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Abstract. To a finite quiver equipped with a positive integer on each of its vertices, we
associate a holomorphic symplectic manifold having some parameters. This coincides with
Nakajima’s quiver variety with no stability parameter/framing if the integers attached on
the vertices are all equal to one. The construction of reflection functors for quiver varieties
are generalized to our case, in which these relate to simple reflections in the Weyl group
of some symmetrizable, possibly non-symmetric Kac-Moody algebra. The moduli spaces of
meromorphic connections on the rank 2 trivial bundle over the Riemann sphere are described
as our manifolds. In our picture, the list of Dynkin diagrams for Painlevé equations is slightly
different from (but equivalent to) Okamoto’s.
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1 Introduction

First, we briefly explain our main objects in this article. Let

e Q be a quiver, i.e., a directed graph, with the set of vertices I (our quivers are always
assumed to be finite and have no arrows joining a vertex with itself);

o d=(di)er € ZI>O be a collection of positive integers indexed by the vertices.

We think of each number d; as the ‘multiplicity’ of the vertex i € I, so the pair (Q,d) as a ‘quiver
with multiplicities’. In this article, we associate to such (Q, d) a holomorphic symplectic manifold
NQ.a(A, v) having parameters

o A= (\i(2))ier, where \;i(z) = )\,-,1,2'*1 + )\i’gz*2 4t )\i,diz*di € z*di(C[z]/(C[z];
o v = (vi)ier € Z,,

and call it the quiver variety with multiplicities, because if d; = 1 for all ¢ € I, it then coincides
with (the stable locus of) Nakajima’s quiver variety 90t ®(v, w) [21] with

w =0 € ZL,, ¢ = (Cr,¢c) = (0, (Nip)ier) € VIR x CT.

As in the case of quiver variety, Nad()\,v) is defined as a holomorphic symplectic quotient
with respect to some algebraic group action (see Section 3). However, the group used here is
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non-reductive unless d; = 1 or v; = 0 for all i € I. Therefore a number of basic facts in the
theory of holomorphic symplectic quotients (e.g. the hyper-Kéhler quotient description) cannot
be applied to our N%’d(A,V), and for the same reason, they seem to provide new geometric
objects relating to quivers.

The definition of Ng 4(), v) is motivated by the theory of Painlevé equations. It is known
due to Okamoto’s work [23, 24, 25, 26] that all Painlevé equations except the first one have
(extended) affine Weyl group symmetries; see the table below, where P; denotes the Painlevé
equation of type J (J =11, III, ... VI).

Equations || Pvi | Py | Piv | Pur | P
Symmetries Dfll) Aél) Agl) C’;l) Agl)

On the other hand, each of them is known to govern an isomonodromic deformation of rank two
meromorphic connections on P! [12]; the number of poles and the pole orders of connections
remain unchanged during the deformation, and are determined from (if we assume that the
connections have only ‘unramified’ singularities) the type of the Painlevé equation (see e.g. [27]).
See the table below, where ki + ko + - -+ + k,, means that the connections in the deformation
have n poles of order k;, i = 1,2,...,n and no other poles.

Equations Py Py P | P | P
Connections | 1+14+1+1|24+1+1|(3+1|24+2]| 4

Roughly speaking, we thus have a non-trivial correspondence between some Dynkin diagrams
and rank two meromorphic connections.

In fact, such a relationship can be understood in terms of quiver varieties except in the case
of Pri1. Crawley-Boevey [7] described the moduli spaces of Fuchsian systems (i.e., meromorphic
connections on the trivial bundle over P! having only simple poles) as quiver varieties associated
with ‘star-shaped’ quivers. In particular, the moduli space of rank two Fuchsian systems having
exactly four poles are described as a quiver variety of type Dfll), which is consistent with the
above correspondence for Py;. The quiver description in the cases of P, Prv and Py was
obtained by Boalch! [4]; more generally, he proved that the moduli spaces of meromorphic
connections on the trivial bundle over P! having one higher order pole (and possibly simple
poles) are quiver varieties.

A remarkable point is that their quiver description provides Weyl group symmetries of the
moduli spaces® at the same time, because for any quiver, the associated quiver varieties are
known to have such symmetry. This is generated by the so-called reflection functors (see Theo-
rem 1.2 below), whose existence was first announced by Nakajima (see [21, Section 9], where he
also gave its geometric proof in some important cases), and then shown by several researchers
including himself [8, 19, 22, 28].

The purpose of quiver varieties with multiplicities is to generalize their description to the
case of Pyyr; the starting point is the following observation (see Proposition 6.6 for a further
generalized, precise statement; see also Remarks 6.4 and 6.5):

Proposition 1.1. Consider a ‘star-shaped quiver of length one’

0

1 2 n

"His description in the case of Py is based on the work of Harnad [10].
2 Actually in each Painlevé case, this action reduces to an action of the corresponding finite Weyl group, which
together with ‘Schlesinger transformations’ give the full symmetry; see [5, Section 6].
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Here the set of vertices is I = {0,1,...,n}. Take multiplicities d € Z]>0 with dg = 1 and set
v E ZIZO byvo=2,v;=1(i=1,...,n). Then Ngq(), V) is isomorphic to the moduli space of
stable meromorphic connections on the rank two trivial bundle over P having n poles of order d;,
i=1,...,n of prescribed formal type.

On the other hand, to any quiver with multiplicities, we associate a generalized Cartan mat-
rix C as follows:

C = 2Id — AD,

where A is the adjacency matrix of the underlying graph, namely, the matrix whose (i, j) entry
is the number of edges joining ¢ and j, and D is the diagonal matrix with entries given by the
multiplicities d. It is symmetrizable as DC is symmetric, but may be not symmetric.

Now as stated below, our quiver varieties with multiplicities admit reflection functors; this
is the main result of this article.

Theorem 1.2 (see Section 4). For any quiver with multiplicities (Q,d), there exist linear
maps

siw 2P — 71, i @(z_di(C[z]/(C[z]) — @(z_di(:[z]/@[z]) (tel)
el i€l
generating actions of the Weyl group of the associated Kac—Moody algebra, such that for any
(A, v) and i € I with \; 4, # 0, one has a natural symplectomorphism

F;: Nad()\,v) = Nad(ri()\),si(v)).
If d; =1 for all i € I, then the maps F; coincide with the reflection functors.

In the case of star-shaped quivers, the original reflection functor at the central vertex can
be interpreted in terms of Katz’s middle convolution [14] for Fuchsian systems (see [3, Ap-
pendix AJ). A similar assertion also holds in the situation of Proposition 1.1; the map Fy at the
central vertex 0 can be interpreted in terms of the ‘generalized middle convolution’ [1, 31] (see
Section 6.3).

For instance, consider the star-shaped quivers with multiplicities given below

1
@—{ O—>O<—O O—>O<—O O—>O
1

Proposition 1.1 says that the associated Ng 4(A, v) with a particular choice of v give the moduli
spaces for Pyr, Py, Prv, P and Py, respectively. On the other hand, the associated Kac—-Moody
algebras are respectively given by?

Interestingly, this list of Kac—-Moody algebras is different from the table given before; however
we can clarify the relationship between our description and Boalch’s by using a sort of ‘shifting
trick” established by him (see Section 5.1). This trick, which may be viewed as a geometric
phenomenon arising from the ‘normalization of the leading coefficient in the principal part of
the connection at an irregular singular point’, connects two quiver varieties with multiplicities
associated to different quivers with multiplicities; more specifically, we prove the following:

3We follow Kac [13] for the notation of (twisted) affine Lie algebras.
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Theorem 1.3 (see Section 5). Suppose that a quiver with multiplicities (Q,d) has a pair of
vertices (i,7) such that

d; > 1, d; =1, i, = ap; = 05, for any k€1,

where A = (a;j) is the adjacency matriz of the underlying graph. Then it determines another
quiver with multiplicities (Q,d) and a map (A\,v) — (A, V) between parameters such that the
following holds: if N4, # 0, then Ngq(\,v) and Naa()\,\?) are symplectomorphic to each
other.

We call the transformation (Q,d) — (Q,d), whose precise definition is given in Section 5.2,
the normalization. Using this theorem, we can translate the above list of Dynkin diagrams into
the original one (see Section 6.4).

There is a close relationship between two Kac—-Moody root systems connected via the nor-
malization (see Section 5.3). In particular, we have the following relation between the Weyl
groups W, W associated to (Q,d), (Q,d):

W ~W xZ/2Z,

where the semidirect product is taken with respect to some Dynkin automorphism of order 2
(such a Dynkin automorphism canonically exists by the definition of normalization). For in-
stance, in the cases of Py, Prv and Py, we have

W (AP ~ w(A) x z/22,
w (D) ~w(A) x z/22,
w(AP) =~ w(A) x z/2z,

which mean that our list of Dynkin diagrams for Painlevé equations is a variant of Okamoto’s
obtained by (partially) extending the Weyl groups.

2 Preliminaries

In this section we briefly recall the definition of Nakajima’s quiver variety [21].

2.1 Quiver

Recall that a (finite) quiver is a quadruple Q = (I, €2, s,t) consisting of two finite sets I, 2 (the
set of vertices, resp. arrows) and two maps s,t: 0 — I (assigning to each arrow its source, resp.
target). Throughout this article, for simplicity, we assume that our quivers Q have no arrow
h € Q with s(h) = t(h).

For given Q, we denote by Q = (I,€,s,t) the quiver obtained from Q by reversing the
orientation of each arrow; the set Q = {h | h € Q} is just a copy of 2, and s(h) := t(h),
t(h) := s(h) for h € Q. We set H := Q1 Q, and extend the map Q — Q, h — h to an involution
of H in the obvious way. The resulting quiver Q + Q = (I, H,s,t) is called the double of Q.

The underlying graph of Q, which is obtained by forgetting the orientation of each arrow,
determines a symmetric matrix A = (a;;); jer, called the adjacency matriz, as follows:

a;j := f{ edges joining i and j } =4{h € H |s(h) =1, t(h) =j}.

Let V = @,.; Vi be a nonzero finite-dimensional I-graded C-vector space. A representation
of Q over V is an element of the vector space

Repq(V) := @5 Home (Viny, Vin)»
heQ
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and its dimension vector is given by v := dim'V = (dim V});e;. Isomorphism classes of repre-
sentations of Q with dimension vector v just correspond to orbits in Repg(V) with respect to

the action of the group GL(V) := [[ GLc(V;) given by
i€l

9= (91): (Bunea — (9en)Bnds neqr 9 € GL(V).

We denote the Lie algebra of GL(V) by gl(V); explicitly, gi(V) := @,c;9lc(Vi). For ( =
(G)ier € CI, we denote its image under the natural map C! — gl(V) by ¢Idy, and also use
the same letter (Idy for ¢ € C via the diagonal embedding C < C’. Note that the central
subgroup C* ~ {(Idy | ¢ € C* } € GL(V) acts trivially on Repg(V), so we have the induced
action of the quotient group GL(V)/C*.

Let B = (Bp)ren € Repq(V). An I-graded subspace S = P,.; S; of V is said to be B-
invariant if By (Ssp)) C Sy for all b € . If V has no B-invariant subspace except S = 0,V,
then B is said to be irreducible. Schur’s lemma® implies that the stabilizer of each irreducible B is
just the central subgroup C* C GL(V), and a standard fact in Mumford’s geometric invariant
theory [20, Corollary 2.5] (see also [16]) implies that the action of GL(V)/C* on the subset

irr

Repgq (V) consisting of all irreducible representations over V is proper.

2.2  Quiver variety

Suppose that a quiver Q and a nonzero finite-dimensional I-graded C-vector space V. = P,.; Vi
are given. We set

Mq(V) := Repq,q(V) = Repq(V) & Repg(V),

and regard it as the cotangent bundle of Repg(V) by using the trace pairing. Introducing the
function

1 for h €,

e: H— {£1}, e(h) :== {_1 for he Q

we can write the canonical symplectic form on Mg (V) as
1
w = hezﬂtr dBy A dBy = 5 heZHe(h) trdBy AdBy,  (Br)new € Mgq(V).

The natural GL(V)-action on Mq(V) is Hamiltonian with respect to w with the moment map

p=(p)ier: M(V) = al(V),  w(B)= Y e(h)ByBy (2.1)
t(ff)}i}

vanishing at the origin, where we identify gl(V) with its dual using the trace pairing.

Definition 2.1. A point B € Mq(V) is said to be stable if it is irreducible as a representation
of Q+Q.

