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Abstract. We give a hypergeometric proof involving a family of 2-variable Krawtchouk
polynomials that were obtained earlier by Hoare and Rahman [SIGMA 4 (2008), 089,
18 pages] as a limit of the 9− j symbols of quantum angular momentum theory, and shown
to be eigenfunctions of the transition probability kernel corresponding to a “poker dice”
type probability model. The proof in this paper derives and makes use of the necessary
and sufficient conditions of orthogonality in establishing orthogonality as well as indicating
their geometrical significance. We also derive a 5-term recurrence relation satisfied by these
polynomials.
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1 Introduction

It was in the SIDE8 meeting in St-Adele near Montreal that one of us (MR) presented a paper
reporting the discovery, by his co-author Michael Hoare and himself [2008], of a “new” system
of 2-variable Krawtchouk polynomials, orthogonal with respect to a trinomial distribution. The
motivation of their paper was to find eigenvalues and eigenfunctions of the transition probability
kernel:

KA(j1, j2; i1, i2) =
min(i1,j1)∑

k1=0

min(i2,j2)∑
k2=0

b(k1, i1;α1)b(k2, i2;α2)

× b2(j1 − k1, j2 − k2;N − k1 − k2;β1, β2), (1.1)

where b(x,N ; p) =
(
N
x

)
px(1− p)N−x is the binomial distribution, while

b2(x, y;N ; p, q) =
(

N

x, y

)
pxqy(1− p− q)N−x−y,

is the trinomial, both normalized to 1. In (1.1) the parameters (α1, α2, β1, β2) are probabilities
of a two-step cumulative Bernoulli process, and hence necessarily in (0, 1), while (i1, i2) and
(j1, j2) represent the initial and final states of the process. Borrowing a result from the angular
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momentum theory of quantum mechanics the authors of [12] were able to show that the 2-
dimensional Krawtchouk polynomials∑

i

∑
j

∑
k

∑
l

0≤i+j+k+l≤N

(−m)i+j(−n)k+l(−x)i+k(−y)j+l

i!j!k!l!(−N)i+j+k+l
ui

1v
j
1u

k
2v

l
2 (1.2)

do indeed satisfy the requirements for them being the eigenfunctions of (1.1), where (x, y)
represents the state-variable and (m,n) the spectral parameters. It goes without saying that
for (1.2) to be an orthogonal system with respect to a distribution of the form b2(x, y;N ; η1, η2)
the parameters u1, v1, u2, v2 must be related to η1, η2, as well as satisfy some additional
conditions among themselves. It was found in [12], again with a cue from the physics literature
that these conditions are all satisfied provided the u’s and v’s are parametrized in the following
way

u1 =
(p1 + p2)(p1 + p3)

p1(p1 + p2 + p3 + p4)
, u2 =

(p1 + p2)(p2 + p4)
p2(p1 + p2 + p3 + p4)

,

v1 =
(p1 + p3)(p4 + p3)

p3(p1 + p2 + p3 + p4)
, v2 =

(p2 + p4)(p3 + p4)
p4(p1 + p2 + p3 + p4)

, (1.3)

and consequently,

η1 =
p1p2(p1 + p2 + p3 + p4)

(p1 + p2)(p1 + p3)(p2 + p4)
, η2 =

p3p4(p1 + p2 + p3 + p4)
(p2 + p4)(p3 + p4)(p1 + p3)

. (1.4)

For the origin of the work in [12] the reader may consult [3, 9, 10, 11].
Fortunately, in the audience, a very attentive listener, Masatoshi Noumi, was there to point

out to (MR) that these polynomials are not only not new, but a special case of the multivariable
generalization of the Gaussian hypergeometric function:

F
(n)
1 (−x,−m;−N ;u) =

∑
n∏

i=1
(−xi) n∑

j=1
αij

n∏
i=1

(−mi) n∑
j=1

αji

(−N)∑
i,j

αij

∏
u

αij

ij∏
αij !

