+be(t, )1+ be(t, m))].
—c

To evaluate these integrals we compute

o0

7- / dt[In(1 + b (t, 1)) (b (t, 1)) + (L + b (t, 1)) (b (£, 1))
—L

using two different methods. Here the prime stands for the derivative with respect to ¢. First,

we compute it explicitly using the change of variables z = In(bz) or z = In(b.), respectively,

which results in

0 2
122/ In(1+e€*)dz = —.
L Ee)ds =
Second, we replace In(b. (¢, 1)) and In(bz (¢, 1)) by their scaling limits (3.1) and simplify the
resulting expression by taking into account that the derivative of K (x) is odd and contributions
by double integrals cancel pairwise. This way we obtain

T =4dr <1 - ie”‘“) /_O: dte™™ In [(1+b(t, 1)) (1 + b(t, 11))].

The same type of manipulation can be performed for the functions g, and a similar result is
obtained with u; replaced by —p.
Gathering these findings we obtain the asymptotic form of the largest eigenvalue,

4 J 41 T eTh2 e TH2
In(A ~ —K —K — .
n(A(u2, p11)) T (p2) + T (2 — p1) + 517 <1+ For + . ie—ﬂﬂl>
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Figure 1. Comparison of the high- and low-temperature expansions (HTE, LTE) of (¢fc3) with the
full numerical solution obtained from the integral equations (NLIE) and with Monte-Carlo data (QMC).

Thus, using (2.3), the function v behaves asymptotically for small temperatures as
T2

122

Y1, p2) ~ =14 (14 (g1 — p2)?) <4ﬂK(u2 — ) = cosh(m(p + /m))) :
This is our main result.
Using (2.4) and (2.5), we obtain the low-temperature expansion of the longitudinal correlation
functions
1 4 7% 1
(ofo3)T ~ 3 §1n(2) T 235

2 2
(oiodyr ~ 5 — = In2) +30(3) — oy (7; - 4> .

The constant terms (independent of the temperature) in these expansions are in agreement
with those originally found in [11, 6]. In the figure we compare the combined low- and high-
temperature results for the next-to-nearest neighbor zz-correlation functions with the full nu-
merical curve obtained by implementing the linear and non-linear integral equations that deter-
mine v and its derivatives [3] on a computer. The high-temperature data and some additional
Monte-Carlo data are taken from [14]. We find that the numerical curves (NLIE, QMC) are
amazingly well approximated by its low- and high-temperature approximations.
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