For a GL(V)-invariant Zariski closed subset Z of Mq(V), let Z® be the subset of all stable
points in Z. It is a GL(V)-invariant Zariski open subset of Z, on which the group GL(V)/C*
acts freely and properly.

“One can apply Schur’s lemma thanks to the following well-known fact: the category of representations of Q
is equivalent to that of an algebra CQ, the so-called path algebra; see e.g. [9].
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Definition 2.2. For ¢ € C! and v € ZL >0 \ {0}, taking an I-graded C-vector space V with
dimV = v we define

No(¢v) = pH(—(1dv)*/ GL(V),
which we call the quiver variety.

Remark 2.3. In Nakajima’s notation (see [21] or [22]), N§((, V) is denoted by zm?ggo (v,0).

3 Quiver variety with multiplicities

3.1 Definition
For a positive integer d, we set
Rq:=C[[2])/z°C[2]],  R*:=z~C[[]]/C[[2]].

The C-algebra R4 has a typical basis {zdil, ..., 2,1}, with respect to which the multiplication
by z in Ry is represented by the nilpotent single Jordan block

0 1 0

Jg = 0 - € End((Cd) = End(c(Rd).
S
0 0

The vector space R? may be identified with the C-dual R} = Homc(Ry, C) of Rq via the pairing
Re@cR'—C, (f.g) = res(f(2)9(2)).

For a finite-dimensional C-vector space V', we set

ga(V) := gl(V) &c Ra = gl(V)[[2]]/2" gl(V)[[]].

Note that g4(V) is naturally isomorphic to Endg,(V ®c Rq) as an Rg-module; hence it is the
Lie algebra of the complex algebraic group

Gq(V) == Autg,(V ®c Rq) ~ { ngz € ga(V) | detgo #0 } .

The inverse element of g(z) € G4(V) is given by taking modulo 2% gl(V')[[2]] of the formal inverse
g(2)~! € gl(V)][[2]]. The adjoint action of g(z) is described as

(9-9)(2) = 9(2)&(2)g(z)"" mod 2% gl(V)[[2]],  &(2) € ga(V).

Using the above R ~ R? and the trace pairing, we always identify the C-dual g}(V') of gq(V)
with gl(V) @c R? = 2~4 gl(V)[[2]]/ ¢!(V)][[2]]. Then the coadjoint action of g(z) € G4(V) is also
described as

(9-m(2) = g(2)n(2)g(2)"" mod gl(V)][]], anz € ga(V)

The natural inclusion g4(V) < Endc(V ®c Rq) = Ende (V) ®c Ende(Ry) is represented by

d—1 -1
= &2 — > & J),
k=0 k=0
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whose image is just the centralizer of Idy ® J4. Accordingly, its transpose can be written as
gle(V ®c Ra) = gle(V ®@c Rg)* — g5(V), X+ Zter (Idv ® J5 )]z 7",

where trp,: Endc(V ®c Rg) = Endc(V) ®c Endc(Rq) — Endc(V) denotes the trace of the
Endc(Rg)-part.

Now suppose that a quiver Q and a collection of positive integers d = (d;);cs € ZI>O are given.
We call the pair (Q,d) as a quiver with multiplicities and d; as the multiplicity of the vertex i.
Set

Rq:=ERs, RY:=EPHR%,

iel el
and for a nonzero finite-dimensional I-graded C-vector space V = P,.; V;, set
Va =V &c Ra =P V:&c R,
el
Mq,a(V) :==Mq(Va) = @ Homc (Ve(n) ®c Ray ) Vi) @c Ry )
heH
V) =[[Ga Vi),  @aa(V):=EPga,(Vi
icl i€l

The group G4q(V) naturally acts on Mg q(V) as a subgroup of GL(Vq). Note that the subgroup
C* C GL(Vq) is contained in G4(V) and acts trivially on Mqq(V). As in the case of gl(V),
for A = (X\i(2))ier € RY we denote its image under the natural map RY = g;(Cl) — gj(V)
by )\Idv.

Let w be the canonical symplectic form on Mq q(V);

w=-> eh)trdB, ANdBy,  (Bi)hen € Mqa(V).
heH

Then the G4q(V)-action is Hamiltonian whose moment map pq is given by the composite of
the GL(Vgq)-moment map p = (u;): Mq,a(V) — gl(Va) (see (2.1) for the definition) and the
transpose pr = (pr;) of the inclusion gq(V) — gl(Vq);

pd = (fd,i)ier: Maq, d(V) — gg(V),

pia.i(B) := pr; o (B § : E h)trr, [BnBy NF 27,
=1 l(LE)H
t(h)=1

where N; :=Idy, ® Jy,.

Definition 3.1. A point B € Mq 4(V) is said to be stable if Vq has no nonzero proper B-
invariant subspace S = @,.; S; such that S; C V; ®c Ry, is an Ry,-submodule for each i € I.

The above stability can be interpreted in terms of the irreducibility of representations of
a quiver. Letting Q := QU {/;};c; and extending the maps s, t to Q by s({;) = t({;) = i, we
obtain a new quiver Q = (/,€,s,t). Consider the vector space

Renga(Vd) ~ MQd(V) D g[(Vd)
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associated with the quiver Q+Q= (I, Qu Q,s,t). Note that in the above definition, a vector
subspace S; C V; ® Ry, is an Rg,-submodule if and only if it is invariant under the action of
N; = 1Idy, ® Jg,, which corresponds to the multiplication by z. Thus letting

L MQ@(V) — Rep6+6(Vd), B — (B, (Ni)i61)7 (31)

we see that a point B € Mqq(V) is stable if and only if its image «(B) is irreducible as

a representation of Q + Q.
For a G4(V)-invariant Zariski closed subset Z of Mq q(V), let Z° be the subset of all stable
points in Z.

Proposition 3.2. The group Gq(V)/C* acts freely and properly on Z°.

Proof. Note that the closed embedding ¢ defined in (3.1) is equivariant under the action of
Ga(V) C GL(Vq). Hence the freeness of the Gq(V)/C*-action on Z*® follows from that of the
GL(V4)/C*-action on Rep@r@(Vd)i“ and

(Mqa(V)*) = «(Mq.a(V)) NRepg, q(Va)™,

which we have already checked. Furthermore, the above implies that the embedding Z°% —
Repg +6(Vd)irr induced from ¢ is closed. Consider the following commutative diagram:

Ga(V)/CX x 7° 7z

i o

GL(V4)/C* x Repg, (Va)™ — Repg, 5(Va)'™,

where the vertical arrows are the maps induced from ¢, and the horizonal arrows are the action
maps (g,x) — ¢ -x. Since the bottle horizontal arrow is proper and both vertical arrows are
closed, the properness of the top horizontal arrow follows from well-known basic properties of
proper maps (see e.g. [11, Corollary 4.8]). |

Definition 3.3. For A € R and v € ZIZO \ {0}, taking an I-graded C-vector space V with
dimV = v we define

Naa(A V) = pgt (=A1dv)*/Ga(V),
which we call the quiver variety with multiplicities.
We also use the following set-theoretical quotient:
NS v) = pug' (=A1dv)/Ga(V).

It is clear from the definition that if (Q,d) is multiplicity-free, i.e., d; = 1 for all i € I, then
NQ.a(A, v) coincides with the ordinal quiver variety Ng (¢, v) with ¢; = res Ai(2z). Even when d

is non-trivial, for simplicity, we often refer to Ng q(A, v) just as the ‘quiver variety’.

3.2 Properties

Here we introduce some basic properties of quiver varieties with multiplicities.

First, we associate a symmetrizable Kac-Moody algebra to a quiver with multiplicities (Q, d).
Let A = (a;j); jer be the adjacency matrix of the underlying graph of Q and set D := (d;0;;); jer-
Consider the generalized Cartan matrix

C= (Cz’j)i,jel = 2Id — AD.
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Note that it is symmetrizable as DC = 2D — DAD is symmetric. Let

(8(C), b, {evitier, {7 Yier)

be the corresponding Kac-Moody algebra with its Cartan subalgebra, simple roots and simple
coroots. As usual we set

= ZZOJZ‘, Q+ = ZZZO(XZ‘.
i€l i€l
The diagonal matrix D induces a non-degenerate invariant symmetric bilinear form (, ) on bh*
satisfying
(Oéi, Odj) = diCij = Qdiéij — diaijdj, i,j el

From now on, we regard a dimension vector v € Z1 >o of the quiver variety as an element

of @+ by
Zho = Qr,  v=(vi)ier = ) vic.
el
Let res: R4 — C! be the map defined by
res: A= (\(z)) — (re% /\i(z)>,
=
and for (v,¢) € Q x C!, let v - ¢ := > v;¢; be the scalar product.
el
Proposition 3.4.
(i) The quiver variety N q(A, v) is a holomorphic symplectic manifold of dimension 2—(v,v)
if it is nonempty.
(ii) If v-res A # 0, then Ngu(A,v) = @.
(iii) If two quivers Q1, Qg2 have the same underlying graph, then the associated quiver varieties

NQ,.a(A v), Ng,.a(A, v) are symplectomorphic to each other.

Proof. (i) Assume that N 4(), v) is nonempty. Since the action of G4q(V)/C* on the level
set ,u(;l(—)\ldv)s is free and proper, the Marsden—Weinstein reduction theorem implies that
NQ.a(A, v) is a holomorphic symplectic manifold and

dimNg g(A, v) = dimMqq(V) — 2dim Ga(V)/C* = Y ajjdividjo; — 2 Y div] +2
i,j€1 iel
= 'vyDADv — 2'vDv +2 =2 — (v, V).

(i) Assume Ng'y(X,v) # @ and take a point [B] € Ng'q(X,v). Then we have

Z > e(h)trg, [BiBRN T 27 = —Xi(2) Idy

k=1 heH:
t(h)=1

for any ¢ € I. Taking res otr of both sides and sum over all i, we obtain
z=

Z e(h) tr(BBy) Z v; Tes )\ = —v-res\.

heH el
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Here the left hand side is zero because
> e(h)te(ByBy) = Y e(h)tr(ByBy) = — Y €(h) tr(ByBy).
heH heH heH

Hence v - res A = 0.

(iii) By the assumption, we can identify the double quivers Q; + Q; and Q2 + Qs. Let H be
the set of arrows for them. Then both the sets of arrows €y, €2 for Qq, Qo are subsets of H.
Now the linear map Mgq, 4(V) — Mq, a(V) = Mq,.a(V) defined by

B, if he Q1NQy or hEﬁlﬂﬁg,

B— B, By}, =
—B;, otherwise,

induces a desired symplectomorphism Ng, 4(), v) = NQ,.a(As V). |

Now fix 7 € I and set

Vi = @ Vsn) ®c R, -
t(h)=t

Then using it we can decompose the vector space Mq a(V) as

Mq.a(V) = Hom(V;, V; ®c Rq,) ® Hom(V; ®¢ Ra,, Vi) & MGy (V), (3.2)
where
Mg?d(V) = P Hom(Vin ®c Ra,,,: Vi) ®c Ray,,)-
t(h).s(h)#i

According to this decomposition, for a point B € Mq q(V) we put

Bic := (e(h)Bp)yyy_; € Hom(V;,V; @c Ra,),

B, = (Bﬁ)t(h):z‘ € Hom(V; ®c Rg,;, Vi),
— (0)
B = (Bh)t(h)ﬁ(h#i € Mgq(V).

We regard these as coordinates for B and write B = (B;, B, B-;). Note that the symplectic
form can be written as

1
w=trdBic AdBi + 5 > e(h)trdB, AdBy, (3.3)
s(h),t(h)#i
and also the i-th component of the moment map can be written as

d;
,LLd,i(B) = prz(B7,<—B<—z) - Z teri [BieBeiNZ‘k_l}Zik-
k=1

Lemma 3.5. Fiz i € I and suppose that B satisfies at least one of the following two conditions:

(i) B is stable and v # a;
(ii) the top coefficient trg, (BiHBH-Nid"_l) of pr;(B;—B.;) is invertible.

Then (Bi—, B_;) satisfies

Ker B_; NKer N; =0, ImB;,. +ImN; =V, ®c Ry, . (3.4)
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Proof. First, assume (i) and set

S-S, 55— {KerBH'ﬂKerNi if j =i,

el 0 if j#1,
v, g [
el Vj ®c Ra; if j #1.