, (1.5)

where the αij ’s are nonnegative integers taking values from 0 to n, such that
∑
i,j

αij ≤ N ,

N being assumed as a nonnegative integer. Here we are following the notation in [17]. In
the original definition of Aomoto and Gelfand [2, 6], N need not be an integer, nor the x’s
and m’s. Furthermore, the space on which their functions are introduced was a bit more general,
a generalization we do not need for our purposes. To be sure, these authors’ primary interest
was not to look at (1.5) as a multidimensional extension of the Krawtchouk polynomials:

Pn(x) = 2F1

(
− x,−n;−N ; η−1

)
, (1.6)

rather some structures that they contain. H. Mizukawa [17] proved that the functions in (1.5)
are the zonal spherical functions on a very special class of Gelfand pairs made up of the reflection
groups G(r, 1, n) and the symmetric group Sn. For a very nice account of a way to obtain many
discrete orthogonal polynomials in terms of certain (n + 1,m + 1) hypergeometric functions see
also the work of Mizukawa and Tanaka [19]. As mentioned above, we learned from Professor
M. Noumi that these functions give the multivariable Krawtchouk polynomials independently
obtained in [12]. In a very recent paper by Mizukawa, see [18], he has established the ortho-
gonality of Krawtchouk polynomials in n variables by using very different techniques from the
ones in this paper. See also the additional comment at the end of our paper.
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The origin of the work in [3, 9, 10, 11, 12] is the analysis of a very concrete probabilistic
model, namely “poker dice”. Its corresponding eigenfunctions are seen in [12] to be given in
terms of a family of polynomials that, as indicated above, are now identified with the Gelfand–
Aomoto polynomials. It is likely that this may be the first probabilistic application of the
Gelfand–Aomoto polynomials. They may also be applicable to other models in the physical
sciences.

One should point out that the hypergeometric functions involve both parameters as well as
variables. Depending on the issue at hand one can consider these functions as depending on
one or the other set of “variables”. This is already the case in the classical one variable case as
indicated by the expression (1.6) above. The fact that these Krawtchouk polynomials (or the
higher level Hahn polynomials) could be so useful in analyzing naturally appearing models in
statistical mechanics was not anticipated in the classical book by W. Feller [5], where one can
read about the Ehrenfest as well as the Bernoulli–Laplace models. For several applications of
the Krawtchouk polynomials to several parts of mathematics see [16]. For a very good general
guide to the field see [1].

Our objective in this paper is less ambitious in one sense and more in another – namely, that
we still restrict ourselves to the n = 2 case, but not necessarily on the reflection group, but
to the general situations where the parameters uij ’s will be determined by the requirement of
orthogonality. Hoare and Rahman [12] have done that problem, but we will approach it from
a different angle. We will refrain from parametrizing the uij right at the outset, instead looking
for conditions they must satisfy among them in order that the 2-variable polynomials:

F
(2)
1 (−m1,−m2;−x1,−x2;−N ;u1, v1, u2, v2)

:=
∑ (−m1)i+j(−m2)k+l(−x1)i+k(−x2)j+l

i!j!k!l!(−N)i+j+k+l
ui

1v
j
1u

k
2v

l
2 ≡ Pm1,m2(x1, x2) (1.7)

become orthogonal with respect to the trinomial:

b2(x1, x2;N ; η1, η2) =
(

N

x1, x2

)
ηx1
1 ηx2

2 (1− η1 − η2)N−x1−x2 .

It may be worth mentioning that a prior knowledge of this weight function is not essential
since one could easily derive it by using the binomial generating function of the polynomials
Pm,n(x, y).

We now state the main results in the paper, namely (1.8) and (1.9) below.
In Sections 2, 3 and 4 we will show that the necessary and sufficient conditions of orthogo-

nality are:

(a) η1u1 + η2v1 = 1,

(b) η1u2 + η2v2 = 1, (1.8)
(c) η1u1u2 + η2v1v2 = 1,

with the η’s assumed to be given such that 0 < η1, η2 < 1 and η1 + η2 < 1. One can easily verify
that these three conditions are all satisfied by (1.3) and (1.4).