Then both S and T are B-invariant and N;(S;) C S, N;(T;) C T} for all j € I. Since B is

stable, we thus have S=00or S = Vg, and T = 0 or T = V4. By the assumption v # «; and the

definitions of S and T, only the case (S, T) = (0, Vq) occurs. Hence (B;—, B.;) satisfies (3.4).
Next assume (ii). Set A(z) = Y. Axz~" := pr;(B;—B.;) and

A= 0 0 o € Ende(V; ®c C%) = Ende(V; ®c Ra,)-
Adz‘ Adi—l T Al

Then we have
ter,- (ﬁNkil) = A, = tI‘Rdi(B@_BHZ‘Nkfl), k=1,2,....d;,

ie., A-— B B_; € Kerpr;. Here, since the group G, (V;) coincides with the centralizer of N; in
GLc (Vi ®c Rg,), we have Ker pr; = Imady,. Hence there is C' € Endc(V; ®c Rg,) such that

Bi.B.; = A+ [N;, ().

Now note that both Ker N; and Coker N; are naturally isomorphic to V;, and the natural injection
t: Ker N; — V; ®c Rg, and projection 7: V; ®c R4, — Coker IV; can be respectively identified
with the following block matrices:

Idy
. |:Vi=ViecRy, (0 0 - 0 Idv):V;®c Ry — Vi
0
Thus we have
7B Byt = w(A+[N;,C)) = mAL = Ag,. (3.5)
By the assumption Ay, is invertible. Hence 7B, is surjective and B.;¢ is injective. |

The following lemma is a consequence of results obtained in [31]:

Lemma 3.6. Suppose that the set

Z; = {(Bi, B_;) € Hom(V;, V; ®¢ Rq,) ® Hom(V; @c Ry, V;) |
pI‘Z»(Bi(_B(_i) = —)\Z(Z) Idvi, (Bly_, B<_Z) satisfies (34) }

is nonempty. Then the quotient of it modulo the action of Gg,(V;) is a smooth complex manifold
having a symplectic structure induced from tr dB; AdB.;, and is symplectomorphic to a Ga,(V;)-
coadjoint orbit via the map given by

~

®;: (Bic, Boj) — —Boi(z — Ni) "' Bic € g3, (V).
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~

Proof. Take any point (B;., B.;) in the above set and let O be the Gy, (V;)-coadjoint orbit
through ®;(B;., B;). By Proposition 4, (a), Theorem 6 and Lemma 3 in [31], there exist

e a finite-dimensional C-vector space W;
e a nilpotent endomorphism N € End(W) with N% = 0;
e a coadjoint orbit Oy C (Lie Gy)* of the centralizer Gy C GL(W) of N,

such that the quotient modulo the natural G -action of the set

~ ~ | pry(YX) € Op,
(Y, X) € Hom(V;, W) & Hom(W, V) ~ 0
Ker XNKerN=0, ImY+ImN=YV;

where pry is the transpose of the inclusion LieGy — gl(W), is a smooth manifold having
a symplectic structure induced from trdX A dY, and is symplectomorphic to O via the map
(Y, X) — X (zIdw — N)~1Y. Note that if W = V; @c R4,, N = N; and Oy is a single element
Ai(2) Idy;, then we obtain the result by the coordinate change (Y, X) = (B, —B.;). Indeed,
this is the case thanks to Proposition 4, (¢) and Theorem 6 (the uniqueness assertion) in [31]. W

Note that in the above lemma, the assumption Z; # @ implies dim V; < dim 171-; indeed, if
(Bi—, Bi) € Zj, then B_;|ker N, is injective by condition (3.4), and hence

dim V; = dim Ker N; = rank (B.|kern;) < dim TZ

The following lemma tells us that if the top coefficient of A\;(z) is nonzero, then the converse is
true and the corresponding coadjoint orbit can be explicitly described:

Lemma 3.7. Suppose dimV; < dim‘Afi and that the top coefficient X\; 4, of \i(z) is nonzero.
Then the set Z; in Lemma 3.6 is nonempty and the coadjoint orbit contains an element of the
form

) . )\z(z) IdV;- 0

where V; is regarded as a subspace of‘/}i and V; C X/}Z is a complement of it.

Proof. Suppose dim V; < dim V; and that the top coefficient of \;(z) is nonzero. We set

0 O
B = - 2‘Z=W@WI—>W®6RM

0 O

Idy, 0

Nog Idy: -+ N1 Idy =
B.; 3:_< 17d10 v 1’10 %):W®CRdi_>‘/ia

where \; ; denotes the coefficient in A;(z) of z=*. Then we have
trR,, (Bic BLNITY) = =Xk Idy,  k=1,2,....d;

i.e., pry(Bij-B.;) = —\i(2) Idy,. The assumption ); 4, # 0 and Lemma 3.5 imply that (B;, B;)
satisfies (3.4). Hence (B;—, B.;) € Z;. Moreover we have

(I)i(BiH, Bgi) = —BHZ'(Z - ]\Q)_lBie = — Z BeiNikilBie 2k

k=1

B i i Idy; 0 kA
7k_1 ( 0 OIdVi/)z =Ai(2). [ |
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4 Reflection functor

In this section we construct reflection functors for quiver varieties with multiplicities.

4.1 Main theorem

Recall that the Weyl group W(C) of the Kac—Moody algebra g(C) is the subgroup of GL(h*)
generated by the simple reflections

2(, ;)

(i, i)

Sl(/@) :/67</85a;/>a22/67 Qg ’Le-[a ﬂeb*

The fundamental relations for the generators s;, i € I are
s? =1d, (sis5)™i =1d, i,jel, i#j, (4.1)

where the numbers m;; are determined from c;;cj; as the table below (we use the convention
r°° = Id for any r)

CijCiji 0|1]2(3|>4

We will define a W (C)-action on the parameter space R x @ for the quiver variety. The
action on the second component () is given by just the restriction of the standard action on h*,
namely,

ST V= E via — v — (v, Yo = v — g Cijvj0y.
iel jel

The action on the first component RY is unusual. We define r; € GL(RY) by

! _ ! ! _)‘i(z) if ] - i7
Tz()‘) =\ = ()\j(z))’ )\j(z) = /\<z) — zflc‘j res )\(Z) if J 7é i
J K z=0 ! .

Lemma 4.1. The above 1, i € I satisfy relations (4.1).

Proof. The relations 77 = Id, i € I are obvious. To check the relation (ryry)™i = 1d for i # j,
first note that the transpose of s;: Q — @ relative to the scalar product is given by

s;:Ch = Cf si(Q) = (=G Y eay.

Jj€l
Now let A € R4, We decompose it as
A=A 4 res(\) 27, res A’ = 0.
Then we easily see that
ri(res(\) z71) = tsi(res(N)) 271,
and hence that

(rirs)™iI(A) = (i)™ ()\O) + res(\) 21
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Therefore we may assume that res A = 0. Set X' = (\(2)) := (ri7;)™¥ (). Then we have
NL(2) = {(—1>mw<z> it k=i
A (2) if k+#1i,j.
If m;; is odd, by the definition we have ¢;jc;; = 1. In particular, i # j and
aijdjajd; = cijci; = 1.
This implies d; = dj = 1 and hence that A\;j(z) = \;(z) = 0. [
The main result of this section is as follows:

Theorem 4.2. Let A = (\;(2)) € RY and suppose that the top coefficient \; 4, of Ni(z) for fived
1 € I is nonzero. Then there exists a bijection

Fir Nga(Av) = Nga(ri(h), s:(v))
such that 3'2-2 = Id and the restriction gives a symplectomorphism
F;: Nad()\,v) = NSQ,d(ri(A),si(v)).

We call the above map F; the i-th reflection functor.

4.2 Proof of the main theorem
Fix ¢ € I and suppose that the top coefficient \; 4, of A\;(2) is nonzero. Recall the decomposi-
tion (3.2) of Mqa(V):

Mq.a(V) = Hom(V;, Vi @c Rq,) ® Hom(V; @c Ry, Vi) & My )y(V),

and the set Z; given in Lemma 3.6. Lemma 3.5 and the assumption \; 4, # 0 imply that any
B = (B;—, B, Bz) € ng;(—X\i(2) Idy;) satisfies condition (3.4). Thus we have

k(= Xi(2) 1dv;) = Z; x MYy (V).
By Lemma 3.7, it is nonempty if and only if
V; S dim‘A/i = Zaijdjvj = 2’UZ' — Zcij’l)j,
J J

i.e., the i-th component of s;(v) is non-negative. We assume this condition, because otherwise
both Ng'a(A, v) and Ng4(ri(), si(v)) are empty (since s;(v) ¢ ZL). Fix a C-vector space V/
of dimension dimV; — dimV; and an identification V; = V; @ V. As the group Gg,(V;) acts
trivially on Mg?d(V), Lemmas 3.6 and 3.7 imply that

Hab (= Xi(2) 1dv,) /G, (Vi) = Zi/Ga, (Vi) x MQy(V) ~ O x ME4(V),

~

where O is the Gy, (V;)-coadjoint orbit through

Az) = (Ai(zéldv@' 013‘/) :
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Now let us define an I-graded C-vector space V' with dim V' = s;(v) by
Vi =
vi=@v., V=7 00"
D Vi i £,

and consider the associated symplectic vector space Mq a(V’). Note that ‘71'/ = f/\; Thus
by interchanging the roles of V and V', \; and —)\; in Lemmas 3.6 and 3.7, we obtain an
isomorphism

Has(Ni(2) 1) /G, (V) = O x My (V') = O/ x My (V),

~

where O’ is the Gy, (V;)-coadjoint orbit through

01dy; 0 B |
(0" Sy, =M - A,

e, O =0 — \(2) Idg, . Hence the scalar shift O =0 - \i(2) Idg, induces an isomorphism

Fit ngk(=Xi(2)1dv,)/Ga, (Vi) = ugh(Ni(2)1dyr) /Gy, (V)),

which is characterized as follows: if

Hjl[B] = [B/]7 B = (BieaBH’iaB#i)a B, = (B'£<—7 f—mB;éz)a
one has
By = B, (4.2)
—BL,(z— N}))"'Bj_ = —B.i(z — Ni) ' Bic — \i(2)1dg, 4.3)
where NZ/ = IdVi’ ®c Jg; € End(c(V;/ Qc Rdi)- Note that
Ker B, , NKer N = 0, Im B! +Im N} =V ®c Ry, (4.4)

by Lemma 3.5.
Lemma 4.3. [f Md(B) = —/\Idv, then ,u,d(B') = —TZ'()\) Idvl.

Proof. Let \ = (X(2)) := ri(\). The identity pq,:(B’) = Ai(2) Idyy is clear from the construc-
tion. We check jiq;(B') = —=\}(2) Idv}/ for j # i. Taking the residue of both sides of (4.3), we
have

BLZB':e = B<—iBi<— + )\i,l Id‘/};a
which implies that
¢(h)BgBj, = e(h) BBy + i1 Iy, ,, if t(h) =1i.
On the other hand, (4.2) means that Bj = Bj, whenever t(h),s(h) # i. Thus for j # 4, we obtain
> e(W)BiBr= Y e(h)BiBi+ Y e(h)B,BL
t(h)=j h:i—j t(h)=j,s(h)#i

= > (e(h)BiBz— Xialdy,)) + > e(h)ByB;
h:i—j t(h)=j,s(h)#i
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= E(h)BhBE - aijAM Idvj . (45)
t(h)=j

Note that
Idv ZtI‘Rd Nk 1 = dedez_l

Therefore the image under pr; of both sides of (4.5) gives
paj(B') = naj(B) — aijhia pry(Idv;) = pa j(B) + cijhin Idy, 2~
The result follows. |

Lemma 4.4. If B is stable, then so is B'.

Proof. Suppose that there exists a B'-invariant subspace S’ = @@; S;CVy such that Nj(S})CS).
We define an I-graded subspace S = @) ;j S; of Vq by

d;
SONFIBL(S) if j=i,

Si=9ia
S; if j # 1,
where S @t(h = S Then B;._ (§Z) C S; and
d; d; R o
B_i(S;)) =Y BoNF'Bio(S) =Y (BL(N)F Bl — \ip) (S) € S = S..
k=1 k=1

Hence S is B-invariant. Clearly N;(S;) C S; for all j € I. Therefore the stability condition
for B implies that S = 0 or S = V4. First, assume S = 0. Then S;- = §j = 0for j # 4, and hence
B (8) c 8 =0,ie, S c KerB.,. If S/ is nonzero, then the kernel of the restriction N!|g
is nonzero because it is nilpotent. However it implies Ker B/, N Ker N/ # 0, which contradicts
o (4.4). Hence S/ = 0. Next assume S = V4. Then S;- = Sj = V; ®c Ry, for j # i, and hence
S!D> Bl (5{) =1Im B]_. If V//S! is nonzero, then the endomorphism of V;//S! induced from N/
has a nonzero cokernel because it is nilpotent. However it implies Im B}, +Im N/ # V/ @c Ry;,
which contradicts to (4.4). Hence S] = V/ ®c Ry,. [

Proof of Theorem 4.2. As the map J; is clearly [ Ga,(Vj)-equivariant, Lemma 4.3 implies
J#i
that it induces a bijection

Fir Ngahv) = Nga(ri(A),si(v)), (Bl = [B],

which preserves the stability by Lemma 4.4. We easily obtain the relation 32 = Id by noting
that J; is induced from the scalar shift O — 0" = O — \;(z) Idg; and the i-th component of r;(\)
is —\;. Consider the restriction

Fi: Nga(Av) = Noa(ri(d),si(v)),  [B]— [B].
By Lemma 3.6 and (4.3), we have

tr dBZH A d.BeZ =tr dBZ, AdB’

19

because the scalar shift O — O’ is a symplectomorphism. Substituting it and (4.2) into (3.3),
we see that the above map F; is a symplectomorphism. |
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Remark 4.5. It is clear from (4.2), (4.3) and (4.4) that if d; = 1 for all j € I, then F; coincides
with the original i-th reflection functor for quiver varieties (see conditions (a), (bl) and (c) in
[18, Section 3]).

Remark 4.6. It is known (see e.g. [19]) that if d; = 1 for all ¢ € I, then the reflection functors F;
satisfy relations (4.1). We expect that this fact is true for any (Q, d).

4.3 Application

In this subsection we introduce a basic application of reflection functors.

Lemma 4.7. Let (\,v) € RY x Q. , i € I. Suppose that the top coefficient of \i(z) is zero and
v # ai. Then Ny a(A,v) # @ implies (v, a;) < 0.

Proof. Take any point [B] € Ngq(\,v). Let t: Ker N; — V; ®c Rg, be the inclusion and
m: Vi ®c Rgq, — Coker N; be the projection. Then Lemma 3.5 together with the assumption
v # «; implies that B. ;¢ is injective and 7B;. is surjective. On the other hand, (3.5) and the
assumption for A;(z) imply that

—il ~ TDj

B Bi.
Vi ~ Ker N; —— 1, —— Coker N; ~ V;
is a complex. Thus we have

0 S dim‘/}g — 2dimV§ = Zaijdjvj — QUZ',
J

which is equivalent to (v, ;) < 0. [

Now applying Crawley-Boevey’s argument in [6, Lemma 7.3] to our quiver varieties with
multiplicities, we obtain the following:

Proposition 4.8. If N 4()\, v) # 9, then v is a positive oot of g(C).

Proof. Assume Ng 4(), v) # @ and that v is not a real root. We show that v is an imaginary
root using [13, Theorem 5.4]; namely, show that there exists w € W(C) such that w(v) has
a connected support and (w(v), ;) <0 for any i € I.

Assume that there is ¢ € I such that (v, a;) > 0. The above lemma implies that the top coeffi-
cient of \;(z) is nonzero, which together with Theorem 4.2 implies that Ng 4(ri(A), s:(v)) # @.
In particular we have s;(v) € @4, and further v — s;(v) € Z~a; by the assumption (v, «;) > 0.
We then replace (A, v) with (7;(\), si(v)), and repeat this argument. As the components of v
decrease, it eventually stops after finite number of steps, and we finally obtain a pair (A\,v) €
RY x Q4 such that (v,;) < 0 for all 4+ € I. Additionally, the property NQ.a(A,v) # @ clearly
implies that the support of v is connected. The result follows. |

5 Normalization

In this section we give an application of Boalch’s ‘shifting trick’ to quiver varieties with multi-
plicities.
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5.1 Shifting trick

Definition 5.1. Let (Q,d) be a quiver with multiplicities. A vertex i € I is called a pole vertex
if there exists a unique vertex j € I such that

djzl, Qi = Ak = Ojk forany kel

The vertex j is called the base vertex for the pole i. If furthermore d; > 1, the pole i € [ is said
to be irreqular.

Let ¢« € I be a pole vertex with the base 7 € I. Then 171 = Vj ®@c Rq; = Vj. In what follows

we assume that the top coefficient of \;(z) is nonzero. As the set Naefd()\,v) is empty unless

dimV; < dimf/i = dim V}, we also assume V; C V; and fix an identification V; ~ V; @ V;/V;.
Recall the isomorphism given in the previous section:

Has(—Xi(2) 1dv,) /G, (Vi) = O x Mgly(V),

where O is the G, (Vj)-coadjoint orbit through the element of the form

@)y 0
A(Z)_< 0 OIde/w>'

Let us decompose A(z) as

A(z) = A%2) + 27 res A(2)

z=0

according to the decomposition
a3, (Vi) = 03, (V;) @ =~ gl(V)),

where
b3, (V) o= Ker| res g3, (V5) — al(Vy)] = =~ gU(V))[[2]) /=™ al(V;)][=]]

The above is naturally dual to the Lie algebra bg, (V}) of the unipotent subgroup
B, (Vj) = { g(2) € G4,(V;) | 9(0) =Idy; }.

The coadjoint action of ¢g(z) € By, (V;) is given by

(g-m(2) = g(2)n(2)g(2)"" mod 2" gl(V))[[2l],  m(z) =Y mez" € b3, (V).

Now consider the By, (V;)-coadjoint orbit O through A°(z). Let
K = GL(V;) x GL(V;/V;) € GL(V})

be the Levi subgroup associated to the decomposition V; = V; @ V;/V;. The results in this
section is based on the following two facts:

Lemma 5.2. The orbit O is invariant under the conjugation action by K, and there exists
a K-equivariant algebraic symplectomorphism

O ~ Hom(V;/V;, V;)®4=2) @ Hom(V;, V; /V;) ®(4i=2)

sending A°(z) € O to the origin.
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Lemma 5.3. Let M be a holomorphic symplectic manifold with a Hamiltonian action of GL(V})
and a moment map par: M — gl(V;). Then for any ¢ € C, the map

Ox M =g () x M,  (B(z).a) = (B() - uni(e) — 27C1dy )
induces a bijection between

(i) the (set-theoretical) symplectic quotient of O x M by the diagonal K -action at the level
- re%A(z) — (Idy;; and
z=

(ii) that of O x M by the diagonal GL(Vj)-action at the level —(Idy;.

Furthermore, under this bijection a point in the space (i) represents a free K-orbit if and only
if the corresponding point in the space (ii) represents a free GL(Vj)-orbit, at which the two
symplectic forms are intertwined.

Lemma 5.3 is what we call ‘Boalch’s shifting trick’. We directly check the above two facts in
Appendix A.

Remark 5.4. Let A',A%,... A* € End(V) be mutually commuting endomorphisms of a C-
vector space V, and suppose that A2, ..., A¥ are semisimple. To such endomorphisms we asso-
ciate

k
A(z) := ZAjz_j € gi(V),
j=1

which is called a normal form. Let ¥ C g;(C) be the subset consisting of all residue-free

ko
elements A\(z) = > Mz 77 with (A2,...,\F) being a simultaneous eigenvalue of (AZ,..., A¥),
j=2
and let V = P, .y, Vi be the eigenspace decomposition. Then we can express A(z) as

A=) =D <)\(Z) Idy, + FZA) ., Ta=Ally, € End(W).
AT
It is known that any A(z) € g;(V) whose leading term is regular semisimple is equivalent to
some normal form under the coadjoint action.

Note that A(z) treated in Lemmas 5.2 and 5.3 is a normal form. A generalization of Lemma 5.2
for an arbitrary normal form has been announced in [4, Appendix C]|. Lemma 5.3 is known in
the case where A(z) is a normal form whose leading term is regular semisimple [2]; however, as
mentioned in [4], the arguments in [2, Section 2] needed to prove this fact can be generalized to
the case where A(z) is an arbitrary normal form.

We apply Lemma 5.3 to the case where M = Mg)d (V), (= res Aj(z). In this case, the symp-
3 z=
lectic quotient of the space (ii) by the action of [] Gg, (Vi) turns out to be 3" (—A1Idy)/Ga(V)
k#i,5
= C%(/\,v). On the other hand, by Lemma 5.2, the symplectic quotient of the space (i) by
the action of [] Gy, (Vi) coincides with the symplectic quotient of

k#i,j
Hom(V;/Vi, Vi) ®@=2) @ Hom(V;, V;/ Vi) 242 @ MGy (V) (5.1)
by the action of
GL(V;) x GL(V;/Vi) x [ Ga, (Vi) (5.2)
k#i,j

at the level given by

— (res (A=) + A(2)), res A (=), (wl(2)Daseis ) (5.3)
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5.2 Normalization

The observation in the previous subsection leads us to define the following;:

Definition 5.5. Let i € I be an irregular pole vertex of a quiver with multiplicities (Q,d) and
j € I be the base vertex for i. Then define d = (dy) € Z. by

di = 1, dk = dk for k 7& i,
and let Q = (I, s,t) be the quiver obtained from (Q, d) as the following:

(i) first, delete a unique arrow joining ¢ and j; then

(iii) for each arrow h with s(h) = j, draw an arrow from i to t(h);
i

)
(ii) for each arrow h with t(h) = j, draw an arrow from s(h) to ;
)
(iv) finally, draw d; — 2 arrows from j to i.

The transformation (Q,d) — (Q, d) is called the normalization at i.

The adjacency matrix A = (Gy) of the underlying graph of Q satisfies

A = Qi = { aj if k=1,1+# 7,
ag if kL2

Example 5.6. (i) Suppose that (Q,d) has the graph with multiplicities given below

d 1
o—=oO

Here we assume d > 1. The left vertex is an irregular pole, at which we can perform the
normalization and the resulting (Q, d) has the underlying graph with multiplicities drawn below

d—2

T

The number of edges joining the two vertices are d — 2. If d = 3, the Kac—-Moody algebra
associated to (Q,d) is of type G2, while the one associated to (Q,d) is of type As. If d = 4, the

Kac-Moody algebra associated to (Q, d) is of type AéQ), while the one associated to (Q,d) is of

type Agl).

(ii) Suppose that (Q,d) has the graph with multiplicities given below

d 1 1 ... 1

Here we assume d > 1 and the number of vertices is n > 3. The vertex on the far left is
an irregular pole, at which we can perform the normalization and the resulting (Q,d) has the
underlying graph with multiplicities drawn below
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If d = 2, then the Kac-Moody algebra associated to (Q, d) is of type C),, while the one associated
to (Q,d) is of type Asz if n = 3 and of type D,, if n > 3. If (d,n) = (3,3), the Kac-Moody

algebra associated to (Q, d) is of type D(3), while the one associated to (Q,d) is of type Agl).

(iii) Suppose that (Q,d) has the graph with multiplicities given below

2 1 1 ... 1 2

Here the number of vertices is n > 3. The associated Kac—-Moody algebra is of type C,(LI_)I. It has
two irregular poles. Let us perform the normalization at the vertex on the far right. If n = 3,
the resulting (Q, d) has the underlying graph with multiplicities drawn below

<w

The associated Kac—Moody algebra is of type D . If n > 4, the resulting (Q,&) has the
underlying graph with multiplicities drawn below

o

The associated Kac—Moody algebra is of type A2n 3. The vertex on the far left is still an
irregular pole, at which we can perform the normalization again. If n = 4, the resulting (Q, d)
has the underlying graph with multiplicities drawn below

X

The associated Kac—-Moody algebra is of type A . If n > 4, the resulting (Q,d) has the
underlying graph with multiplicities drawn below

I

The associated Kac-Moody algebra is of type D

In the situation discussed in the previous subsection, let V = D, Vi be the I-graded vector
space defined by

Vi = V;/V;, Vi =V, for k#j.

Then we see that the group in (5.2) coincides with Gg(V). Furthermore, the following holds:
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Lemma 5.7. The symplectic vector space in (5.1) coincides with Mg a(V).