However, one of the main reasons for going back to this problem is to find a 5-term recurrence
relation for (1.7), which interestingly, is more easily found by using the p’s as in (1.3) and (1.4)
than using (1.8) instead. In Section 5 we’ll show that, if we denote (1.7) by Pm1,m2(x1, x2) then

(N −m1 −m2)
{

p1p3(p2 + p4)(p1 + p2 + p3 + p4)
(p1 + p3)(p1p4 − p2p3)

(Pm1+1,m2(x1, x2)− Pm1,m2(x1, x2))

− p2p4(p1 + p3)(p1 + p2 + p3 + p4)
(p2 + p4)(p1p4 − p2p3)

(Pm1,m2+1(x1, x2)− Pm1,m2(x1, x2))
}
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+ m1
p1p4 − p2p3

p1 + p3
(Pm1−1,m2(x1, x2)− Pm1,m2(x1, x2))

−m2
p1p4 − p2p3

p2 + p4
(Pm1,m2−1(x1, x2)− Pm1,m2(x, y))

= ((p1 + p2)x1 − (p3 + p4)x2)Pm1,m2(x1, x2). (1.9)

This recursion relation is valid when the variables x1, x2 are nonnegative integers taking
values whose sum is at most N .

If we insist on a difference operator in the variables m1, m2 with an eigenvalue that is linear
in x1, x2 and involves only the four nearest neighbours of m1, m2 this is essentially the only
choice. This was the result of extensive symbolic computations carried out beginning at the
time that [8] was written. This statement was proved in general in [14] a paper that kindly
acknowledges this work carried out initially in a special case. If one allows the eight nearest
neighbours we get another linearly independent difference operator, a fact also found by symbolic
computation by us and independently proved in [14].

There is by now a rather large literature dealing with orthogonal polynomials in several
variables. A reference that is still useful is [13, Vol. 2]. A comprehensive treatment is found
in [4]. For some of the issues that we are interested in the reader can see [15, 7] and the references
in these papers.

It may be useful to point out that when the conditions (1.8) are not met the polynomials Pm,n

still satisfy difference equations in the indices (m,n), of the type given in [15, 7]. When the
conditions (1.8) are met these recursions become much simpler in that they involve a smaller
number of neighbouring indices. Having a recursion relation involving the smallest number of
neighbours of the index (m,n) might be important in certain numerical implementations of these
recursions as well as in potential signal processing applications of these polynomials. In those
situations, having a minimal number of sampling points could be a useful feature.

In dealing with the same polynomials Iliev and Terwilliger, see the very recent nice paper [14],
have found two 7-term recurrence relations. In fact a referee has kindly pointed out that our
5-term relation (1.9) can be derived by using a combination of these.

It is clear that both in [14] and [18] the replacement of the variables ui,j by the consideration
of a matrix with entries 1−ui,j , properly augmented, played a very important role. This matrix
is considered in [14] and an interpretation is given in terms of Lie algebras. In [18] the author
proves that the orthogonality of the columns of this matrix with respect to a weight built out
of the ηi is the appropriate extension of (1.8).

The F
(2)
1 notation used in the 2-variable case (1.7) and more generally in the n-variable

case (1.5) is a reflection of the fact that these are generalizations of the standard Appell–Kampé
de Fériet function

F1(a; b, b′; c;x, y) =
∑

i

∑
j

(a)i+j(b)i(b′)j

i!j!(c)i+j
xiyj .

A very useful integral representation of this F1 function is the double integral

Γ(c)
Γ(b)Γ(b′)Γ(c− b− b′)

∫ 1

0

∫ 1

0
ξb−1
1 ξb′−1

2 (1−ξ1−ξ2)c−b−b′−1(1−ξ1x−ξ2y)−adξ1dξ2,

provided

0 < Re(b, b′, c− b− b′).