Proof. The definitions of Q,d, V imply

Repq(Vgq) = @ Hom(V;/Vi, Vi)

heQ

h: j—i

o @ | @ Hom(Vi &c Ry, Vi) @ € Hom(V;, Vi ®c Rq,)
k4,5 heQ heS)

h: k—1i h:i—k

o @ | @ Hom(Vi @c Ry, V;/Vi) & € Hom(V;/Vi, Vi &c Ry,)

kig \ hed e,
ck—j o
D @ @ Hom(Vy, ®c R4, Vi ®c Ra,)

kl#i,j heQ
h: k—l

= Hom(V;/V;, V;)®(d=2)

o@ | @ Hom(Vi ®c Rq,.Vj) & @ Hom(V;, Vi @c Ra,)
kg \ P2 e
tk—g H R

D @ @ Hom(Vj ®c R4y, Vi ®c Ry,)
ki 5D,
= Hom(V;/V;, ‘/i)ﬂﬂ(di*?) ® @ Hom(VS(h) Qc Rds(h)u Vitn) ®c Rdt(h))'

heQ
s(h),t(h)#i

Taking the cotangent bundle, we thus see that Mg 4 (V) coincides with (5.1). [
Set v := dim V and
21 rg%(/\z(z) + )\](Z)) if k=1,
A=(w(2) € RY,  Xi(z) =4 2! ves A;(2) if k=3,
Ai(2) if k#1,7.
Then the value given in (5.3) coincides with —\. Note that
Vores\ = gg%()\i(z) +X(2)) + (vj — v;) res Aj(z) + Z Uk Tes Ae(z) =v-resA.  (5.4)
ki,
Now we state the main result of this section.

Theorem 5.8. Let i € I be an irregular pole vertex of a quiver with multiplicities (Q,d) and
j € I be the base vertex for i. Let (Q,El) be the quiver with multiplicities obtained by the
normalization of (Q,d) at i. Take (\,v) € RY x Q4 such that the top coefficient \; 4, of \i(2)
is nonzero. Then the quiver varieties Ng q(A,v) and Naa(j\,\?) are symplectomorphic to each
other.

Proof. We have already constructed a bijection between Ng'q(\, v) and Nset ()\ v). Thanks
to Lemma 5.3, in order to prove the assertion it is sufflclent to check that the bijection maps
Nq,a(A, v) onto Ng d( , V). It immediately follows from the three lemmas below. [
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Lemma 5.9. A point B € ugl(—)\IdV) is stable if and only if the corresponding (A(z), B+;) =
d; .

<Z Alz*l,B;,gi) € O x Mg)d(V) satisfies the following condition: if a collection of subspaces
=1 '

Sk C Vi ®c Ra,,, k # i satisfies

Ni(Sk) C Sk for k # i, j;
Bh(Ss(h)) C St(h) for h € H with t(h),s(h) £ 1; (5.5)
Al(Sj) CSj forl=1,...,d;,

then S, =0 (k #1i) or Sk, = Vi, ®c Ra, (k #1).

Proof. This is similar to Lemma 4.4. First, assume that B is stable and that a collection of
subspaces S C Vi, ®c Ra,, k # i satisfies (5.5). We define

d;
Si = Z NililBie(Sj),
=1

and set S := @kel S, C V4. Then Nz(Sz) cS;, BV_(SJ‘) C S; and

Boi(Si) = > BN/ 'Bi(S)) = > Ai(S)) C 9
l l

imply that S is B-invariant. Since B is stable, we thus have S =0 or S = Vj.

Next assume that the pair (A(z), Bx;) satisfies the condition in the statement. Let S = &, Sj,
be a B-invariant subspace of Vg satisfying Ni(Sg) C S for all & € I. Then clearly the
collection Sy, k # ¢ satisfies (5.5), and hence S, = 0 (k # i) or Sy = Vi ®c Rq, (k # ). If
Sk = 0, k # i, we have B_;(S;) = 0, which implies S; = 0 since Ker B_; N Ker N; = 0 by
Lemma 3.5 and Nj|g, is nilpotent. Dualizing the argument, we easily see that S; = V; ®c Rg, if
Sk:Vk®(cde,k'7éi. [ |

Lemma 5.10. A point B’ € ugl(—j\ Idy) is stable if and only if the corresponding (A°(z), B;) =
d; . .

<Z A?z*l,B;,éi) e O x Mg)d(V) satisfies the following condition: if an I-graded subspace
=2 ’

S =@, Sk of Vq =V &c Ry satisfies

Ng(Sk) C Sk for k #1,7;
Bp(Ssny) C Stny for h € H with (t(h),s(h)) # (i,7), (4,9); (5.6)
A?(Si@Sj)CSZ‘@Sj for 1=2,...,d;,

then S =0 orS:Va.

Proof. In Appendix A, we show that all the block components of A? relative to the decompo-
sition V; = V; @ V; are described as a (non-commutative) polynomial in Bj over h € H with
(t(h),s(h)) = (i,4) or (j,4), and vice versa (see Remark A.3, where A° is denoted by B and Bj,
for such h are denoted by af, b),). Hence an I-graded subspace S of V satisfies (5.6) if and
only if it is B’-invariant and Ny (Sg) C Sk for k # 1, j. [

Lemma 5.11. Let (A°(2), Bx) € O x MY (V) and let (A(z), Bz) € O x My (V) be the
corresponding pair under the map given in Lemma 5.3. Then (A%(2), B;) satisfies the condition
in Lemma 5.10 if and only if (A(z), B+;) satisfies the one in Lemma 5.9.
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Proof. By definition we have

A(z) = A%2) — 27" > e(h)ByBy — Aj(2) Idy;,

t(h)=7,
s(h)#t

so the ‘if’ part is clear. To prove the ‘only if’ part, note that if a collection of subspaces
Sk C Vi, ®c Ry, , k # i satisfies (5.5), then in particular S; is preserved by the action of

0
Adi = Adi = )\i,di IdVi D OId‘yj,
and hence is homogeneous relative to the decomposition V; = Vi@ ‘7j;
Sj=(S;NV;) @ (S;nVj).

Now the result immediately follows. |

5.3 Weyl groups

Let (Q,d) be a quiver with multiplicities having an irregular pole vertex ¢ € I with base j € I,
and let (Q,d) be the one obtained by the normalization of (Q,d) at i. In this subsection we
discuss on the relation between the two Weyl groups associated to (Q,d) and (Q,d).

Recall our notation for objects relating to the Kac-Moody algebra; C = 2Id — AD is the
generalized Cartan matrix associated to (Q,d), and b, @, ag, sk, the Cartan subalgebra, the
root lattice, the simple roots, and the simple reflections, of the corresponding Kac—-Moody
algebra g(C). In what follows we denote by C, D, b, Q, dx, 3, the similar objects associated
to (Q,d).

Let ¢: Q@ — @ be the linear map defined by v — v = v — v;¢&j. The same letter is also used
on the matrix representing ¢ with respect to the simple roots.

Lemma 5.12. The identity ‘¢DCy = DC holds.

Proof. To prove it, we express the matrices in block form with respect to the decomposition
of the index set [ = {i} LU {j} U (L \ {é,j}). First, ¢ is expressed as

1 0 0
p=1-11 0
0 0 Id

By the properties of i and j, the matrices D and A are respectively expressed as

di 0 0 01 0
D=|0 1 0], A=|10 tal,
0 0 D 0 a A

where D’ (resp. A’) is the sub-matrix of D (resp. A) obtained by restricting the index set to
I'\{i,j}, and a = (a;)ki ;. By the definition of the normalization, the matrices D and A are
then respectively expressed as

10 0 0 d;—2 ‘a
D=|01 0], A=(di-2 0 ‘ta
0 0 D a a A’

Now we check the identity. We have

2d; 0 0 0 d; 0
DC=2D-DAD=|0 2 0 |—-|di © taD’
0 0 2D/ 0 D'a D'A'D’
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2d;  —d; 0
=|-d; 2 —taD’
0 —-D’a 2Id-D'A'D’

On the other hand,

20 0 0 d;—2 ‘taD’
DC=2D-DAD=|0 2 0 |—-[d-2 o0 taD/
0 0 2D/ D'a D'a DA'D
2 2—d; —taD’
=12-d;, 2 —taD’
—-D/'a —D’a 2Id - D'A'D’
Hence
1 -1 0 2 2-4d; —taD/ 1 0 0
tbDCo=10 1 0| (|2—-d 2 —taD’ -1 1 0
0 0 Id/ \-D'a —D’a 2Id— D'A'D’ 0 0 Id
d; —d; 0 1 0 0
=l2-d; 2 —taD/ -1 1 0
—D'a —-D’a 2Id — D’A'D’ 0 0 Id
2d;  —d; 0
=|-d, 2 —taD’ =DC. ]

0 —-D’a 2Id-D'A'D’

The above lemma implies that the map ¢ preserves the inner product. Furthermore it also
implies rank C = rank C, which means dim h = dim . Thus we can extend ¢ to an isomorphism
@: h* — h* preserving the inner product.

Note that by the definition of normalization, the permutation of the indices ¢ and j, which
we denote by o, has no effect on the matrix C. Hence it defines an involution of W (C), or

equivalently, a homomorphism Z/2Z — Aut(W(C)).

Proposition 5.13. Under the isomorphism ¢, the Weyl group W (C) associated to C 1is iso-
morphic to the semidirect product W(C) x Z/27 of the one associated to C and Z/2Z by the
permutation o.

Proof. By the construction of ¢ we have

q;—a; if k=1
glag) =9 " 7 ]
o7 if k#aq.
As @ preserves the inner product, the above implies that for k # 4, the map @s,$ ! coincides
with the reflection §j relative to $(ay) = g, and the map Ps;~! coincides with the reflection
relative to p(oy) = &; — ;. Note that since the matrix DC is invariant under the permutation o,
we have

which imply that @s;p~1(dg) = Qg(k) for any k € I. Hence the map (Psip V) 5(@sip~ )71,
which is the reflection relative to $s;(p~ (), coincides with (k) for each k. Now the result
immediately follows. |
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We can easily check that
res(A) = fpt (res(N)) for A e R4

Note that the action of W(C) on RY naturally extends to an action of W (C) x Z/2Z. We see
from the above relation that the map RY — R4 X\ — ) is equivariant, and hence so is the map
RYx Q — RI x Q, (\,v) — (\¥), with respect to the isomorphism W(C) ~ W (C) x Z/2Z
given in Proposition 5.13.

6 Naive moduli of meromorphic connections on P!

This final section is devoted to study moduli spaces of meromorphic connections on the trivial
bundle over P! with some particular type of singularities.

6.1 Naive moduli

When constructing the moduli spaces of meromorphic connections, one usually fix the ‘formal
type’ of singularities. However, we fix here the ‘truncated formal type’, and consider the cor-
responding ‘naive’ moduli space. Actually in generic case, such a naive moduli space gives the
moduli space in the usual sense, which will be explained in Remark 6.5.

Fix n € Z~¢ and

e a nonzero finite-dimensional C-vector space V;
e positive integers ki, ka, ..., kn;

e mutually distinct points t1,%o,...,%, in C.

Then consider a system

n k;
TG, A=Y (Z‘fg)] A € End(V)
=1 j=1

of linear ordinary differential equations with rational coefficients. It has a pole at ¢; of order at
most k; for each i, and (possibly) a simple pole at oo with residue — ), A; 1. We identify such
a system with its coefficient matrix A(z), which may be regarded as an element of B, gj. (V)
via A(2) — (A;), Ai(z) ==Y Az

After Boalch [2], we introduce the following (the terminologies used here are different from
his):
Definition 6.1. For a system A(z) = (4;) € P, g5, (V) and each i = 1,...,n, the Gy, (V)-
coadjoint orbit through A; is called the truncated formal type of A(z) at t;.

For given coadjoint orbits O; C gj (V), i = 1,...,n, the set

n

> res A(z) =0 } / GL(V)

=1

MOy, ...,0,) = {A(Z) € HOi
i=1

is called the naive moduli space of systems having a pole of truncated formal type O; at each t;,
1=1,...,n.
Note that [, O; is a holomorphic symplectic manifold, and the map

n

[[o:=@uiv). AR = res Al2)
=1 =1

i=1
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is a moment map with respect to the simultaneous GL(V')-conjugation action. Hence the set
M (Oq,...,0,) is a set-theoretical symplectic quotient.
It is also useful to introduce the following (-twisted naive moduli space:

n

E:gZA@)z—CMv}/GMV)(CGC)

i=1

ME(Oy,...,0p) = { A(z) e [] o
i=1

Definition 6.2. A system A(z) € €D, gy (V) is said to be irreducible if there is no nonzero
proper subspace S C V preserved by all the coefficient matrices A; ;.

If A(z) € €D, 95, (V) is irreducible, Schur’s lemma shows that the stabilizer of A(z) with
respect to the GL(V')-action is equal to C*, and furthermore one can show that the action on
the set of irreducible systems in [ [, O; is proper.

Definition 6.3. For {( € C, the holomorphic symplectic manifold

n A(z) is irreducible,
ME(Or,...,0,) = Az) e [[ O 3 res A(2) = ~C1dy / GL(V)
i=1 — 2=l

7

is called the (-twisted naive moduli space of irreducible systems having a pole of truncated
formal type O; at each t;, i = 1,...,n. In the O-twisted (untwisted) case, we simply write

ME(O1,...,0,) = M™(O1,...,0,).
If we have a specific element A;(z) € O; for each i, the following notation is also useful:
ME Ay, .. Ay) = ME(Oy,..., Op), ME (A1, Ay) = ME(O4,...,0p).

Remark 6.4. Recall that a holomorphic vector bundle with meromorphic connection (E, V)
over a compact Riemann surface is stable if for any nonzero proper subbundle F' C E preserved
by V, the inequality deg F'/rank ' < deg E/rank E holds. It is easy to see that if the base
space is P! and E is trivial, then (E, V) is stable if and only if it has no nonzero proper trivial
subbundle F' C E preserved by V. This implies that a system A(z) € €D, g5, (V) is irreducible
if and only if the associated vector bundle with meromorphic connection (P! x V,d — A(z)dz)
is stable.

Remark 6.5. Let us recall a normal form A(z) introduced in Remark 5.4. Assume that each
I') is non-resonant, i.e., no two distinct eigenvalues of I'y differ by an integer. Then one can
show that an element A(z) € g; (V) is equivalent to A(z) under the coadjoint action if and only
if there is a formal gauge transformation g(z) € Autc()(C[[2]] ® V') which makes d — A(z)d=
into d — A(z) dz (see [31, Remark 18]). In this sense the truncated formal type of A(z) actually
prescribe a formal type. Hence, if each O; C gi (V') contains some normal form with non-
resonant residue parts, then the naive moduli space M**(Oy,...,0,) gives the moduli space of
meromorphic connections on the trivial bundle P! x V having a pole of prescribed formal type
at each t;.

6.2 Star-shaped quivers of length one

In some special case, the naive moduli space M (Oy,...,0,) can be described as a quiver
variety. Suppose that for each ¢ = 1,...,n, the coadjoint orbit O; contains an element of the
form
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for some vector space decomposition V' = V; @ V" and distinet &;,m; € g, (C). Let d; be the
pole order of \; := & — ;. Note that Z; is a particular example of normal forms introduced
in Remark 5.4, and it has non-resonant residue parts (see Remark 6.5) if and only if d; > 1

n
or re%(& —n;) ¢ Z. Also, note that ) tr res Zi(z) = 0 is a necessary condition for the non-

emptiness of M*%(Z1,...,5,) = M*"(O4,...,0,). Indeed, if some A(z) gives a point in
MU=, ... E,), then

n n
0= Ztr Tes A(z) = Ztr res Zi(2),
i=1

=1

since the function trores,—: gj (V) — C is invariant under the coadjoint action for each i.
Set I :={0,1,...,n} and let Q = (I,,s,t) be the ‘star-shaped quiver with n legs of length
one’ as drawn below

1 2 n

We set Vy : =V, dy := 1, which together with the above V;, d; give an I-graded C-vector space
V =@, V; and multiplicities d = (d;) € ZL,. Also we set

Ao(z) := 271 Z res ni(z) € RY,
i=1"

which together with the above ); gives an element A = ()\;) € R9. Note that

; tr res Zi(z) = ; [(dlm Vi) res Ai(z) + (dim V) res m(z)}
= (dimV}) res Ai(2) + (dim V) res Ao(2) = v - res A, (6.1)
i=1 = =

n
where v := dim V. Hence ) tr res Ei(z) = 0 if and only if v - res A = 0, which is a necessary
— z=

i=1
condition for the non-emptiness of NSQe’td()\, v) (Proposition 3.4).

Proposition 6.6. There exists a bijection from NSQefd()\,v) to M*Y(Z4,...,E,), which maps
NQ.a(A, v) symplectomorphically onto MITE(E, . E).
n
Proof. Set ¢ := res Xo(z) = Y2 res ni(z). Then the scalar shift with n; induces a bijection
z= i=1%=
MY (=, ) — ./\/lzet(Al, ..., \,), where

Ai(2) = Ei(2) — mi(2) ldy = (Ai(%ld” Olgv_,> € g2,(V) C g1, (V), (6.2)

and it preserves the irreducibility. As A; has the pole order d;, the Gy, (V')-action on A; reduces
to the G4, (V')-action via the natural projection Gy, (V') — Gg,(V'), so that the orbit Gy, (V)-A; =
Ggq, (V) - A is a Gg,(V)-coadjoint orbit. This replacement of order has no effect on the naive
moduli space.
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By the definition of Q, we have XA/z = Vo ®c R1 =V for each ¢ > 0 and
Mqa(V) =@M, M, :=Hom(V,V; & Ry,) ® Hom(V; ®c Rq,, V).

Now consider the sets Z; C M;, i > 0 given in Lemma 3.6. Since the top coefficients of \; €
g;.(C), i > 0 are nonzero, Lemma 3.5 implies that for each i > 0, any point in gy Z(/\ (z)Idy,)
satisfies condition (3.4). Hence

n n

M raki() 1) = T] 2.

=1 i=1

Since dim V; < dim V for all ¢ > 0, Lemmas 3.6 and 3.7 imply that the map
®=(®): Mqa(V) = EPei,(V), B (—Bei(z1dv,er, — Ni) 'Bi-) (6.3)

induces a symplectomorphism

n

m,u z) Idy;) HGd H(Z/Gd ﬁ

i=1
which is clearly GL(V)-equivariant. Note that

n

n
Z;ng%(—Bq(z Idv,or,, — Ni)ilBh—) = — Z; B ;B = res pa,o(B).
1= 1=

Taking the (set-theoretical) symplectic quotient by the GL(V')-action at —( Idy, we thus obtain
a bijection from NGy (A, v) to Mset(Al, oAy,

The proof of what it maps Ng 4(A, v) onto Migr(Al, ..., Ay) is quite similar to Lemma 5.9.
d;

First, assume that a point B € pg'(—AIdy) is stable. Let ®(B) = (Z Auz_l), and assume
=1

further that a subspace Sy C V' is invariant under all A;;. We define

d;
S; = ZNililBie(So), 1 >0,
=1

and set S := @,.; Si € Va. Then N;(S;) C S;, Bi—(Sp) C S; and

BHl ZBHlNl IBZH S() ZA” So C S0
l

imply that S is B-invariant. Since B is stable, we thus have S = 0 or S = V4, and in particular,
So =0 or Sy =V, which shows that the system ®(B) is irreducible.

Conversely, assume that the system ®(B) = (3., A;;27!) is irreducible. Let S = @, S; be
a B-invariant subspace of Vg satisfying N;(S;) C S; for all i € I. Then Sy is invariant under
all A;;, and hence Sy =0 or Sy = V. If Sy = 0, then for each i > 0, we have B_;(S;) = 0, which
implies S; = 0 since Ker B; N Ker V; = 0 by Lemma 3.5 and N;|g, is nilpotent. Dualizing the
argument, we easily see that S; = V; ®@c Rg,, © > 0if Sp = V. Hence S = 0 or S = V4, which
shows that B is stable. |
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Conversely, let Q = (I,€,s,t) be as above and suppose that an I-graded C-vector space V =
P, Vi and multiplicities d = (d;) are given. Suppose further that they satisfy dimV; < dim Vj
and dg = 1. Set V := V}, and fix a C-vector space V;’ of dimension dim V' — dim V; together
with an identification V' ~ V; @ V/ for each ¢ > 0. Also, for each \ € R4, set ¢ := res Ao

and let A; be as in (6.2). Then the above proof also shows that the map ® given in (6.3)
induces a bijection Nae’td()\,v) — /\/lzet(Al, .+, An) mapping Ng q(A, v) symplectomorphically
onto M¢*(Aq,..., Ay).

6.3 Middle convolution

Recall the map given in (6.3);
® = (®;): Mqa(V) - @ei(V), B (-Boi(zldv,gr, — Ni)"'Bi.).
Noting Vp = D, Vi ® Ry, we set
n A~
T := @ (t:1dv,er,, + Ni) € End(Vp).
=1
Using the natural inclusion ¢;: V; ® Ry, — % and projection m;: ‘//\'0 — Vi ® Rg;, we then have
(Z Id% — T)_l = Z LZ'(Z — tz’ — Ni)_lﬂi = Z Z(Z — ti)_]LiNg_lﬂi.
i=1 i=1 j=1

Thus we can write the systems ®(B) as

n

®(B)=—> Boi((z—t)Idyer, — Vi)~
=1

'Bi. = By_(21dy, — T)™'Boy. (6.4)

Such an expression of systems has been familiar since Harnad’s work [10], and is in fact quite
useful to formulate the so-called middle convolution [31], which was originally introduced by
Katz [14] for local systems on a punctured P! and generalized by Arinkin [1] for irregular D-
modules.

Let us define the generalized middle convolution according to [31]. First, we introduce the
following fact, which is a refinement of Woodhouse and Kawakami’s observation [30, 15]:

Proposition 6.7 ([31, Propositions 1 and 2]). Under the assumption V # 0, for any sys-
tem A(z) with poles at t;, i = 1,2,...,n and possibly a simple pole at 0o, there exists a quadruple
(W, T,X,Y) consisting of

e a finite-dimensional C-vector space W';

e an endomorphism T € End(W) with eigenvalues t;, i =1,2,...,n;

e a pair of homomorphisms (X,Y) € Hom(W, V) & Hom(V, W),
such that

X(zIdw —T)7'Y = A(2), (6.5)
Ker Xz N Ker NZ = 0, ImYl + Im Nl = Vv, (66)
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where Nj is the nilpotent part of T restricted on its generalized t;-eigenspace W; := Ker(T —
t; Idy )™ W - and (X;,Y;) € Hom(W;, V) @ Hom(V, W;) is the block component of (X,Y) with
respect to the decomposition W = @, W;. Moreover the choice of (W, T, X,Y) is unique in the
following sense: if two quadruples (W, T, X,Y) and (W', T', X", Y") satisfy (6.5) and (6.6), then
there exists an isomorphism f: W — W' such that

frft=1, X =X'f, fy =YY"

The above enables us to define the middle convolution. For a system A(z) = (4;) €
@i, 95, (V), take a quadruple (W, T, X,Y) satisfying (6.5) and (6.6). Then for given ¢ € C, set
V¢ :=W/Ker(YX 4 ¢Idy) and let

e X¢: W — V< be the projection;
e Y¢: VS — W be the injection induced from Y X + ¢ Idyy .

Now we define

mec(A) == X (z1dw — )7V € Pai, (V).
i=1

By virtue of Proposition 6.7, the equivalence class of mc¢(A) under constant gauge transforma-
tions depends only on that of A(z). We call it the middle convolution of A(z) with (.5

Let us come back to our situation. The expression (6.4) and Lemma 3.5 (which we apply for
all i > 0) imply that the quadruple (Vo, T, By, B_o) satisfies (6.5) and (6.6) for A(z) = ®(B).
Now assume Ag(z) # 0 and consider the middle convolution mc¢(A) with ¢ := res Ao- By the

definition, the triple (V¢, B()(_, B¢ o) satisfies

BSB§._ = BBy +(ldg,, (6.7)
KerB', =0, ImBS_ =V¢, (6.8)

i.e., it provides a full-rank decomposition of the matrix B.gBg.+( IdA Recall that such a triple
already appeared in Section 4; conditions (4.3) and (4.4) for the 0-th reflectlon functor Fy imply
that if we take an I-graded C-vector space V' = @, V/ with dim V' = s¢(v) as in Section 4.2 and
a representative B’ € Mqa(V’) of Fo[B] € N§ 4(r0()), s0(v)), then the triple (Vg, By._, BLg)
also satisfies (6.7) and (6.8) (note that dp = 1 and Ny = 0). By the uniqueness of the full-rank
decomposition, we then see that there exists an isomorphism f: V¢ — V{ such that B)_ = f BO(_,
B, = Bgof_l, and hence

®(B') = By_(21dg, — T)"'BLy = fB{_(z1dg, —T) ' Beof " = fmec(A)f

The arguments in the previous subsection for V', X' := ro(\) show that ®: Mqa(V') —
@i, g5, (Vo) induces a bijection between Nga(ro(X), so(v)) and MZL(AY, .., AL), where

Ai(2) Idy; 0 y
A/( ) < 0 OIdV_// = gdz(‘/ol)ﬂ ‘/0/ ~ ‘/,L (&3} ‘/7://‘

We have now proved the following:

®In [31], an explicit construction of the quadruple (W, T, X,Y’) is given so that the middle convolution mcc(A)
is well-defined as a system, not as a gauge equivalence class.
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Proposition 6.8. Let (Q,d), A\, v be as in Proposition 6.6, and assume ¢ := res Ao is nonzero.