This extends to F
(2)
1 as well, which can be easily verified:

F
(2)
1 (a1, a2; b1, b2; c;u1, v1, u2, v2) =

Γ(c)
Γ(a1)Γ(a2)Γ(c− a1 − a2)
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×
∫ 1

0

∫ 1

0
ξa1−1
1 ξa2−1

2 (1− ξ1 − ξ2)c−a1−a2−1(1− u1ξ1 − u2ξ2)−b1

× (1− v1ξ1 − v2ξ2)−b2dξ1dξ2, (1.10)

which we shall find very useful in our calculations, even though the parameters in the case
of (1.7) do not satisfy the convergence conditions of the integral in (1.10). We will take the
point of view that whatever identities we find by using (1.10) with 0 < Re(a1, a2, c − a1 − a2),
are also valid where a1, a2, c are, in fact, negative integers.

For the direct hypergeometric proof that we are planning to give in the following pages it
will be necessary to make use of the transformation formulas:

F
(2)
1 (a1, a2; b1, b2; c;u1, v1, u2, v2) (1.11)

= (1− v1)−a1(1− v2)−a2F
(2)
1

(
a1, a2; b1, c−b1−b2; c;

u1−v1

1−v1
,
−v1

1−v1
,
u2−v2

1−v2
,
−v2

1−v2

)
= (1− u1)−a1(1− u2)−a2F

(2)
1

(
a1, a2; c−b1−b2, b2; c;

−u1

1−u1
,
v1−u1

1−u1
,
−u2

1−u2
,
v2−u2

1−u2

)
,

which were proved in Hoare and Rahman [12]. But there is a third transformation that we shall
find occasions to use, that is valid when (m1,m2) and (x1, x2) are pairs of nonnegative integers,
as is N , satisfying the triangle inequality: 0 ≤ m1 + m2 ≤ N , 0 ≤ x1 + x2 ≤ N , and that is

F
(2)
1 (−m1,−m2;−x1,−x2;−N ;u1, v1, u2, v2) =

(x1 + x2 −N)m1+m2

(−N)m1+m2

(1.12)

× F
(2)
1 (−m1,−m2;−x1,−x2;N + 1− x1 − x2 −m1 −m2; 1− u1, 1− v1, 1− u2, 1− v2),

which is just a generalization of the transformation:

2F1(−m,−x;−N ;u) =
(x−N)m

(−N)m
2F1(−m,−x;N + 1− x−m; 1− u)

=
(m−N)x

(−N)x
2F1(−m,−x;N + 1− x−m; 1− u). (1.13)

In fact (1.12) and (1.13) easily extend to the multidimensional case F
(n)
1 , provided one is dealing

with terminating series. It may be remarked here that for (1.12) and (1.13) to be true, indeed
in the general case of F

(n)
1 , the parameter N need not even be an integer.

2 A general expression for orthogonality sum and proof of (1.8)

Let us denote

In1,n2
m1,m2

=
∑ ∑

x1,x2

0≤x1+x2≤N

b2(x1, x2;N ; η1, η2)Pm1,m2(x1, x2)Pn1,n2(x1, x2).

At (m1,m2) = (0, 0), and (n1, n2) 6= (0, 0), this simply represents a generating function for these
polynomials, namely:

In1,n2
0,0 = (1− η1u1 − η2v1)n1(1− η1u2 − η2v2)n2 .

So, at the three points (0, 0), (1, 0) and (0, 1) the pairwise orthogonality between the first and
the last two simply amounts to the conditions (a) and (b) given in (1.8). To obtain the condition
at the points (1, 0) and (0, 1) we need some more computations.
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For ease of computation we will imagine, for the time being, that −m1, −m2, −N are complex
numbers a1, a2, c such that 0 ≤ Re(a1, a2, c− a1 − a2). Then using (1.10) we get

In1,n2
m1,m2

=
Γ(c)

Γ(a1)Γ(a2)Γ(c− a1 − a2)

∫ 1

0

∫ 1

0
dξ1dξ2ξ

a1−1
1 ξa2−1

2 (1− ξ1 − ξ2)c−a1−a2−1

×
∑
x1

∑
x2

b2(x1, x2;N ; η1, η2)Pn1,n2(x1, x2)(1− ξ1u1 − ξ2u2)x1(1− ξ1v1 − ξ2v2)x2 .