Under the above notation, one then has the following commutative diagram:

€ F €
NGlaA, v) ———=Ngia(ro(A), s0(v))

g o s

ME (A, An) ——= MEL(AL, ., AL).

mCC

Next, consider the reflection functors F; for ¢ > 0. Let [B’] = F;[B]. Then condition (4.2)
implies

B_;(z1dv,er,, — Nj) ™' Bj. = Boj(z1dv,er,, — Nj) "' Bje,  j# 0,4,
which together with (4.3) shows that the two systems ®(B) and ®'(B) are related via
®(B') = ®(B) — \i(z — t;) Idy.

Proposition 6.9. Let (Q,d),\,v be as in Proposition 6.6, and set ( := res Xo. For i =
2=

1,2,...,n, one then has the following commutative diagram:

F;

N v) Nga(ri(A), si(v))

.| : B

ME (A, ) M s 3, (A1, i = Xi(2) Ty, A),

—A; (Z—ti) Idy
where the bottom horizontal arrow is given by the shift A(z) — A(z) — \i(z — t;) Idy.

Remark 6.10. In [10], Harnad considered two meromorphic connections having the following
symmetric description:

V=d— (S+X(zldw —T)"'V)dz, V' =d+ (T+Y(zldy —9)'X)dz,

where V', W are finite-dimensional C-vector spaces, S, T" are regular semisimple endomorphisms
of V., W respectively, and (X,Y) € Hom(W, V) & Hom(V, W) such that both (W,T,X,Y) and
(V,S,Y, X) satisfy (6.6). These have an order 2 pole at z = 0o and simple poles at the eigenvalues
of T', S respectively. He then proved that the isomonodromic deformations of the two systems
are equivalent. After his work, such a duality, called the Harnad duality, was established in
more general cases by Woodhouse [30].

Note that if S = 0, we have V/ = d+ 2! PQ dz. Hence on the ‘dual side’, the operation mee
corresponds to just the scalar shift by z—'¢ dz. This interpretation enables us to generalize the
middle convolution further; see [31].

6.4 Examples: rank two cases

The case dim V' = 2 is most important because in this case a generic element in g};(V) can be
transformed into an element of the form Z;(z) = &;(2) @ ni(2) for some distinct &, n; € gi, (C).

The dimension of M"(Z4,...,=,) can be computed as

dim M™(Zy, ..., Ep) = dim Ny (A, v) =2 — (v,v) =2 d; 6,

=1

if it is nonempty.
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First, consider the case dim M™(Zy,...,Z,) = 0. The above formula implies that the tuple
(d1,...,dy) must be one of the following (up to permutation on indices):

(1,1,1), (2,1), (3).

The corresponding (Q,d) have the underlying graphs with multiplicities given by the picture
below

The associated Kac—-Moody algebras are respectively given by
D4a 037 GQ-

From Example 5.6, we see that the effect of normalization on these quivers with multiplicities
is given as follows:

D4 — 047 03 - A37 G2 - A27

where the arrows represent the process of normalization.
Next consider the case dim M (Zq,...,E,) = 2. Then the tuple (dy,...,d,) must be one of
the following (up to permutation on indices):

(1,1,1,1), (2,1,1), (3,1), (2,2), (4). (6.9)

The corresponding (Q,d) have the underlying graphs with multiplicities given by the picture

below
1 1 1
1 2 3 1 1 2 1 2 4 1
1 O—0O0—0O O—0O0—0O O—O
1 1 1

The associated Kac-Moody algebras are respectively given by
DV, AP, DY, b, AP (6.10)

From Example 5.6, we see that the effect of normalization on these quivers with multiplicities
is given as follows:

DY 4D oM AD L A® D p® L AD, o) o p®, AR . AW,

where the arrows represent the process of normalization. Hence by performing the normalization
if necessary, we obtain the following list of (untwisted) affine Lie algebras:

Dz(ll), A:(gl), Agl), C,;l)’ Agl),

which is well-known as the list of Okamoto’s affine Weyl symmetry groups of the Painlevé
equations of type VI, V, ..., II, as mentioned in Introduction.
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Remark 6.11. In all the cases appearing in (6.9), we can check that M (Z1,...,E,) is
n

nonempty if and only if > tr res Z; = 0 (recall that the ‘only if’ part is always true). We
=1 =

sketch the proof of the ‘if’_part below. _
If (di,...,dn) # (2,2), the naive moduli space M (Z1,...,=,) is isomorphic to an ordinal

quiver variety N§(¢,v) for some extended Dynkin quiver Q and (, v as discussed above. The
n

formulas (5.4) and (6.1) imply ¢-v = > tr res =;. Furthermore, since the expected dimension of
i=1  z=

NQ(¢,v) is two, we have (v,v) = 0, which implies that v is a (positive) imaginary root (see [13,

Proposition 5.10]). In fact, v is the minimal positive imaginary root § because at least one of

its components is equal to one. It is known [17] that if - 0 = 0, then Ng (¢, d) is a deformation

of a Kleinian singularity, which is indeed nonempty®.
2
Now assume (dy,...,d,) = (2,2) and > tr re%Ei = 0. Let \i(2) = N2z 72 + X1zt Ai(2),
i=1 =
¢ be as in the proof of Proposition 6.6, and for instance, set

2)\1 2 —2)\1 2 -9 <)\1 1+ C _)\1 1— C) -1
A = ’ ’ ' '
1) <)\12 —>\12>Z * ¢ —C :

)

-1
(21 0 0y _11/2 1
({0 )
0 A _
As(2) = As(2) + G
e 0
For each 4, using the assumption \;2 # 0 and the formula
1 az o 0 bhio\ 1
<bz 1) -Az—AZ(z)—I—(_a)\i’2 0 )z , a,b e C,

we easily see that A;(z) is contained in the G(C?)-coadjoint orbit through A;(z). Furthermore,
the assumption El tr re% =; = 0 implies A1 1 + A21 = —2(, and hence
2=

A A

res Ay (z) + res Ag(z) = (7! FAza e 0 —(Idce.

z=0 z=0 0 —C
The assumption A; 2 # 0 also implies that the top coefficients of A;(2), A2(z) have no common
eigenvector, which shows that the system (A1, A2) is irreducible. Therefore the system (A; +
M (z) Idce, Aa + m2(z) Idc2) gives a point in M™ (51, Zg).
Remark 6.12. Our list (6.10) of Dynkin diagrams is obtained from Sasano’s on [29, p. 352] by
taking the transpose of the generalized Cartan matrices. It is an interesting problem to ask the
relation between our symmetries and Sasano’s.

A Appendix on normalization

In this appendix, we prove Lemmas 5.2 and 5.3. Recall the situation discussed in Section 5.1;
i € I is a fixed pole vertex with base j, and O is the G, (V})-coadjoint orbit through

_ (A(R)1dy, 0 AV BV Y
Mo = (MR ) e

where the top coefficient A; 4, of A\;(2) is assumed to be nonzero. Its ‘normalized orbit’ O is the
By, (V;)-coadjoint orbit through the residue-free part A® of A.

SAs a more direct proof, one can check that if ¢ -§ = 0, then ({,6) satisfies the necessary and sufficient
condition for the non-emptiness of N§ (¢, v) given in [6, Theorem 1.2].
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A.1 Proof of Lemma 5.2

We check that the Bg,(V})-coadjoint orbit O is invariant under the conjugation action by K,
and is K-equivariantly symplectomorphic to the symplectic vector space

Hom(V;/V;, V;)®4=2) ¢ Hom(V;, ‘/}-/‘/;.)@(di—Q)'

Note that all the coefficients of A? are fixed by K, and that the subset By, (V;) C Gg,(V;) is
invariant under the conjugation by constant matrices. Hence for any k € K and g(z) € Bg,(V}),

k(g-AYE™" = (kgk™") - (kA°k™") = (kgk™") - A° € O,
i.e., O is invariant under the conjugation by K. Let us calculate the stabilizer of A°(z) with

respect to the coadjoint By, (V;)-action. Suppose that g(z) € Bg,(V;) stabilizes A%(z). By the
definition, we then have

9(2)A%(z) = A(2)g(2) mod 27" gl(V))[[2]]. (A.1)

Write
_ (Gu(2) Gra(z)
o= (o) o)

according to the decomposition V; = V; @ V;/V;, and let A\?(2) be the residue-free part of \;(2).

Then
ANIdy 0 Gu G 0 NG
0 B i 1dy; 11 12 _ i 12
[A (z),g(z)] = [( 0 Uldvj/vi) ) <G21 G22>] - (—)\?Gzl 0 ) .

Therefore (A.1) is equivalent to

X (2)f(2) € 27 Cl[2]]

di—1
for all the matrix entries f(z) = . fuz® of Gi2(2) and Goi(z). We can write the above

k=1
condition as
Nid;  Nidi—1 o N2\ [ fa 1
0 0 aa)\ A 0

Since A; 4, # 0, this means f, =0 for all £ =1,2,...,d; — 2. Hence the stabilizer is given by
di—1
{ g(z) = Idy, + Z g?" | gr e LieK, k=1,...,d; — 2, ga,—1 € gl(Vj) } .
k=1
The above implies that the orbit © is naturally isomorphic to
(84(V;)/ Lie }) ™2 ~ Hom(V;/V;, Vi) *(%~2 & Hom(V;, V;/V;) (42,
Let us denote an element of the vector space on the right hand side by

(a1,...,a4,—2,b1,...,bg,—2), ar € Hom(V;/V;, Vi), b, € Hom(V;, V;/V;),
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and set a(z) := Y axz¥, b(2) := 3, brzF. Then the isomorphism is explicitly given by

_ < Idy.  a(z
(ak,bk)%:f — g - AY e O, g(z) = <b(;/3 Id\i)\@) S Bdl(Vj) (A2)

It is clearly K-equivariant.

Let us calculate the Kirillov-Kostant-Souriau symplectic form wgy on O in terms of the
coordinates (a, b). Let (§;a,d;b), I = 1,2 be two tangent vectors at (a,b). Then the corresponding
tangent vectors at g - A0 € O are given by

v =[6g 97" gA% "] mod 27 gl(V))[[z]] € b5 (V)),

where
. 0 01a(2) ' _
019 := <5lb(2) 0 € bg,(Vj), l=1,2.
By the definition, we have

we (v1,v2) = trres (gA%g ™ [01g g, 029 - g7 ']) = trres (A%[g™ 019, 9 Dag])

= tr res ([Ao,g_lélg]g_légg) . (A.3)

z=
Using the obvious formula

L (v, a(z) ' [ (dy,—ab)"t —a(ldy, v, — ba) !
007 = (5 ) = (oot (g ) (A4)

_15 . (Idvz. — ab)*l —a(Ide/Vi — ba)fl 0 51(1(2’)
T 097\ co(1dy, —ab)™t (Idy,; —ba)™t ) \dib(z) 0

(Idvi — ab)*lélb (Id% — ab)’léla
(Idy, v; — ba)~161b  —b(Idy, — ab)"1da)

and hence

0 -1 . 0 )\ZO(Id\/Z — ab)_ldla

Substituting it into (A.3), we obtain
wp (v, v2) = tr res [A?(Id% —ab)"'61a (Idy, v, — ba)—légb]
— trres [\ (Idy, v, — ba) ™' 016 (Idy; — ab) ™" b2a],
ie.,
we = tr res [A?(Idy, — ab)~" da A (Idy, v, — ba)~" db]. (A.5)
Now we set

aj, == res [ZFA\0(Idy; — ab)~a], % = b, E=1,...,di—2. (A.6)
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Using (Idy, — ab)~ = 3" (ab)!, we see that a}, is the sum of matrices
1>0

)‘i,m(ap1bq1)(apz qu) T (apz qu)ar

over all { > 0 and m,p1,...,p1,q1,...,q," with m =k + > p;j + > ¢; +r+ 1. Note that the
indices for a, b satisfy

r<m-k—1<d; —k—1, pj,¢g <m—k—r—-1<d;—k—1,
and r =d; — k — 1 only when m = d; and [ = 0. Thus we can write
ay = Nid, 0di—k—1 + fe(ar, ..., ad,—k—2,b1,. .., ba,—k—2)

for some non-commutative polynomial f;. Since );4 # 0, the above implies that one can

uniquely determine (ak,bk)zi:_f from (aﬁg,bk)‘,ﬁ":_f in an algebraic way. Hence (ak,bk)zi:_f —