Clearly∑ ∑
x1,x2

b2(x1, x2;N ; η1, η2)(−x1)i+k(−x2)j+l(1− ξ1u1 − ξ2u2)x1(1− ξ1v1 − ξ2v2)x2

= (−N)i+j+k+lη
i+k
1 ηj+l

2 (1− ξ1u1 − ξ2u2)i+k(1− ξ1v1 − ξ2v2)j+l

× {1− ξ1(η1u1 + η2v1)− ξ2(η1u2 + η2v2)}N−i−j−k−l

= (−N)i+j+k+l(η1(1− ξ1u1 − ξ2u2))i+k(η2(1− ξ1v1 − ξ2v2))j+l, (2.1)

by virtue of (1.8)(a) and (1.8)(b). For general (m1,m2) and (n1, n2), we use (2.1) and recast
back to the original parameters, getting

In1,n2
m1,m2

=
∑ (−n1)i+j(−n2)k+l

i!j!k!l!
(η1u1)i(η2v1)j(η1u2)k(η2v2)l (2.2)

× (−i−j−k−l)m1+m2

(−N)m1+m2

F
(2)
1 (−m1,−m2;−i−k,−j−l;−i−j−k−l;u1, v1, u2, v2).

Let us take (m1,m2) = (0, 1) and (n1, n2) = (1, 0), so that

I1,0
0,1 =

∑
i,j

(−1)i+j

i!j!
(η1u1)i(η2v1)j (−i− j)

(−N)
F1(−1;−i,−j;−i− j;u2, v2)

=
(1− v2)

N

∑
i,j

(−1)i+j

i!j!
(η1u1)i(η2v1)j(i + j)2F1

[
−1,−i
−i− j

;
u2 − v2

1− v2

]

=
1− v2

N

∑
i,j

(−1)i+j(η1u1)i(η2v1)j

i!j!
j2F1

[
−1,−i

j
;
1− u2

1− v2

]

=
1− v2

N

∑
i,j

(−1)i+j

i!j!
(η1u1)i(η2v1)j

(
j + i

1− u2

1− v2

)

=
1− v2

N

(
η2v1 + η1u1

1− u2

1− v2

)
= (η1u1(1− u2) + η2v1(1− v2))/N

which must vanish, so (1.8)(c) must be satisfied in addition to (1.8)(a) and (1.8)(b).
It is worth noting that by solving the first two conditions of (1.8) one can show that the

third condition amounts to

U1V2 = U2V1, (2.3)

where

Ui = 1− u−1
i , Vi = 1− v−1

i , i = 1, 2.

Condition (2.3) has a simple geometrical interpretation as a cone embedded in four dimen-
sional space. In a subsequent paper we will look at a geometrical interpretation for the corre-
sponding orthogonality conditions in the case of more than two variables.
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We would also like to point out that if η1 and η2 are parameters of b2(m1,m2;N ; η1, η2) for
the dual orthogonality of the P ’s, then they must satisfy

(a) η1u1 + η2u2 = 1,

(b) η1v1 + η2v2 = 1, (2.4)
(c) η1u1v1 + η2u2v2 = 1.

3 Reduction of In1,n2
m1,m2

By the first transformation in (1.11) F
(2)
1 inside the sum in (2.2) becomes a multiple of F1,

which, transformed by (1.12) gives

In1,n2
m1,m2

= (1− v1)m1(1− v2)m2
∑
i,j,k,l

(−n1)i+j(−n2)k+l

i!j!k!l!
(η1u1)i(η2v1)j(η1u2)k(η2v2)l

× (−j − l)m1+m2

(−N)m1+m+2
F1

(
−i− k;−m1,−m2; j + l + 1−m1 −m2;

1− u1

1− v1
,
1− u2

1− v2

)
.

Set i + k = r, j + l = s, i = r − k, j = s− l, to get

In1,n2
m1,m2

= (1− v1)m1(1− v2)m2
∑
r,s

(−n1)r+s

r!s!
(η1u1)r(η2v1)s

× F1

(
−n2;−r,−s;n1 + 1− r − s;

u2

u1
,
v2

v1

)
× (−s)m1+m2

(−N)m1+m2

F1

(
−r;−m1,−m2; s + 1−m1 −m2;

1− u1

1− v1
,
1− u2

1− v2

)
. (3.1)

Since

F1

(
−n2;−r,−s;n1 + 1− r − s;

u2

u1
,
v2

v1

)
=

(−n1 − n2)r+s

(−n1)r+s
F1

(
−n2;−r,−s;−n1 − n2; 1−

u2

u1
, 1− v2

v1

)
by (1.12), (3.1) reduces to

In1,n2
m1,m2

=
(1− v1)m1(1− v2)m2

(−N)m1+m2

∑
r,s

(−n1 − n2)r+s

r!s!
(η1u1)r(η2v1)s

× F1

(
−n2;−r,−s;−n1 − n2; 1−

u2

u1
, 1− v2

v1

)
× (−s)m1+m2F1

(
−r;−m1,−m2; s + 1−m1 −m2;

1− u1

1− v1
,
1− u2

1− v2

)
. (3.2)

To carry out the summations over r and s we employ the integral formula

F1(a; b, b′; c;x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ξa−1(1− ξ)c−a−1(1− ξx)−b(1− ξy)−b′dξ,

see [13, Vol. 1]. In our case b = −r, b′ = −s, x = 1 − u2
u1

, y = 1 − v2
u1

, so in (3.2) we need to
compute∑

r,s

(−n1 − n2)r+s

r!s!

(
η1u1

(
1− ξ

(
1− u2

u1

)))r (
η2v1

(
1− ξ

(
1− v2

v1

)))s

(−r)i+j
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× (−s)m1+m2−i−j = (−1)m1+m2(−n1 − n2)m1+m2

×
(

η1u1

(
1− ξ

(
1− u2

u1

)))i+j (
η2v1

(
1− ξ

(
1− v2

v1

)))m1+m2−i−j

× {1− (1− ξ)(η1u1 + η2v1)− ξ(η1u1u2 + η2v1v2)}n1+n2−m1−m2 , (3.3)

with the implicit assumption that n1 + n2 ≥ m1 + m2. However, by (1.8)(a) and (1.8)(c) the
expression in { } vanishes unless n1 + n2 = m1 + m2. Therefore, (3.3) becomes

(m1 + m2)!(η2v1)m1+m2

(
η1u1

η2v1

)i+j (
1− ξ

(
1− u2

u1

))i+j (
1− ξ

(
1− v2

v1

))m1+m2−i−j

× δm1+m2,n1+n2 ,

and consequently,

In1,n2
m1,m2

= δm1+m2,n1+n2(1− v1)m1(1− v2)m2(η2v1)m1+m2
(m1 + m2)!
(−N)m1+m2

×
∑
i,j

(−m1)i(−m2)j

i!j!

(
−η1u1

η2v1

)i+j (
1− u1

1− v1

)i (1− u2

1− v2

)j

× F1

(
−n2;−i− j, i + j −m1 −m2;−m1 −m2; 1−

u2

u1
, 1− v2

v1

)
= δm1+m2,n1+n2(1− v1)m1(1− v2)m2(η2v1)m1+m2

(
u2

u1

)n2 (m1 + m2)!
(−N)m1+m2

×
∑
i,j

(−m1)i(−m2)j

i!j!

(
−η1u1

η2v1

)i+j (
1− u1

1− v1

)i ( 1− v2

1− u2

)j

× 2F1

(
−n2; i + j −m1 −m2;−m1 −m2; 1−

u1v2

u2v1

)
, (3.4)

by a special case of the last identity (1.11).