(ag, b;c)zi;f is a biregular map. By the definition, it is clearly K-equivariant.
Let us calculate the 1-form (:Z_:f trdaj, A db),. First, we have
d [(Idy; — ab)~'a] = d(Idy, — ab) " - a+ (Idy; — ab) ' da
= (Idy; — ab)~* d(ab)(Idy; — ab) ta + (Idy; — ab) "' da
= (Idy, — ab)~" da[b(Idy, — ab)'a + Idy, v;]
+ (Idy, — ab) " tadb(Idy, — ab) " 'a.
Note that the obvious equality b(Idy;, — ab) = (Idy, sy, — ba)b implies
b(Idy, — ab)~" = (Idy, sy, — ba)~'b.
Thus we have
d [(Idy; — ab)~"a] = (Idy; — ab)~" da |(Idy, v, — ba)”'ba + Idvj/w}
+ (Idy, — ab)"tadb (Idy; — ab) ta
= (Idy; — ab)~"da (Idy, v, — ba)~"
+ (Idy; — ab)"'adb (Idy, — ab)™'a,
and hence
tr (A} d [(Idy; — ab)~"a] Adb) = tr [A)(Idy, — ab)~" da A (Idy, v, — ba) " db]
+tr [AY(Idy; — ab)"tadb A (Idy, — ab)~'adb]
= tr [A)(Idy, — ab) ™" da A (Idy, v, — ba) ™" db].

di—2
The above and (A.5) imply that the 1-form )~ trdaj A dbj coincides with wg; indeed,
k=1

di—2 di—2
; trdaj, A dbj, = ; tr res (zk)\? d [(Idy, — ab)~'a] A dby)

_ 0 _ -1
= res tr (A7 d [(Idy, — ab)~"a] A db)
= res tr (A (Idy, — ab)~"da A (Idy, v, — ba) ™" db] = we.

Hence the map (a}, bz)zi;lz — ¢ - AY is a K-equivariant symplectomorphism

Hom(V;/Vi, V;)®(%=2 @ Hom(V;, V;/V;)#4=2) ~ O.

Since this sends the origin to A°, Lemma 5.2 follows.
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A.2 Proof of Lemma 5.3

First, we show the following lemma:
Lemma A.1l. Let
O —LieK, B(z)— —-I'pelLiek

be the K-moment map sending A° to zero. Then for any B(z) € O, there ezists g(z) € Bq,(V;)
such that

9(2)B(2)g(2)"" = A°(2) + 27T mod gl(V})[[=]].

d; 3
Proof. Let B(z) = Y. Brz=% € O, and let a(z),b(2), g(z) be as in (A.2) such that B = g- A°.
k=2
By the definition of the By, (V})-action, we then have
9(2) ' B(2)g(2) = A°(2) +27'T mod gl(V;)[[=]] (A7)

for some I' € gl(V}). According to the decomposition V; = V; @ V;/V;, we write it as

' 1112)
I = :
<F21 [

and set

F11 0 0 )\-_;.FH d.—1
I'p:= = 0 = Idy. i,
B < 0 F22> , U <_)‘i,ir21 0 , u(2) v, +Uz

Note that I'p € Lie K. Let Ay, be the top coefficient of A°(z). Then U satisfies

0 Aid; - )‘i_c}F12 —
e U] = ((—)\i,di) =X Ta1 0 ) = =Tn

and hence

u(2)g(2) "' B(2)g(2)u(z) = u(2)(A%(2) + 27 T)u(z)""  mod gl(V;)[[=]]
=A’(2) + 27T + 271U, Ay mod gl(V})[[#]]
2)+2 'I'p mod gl(V;)[[2]]-

Now we explicitly describe I'p in terms of the coordinates (aﬁc,b;{)zl’:—f, which shows that
B — —T'p is a K-moment map. Note that the constant term of g(z) is the identity, and hence
it acts trivially on z=! gl(V;)[[2]]/ ¢!(V;)[[2]] by conjugation. Therefore (A.7) implies

B(z) = g(2)(A%(z) + 27 'T)g(z)™"  mod gl(V;)[[=]]

(2)A%(2)g(2) "' + 27T mod gl(V;)][[2]].

g
g

Substituting (A.4) into the above equality, we have

N(dy, —ab)~t =Ma(Idy, jy, — ba)~? r
B(z) = (b)\?(ldvi —ab)"L —bXa(Idy, ; ba)—1> T3 med alVy)lEl) (4.8)
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Note that B(z) and A\?(2) have no residue parts. Looking at the block diagonal part of the above
and taking the residue, we thus obtain

_ 0 PPATS & 0 0
Tip = = res [A)(Idy, —ab) '] lz(;re% (A (ab)'] lz;re% (A (ab)!]

= —res [)\?(Idvi - ab)_lab] =— Ek:;"e% [z A (Idy, — ab)™ g bk =— Zakbz,

and similarly,

T2z = res [bAa(Idy, v, — ba)~ Z b,d),.
Hence
_ apb, 0
FB_;( 0 —ba)
which gives the minus of the K-moment map vanishing at a}., b = 0. |

Remark A.2. The matrix I' in (A.7) is characterized by I' = rg%g(z)_lB(z)g(z), so that it

depends algebraically on ay, by. Hence u(2)g(z)~! also depends algebraically on ay, by. This
means that one can choose g(z) in the assertion of Lemma A.1 so that it depends algebraically
on B € O.

Remark A.3. In the above proof, let us write

_ (Bu(z) Bif(z)
B(Z) o <B21(Z) B;2(2)> )

Then (A.8) implies

Bii(z) = A (Idy; — ab)™ mod 2~ gl(V;)[[2]],
Bia(z) = =MNa(Idy, v, — ba) ™" mod Hom(V;/V;, Vi) & z_l(C[[z]]
Bai1(z) = bA)(Idy; — ab) ™! mod Hom(V;, V;/V;) ® 2 'C[[]],
Bas(z) = —b)\?a(ldvj/vi —ba)! mod 2! gl(V;/V;)[[2]].
Note that A)(Idy, — ab)~'a has pole order d; — 1 and
di—2
N(Idy, — ab)ta = Z apz "1 mod Hom(V;/V;, Vi) ® 27 1C[[2]].
k=1

di—2
Set a’(z) := Y a}z~*"!. Using the obvious formulas a(ldy, v, — ba)~! = (Idy;, — ab)~ta and
k=1

(Idy; — ab)™! = Idy, + (Idy, — ab)~'ab, we can then rewrite the above four equalities as

Bii(z) = MIdy; +a't' mod 27! gl(V;)[[2]], (A.9)
Blz(z) = —a', (A 10)
Boi(z) = A% +v'dt/ mod Hom(V;,V;/Vi) ® 2~ 'C|[[2]], (A.11)
By (z) = —bd mod 2 gl(V;/Vi)[[2]],
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which give the explicit description of B in terms of the coordinates (aj,b)). Conversely, we
can describe (a/,’) in terms of B using the above. Indeed, (A.10) determines a/, and (A.9)
and (A.11) imply

Boi(z) = ¥ (2)B11(2) mod Hom(V;,V;/V;) @ 2 'CJ[2]].

Writing B;; = ), Bijjkz_k, we then have

Bi1,4; Biiag,-1 -+ B
0 B4, - DBiia

(B2l,di—1 B21,2):(b/1 biirz) : .. .. :
0 0 B,

Note that (A.9) also shows Bii 4, = A;q,Idy,. Hence the block matrix on the far right is
invertible, and therefore we can express b}, as

d;—1

/
=Y BorFi(Buig, .., Bina, 1)
=2

with some non-commutative polynomial Fj.

Proof of Lemma 5.3. We give a proof of Lemma 5.3. Let ¢: O x M — gflz(\/}) X M be the
map defined in its statement;

o(B(2),2) = (A(2),a),  A(2) i= B(z) - M@ Ty,

z

which is clearly equivariant under the conjugation by K. Now suppose that (B(z),z) € O x M
satisfies the moment map condition

f(B,z) = -Tp+ pupm(z) = — res A(z) — (1dy;.

By Lemma A.1, there exists g(z) € By, (V;) such that
B(z) = g(2)(A(2) + 27 'T)g(2)"! mod gl(V;)[[=]]. (A.12)
Noting that the constant term g(0) of g(z) is the identity, we obtain

rB) (o)1 () + T

A() = g(2) (A°<z> n mod gi(V;)][[2]

= (A0 (2)g(e) 4 BT g gy )
BPETURFERES & mod (V)2
~4(2) (A%z) + ﬁzOA) o) mod (V[
— (A ()gl) ! mod gi(v;)[2]
which implies A(z) € O. Since B(z) has no residue, we have res A(z) = —pun(z) — (Idy,, in

2=0

other words, the value of the GL(V})-moment map

p: O x M — gl(Vy), (A, z) — r_%A(z) + p ()
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at p(B,x) is —(Idy,. Hence ¢ induces a map between the symplectic quotients
?: ﬂ‘l( —res A — CIdvj)/K — p~H(=CIdy;)/ GL(V).
We show that the above map is bijective. Suppose that (B, z), (B’,2') € i~ 1(— res A—(CIdy;)
and g € GL(Vj) satisfy g - (B, z) = ¢(B’,2). Then g -z = 2’ and
gum(z)g”t + ¢ Idy,

Idy. ! Idy.
g<B(z)MM(x):C VJ>g—1:B/(z)MM(QC);—C VJ:B/(Z) .
- B’(z) — g—'uM(lT) * CIde gfl.

z

Hence gB(z)g~! = B'(z). Since B,B’ € O, their top coefficients are Ay, = \; g, Idy, @
01dy, v, whose centralizer is GL(V;) x GL(V;/Vi) = K. By comparing the top coefficients
of gB(2)g~!, B'(2), we thus obtain g € K, and hence (B, z) and (B’, z’) lie in the same K-orbit.
To prove the surjectivity, suppose that (A,z) € p~'(—¢Idy,) is given. By using the GL(V})-
action if necessary, we may assume that A = g - A for some g(z) € By, (V;) (if A =g - A for
g(2) € Gg,(V;), we replace (A, ) with g(0)~!-(A, z)). Let B(z) € b, (V) be the residue-free part
of A(z). Taking modulo 21 gl(V;)[[2]] of A = g- A, we then have B = g-A° € O. Furthermore,
the moment map condition for (A, z) implies
res A
A(2) = B() + =— = B(z) - () & 1y,

z
Hence (B,z) = ¢(A, z). This shows that @ is surjective.

We have proved that @ is bijective. Furthermore, by letting (B,z) = (B’,2’) in the proof of
the injectivity, we see that the stabilizer of ¢(B, z) with respect to the GL(V})-action is contained
in that of (B, x) with respect to the K-action. The converse is clear from the K-equivariance
of ¢, and hence the two stabilizers coincide. In particular, free K-orbits correspond to free
GL(Vj)-orbits via ¢, which is the second assertion of Lemma 5.3.

Finally, we show that  preserves the symplectic structure at points representing free orbits.
Let (B, z) be a point in the level set i1 (— Zre%A — (¢ Idy;) whose stabilizer is trivial (so the level
set is smooth at (B,x)), and let (4,z) = ¢(B,z). We take g(z) € Bg,(V;) satisfying (A.12)
so that it depends smoothly on B, which is possible as mentioned in Remark A.2. Then the
argument just after (A.12) shows A = g - A, and furthermore, the smoothness of g implies that
for any tangent vector (6B,v) at (B, x), there exists dg € bg, (V}) such that

0B =1[0g-g~",B] mod z~"gl(V;)[[2]],
§A=[0g-g~",A] mod gl(V))[[2]],

where (0A,v) = .(0B,v) is the corresponding tangent vector at (A,z). Now let (§;B,v;),
i = 1,2 be two tangent vectors at (B,z) and §;A,d;9 as above. Let wo (resp. wys) be the
symplectic form on O (resp. M). By the definition, we have

wo(01A,02A) = tr res (Aldrg - g1, 699 - g_l]) )

Since §;g has no constant term, we have [§1g - g7, 29 - g71] € 22 gl(V;)[[2]], which implies
trres (A[d1g - g™ 6ag - g7']) =trres (Blorg- g~ 029 97']) = wo (015, 5, B),

and hence
wo (614, 024) + war(v1,v2) = wy (018, 02B) + wr(vi, v2).

This shows the assertion. [ |
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