4 Final summations in (3.4)

At the last stage we will set i + j = k, j = k − i, so that the i-sum becomes

2F1

(
−m1,−k;m2 + 1− k;

(1− u1)(1− v2)
(1− u2)(1− v1)

)
=

(−m1 −m2)k

(−m2)k
2F1

(
−m1,−k;−m1 −m2; 1−

(1− u1)(1− v2)
(1− u2)(1− v1)

)
=

(−m1 −m2)k

(−m2)k
2F1

(
−m1,−k;−m1 −m2; 1−

u1v2

u2v1

)
,

by (2.3) and (1.13). Thus

In1,n2
m1,m2

= δm1+m2,n1+n2(1− v1)m1(1− v2)m2(η2v2)m1+m2
(m1 + m2)!
(−N)m1+m2

(
u2

u1

)n2

×
m1+m2∑

k=0

(−m1 −m2)k

k!

m1∑
i=0

(−m1)i(−k)i

i!(−m1 −m2)i

n2∑
j=0

(−n2, k −m1 −m2)j

j!(−m1 −m2)j

(
1− u1v2

u2v1

)i+j

,
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since −η1u1

η2v1

(1−u2)
(1−v2) = 1, because η1u1(1− u2) + η2v1(1− v2) = 0. But, now

∑
k=0

(−m1 −m2)k

k!
(−k)i(k −m1 −m2)j

= (−1)i(−m1 −m2)i+j

m1+m2−i−j∑
k=0

(i + j −m1 −m2)k

k!

= (−1)i(−m1 −m2)m1+m2δm1+m2,i+j

= (m1 + m2)m1+m2(−1)m1+m2−iδm1+m2,i+j .

So

In1,n2
m1,m2

= δm1+m2,n1+n2(1− v1)m1(1− u2)m2

(
η2v1

(
1− u1v2

u2v1

))m1+m2
(

u2

u1

)n2

× ((m1 + m2)!)2

(−N)m1+m2

m1∑
i=0

(−m1)i(−1)m1+m2−i

i!(−m1 −m2)i

(−n2)m1+m2−i

(−m1 −m2)m1+m2−i(m1 + m2 − i)!
.

The summand is 0 unless n2 ≥ m2 + m1 − i ⇒ n2 ≥ m2, since m1 ≥ i. So we set i =
m1 + m2 − n2 + l, l ≥ 0, and get, for the i-sum above

(−n2)n2(−m1)m1+m2−n2

(−m1 −m2)m1+m2(m1 + m2)!

n2−m2∑
l=0

(m2 − n2)l

l!

=
(−m2)m2(−m1)m1

(−m1 −m2)m1+m2(m1 + m2)!
δm2,n2 =

m1!m2!
(m1 + m2)!2

δm2,n2 ⇒ m1 = n1

since m1 + m2 = n1 + n2. Thus,

In1,n2
m1,m2

= δm1,m2δn1,n2(1− v1)m1(1− v2)m2

(
u2

u1

)m2
(
−η2v1

(
1− u1v2

u2v1

))m1+m2

× 1
/(

N

m1,m2

)
.

To determine the coefficient in terms of η1 and η2, note that

1− u1v2

u2v1
= 1− (1− u1)(1− v2)

(1− u2)(1− v1)
=

u1 − v1 + v2 − u2 − (u1v2 − u2v1)
(1− u2)(1− v1)

= − D(1− η1 − η2)
(1− u2)(1− v1)

,

from solving (2.4), with D ≡ u1v2 − u2v1.
Now, from (2.4)(a) and (2.4)(b) we get

η1 = (v2 − u2)D−1, η2 = (u1 − v1)D−1,

while (1.8)(a)–(1.8)(c) give

η1 =
∣∣∣∣1 v1

1 v1v2

∣∣∣∣/ ∣∣∣∣ u1 v1

u1u2 v1v2

∣∣∣∣ =
(v2 − 1)

u1(v2 − u2)
= − 1− v1

u2(v1 − u1)
,

η2 =
1− u2

v1(v2 − u2)
=

1− u1

v2(v1 − u1)
.
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Hence

− Dη2v1(1− v1)
(1− u2)(1− v1)

= − D

v2 − u2
= − 1

η1

,

from (2.4).
Now,

η2v1(1− v2) = −η1u1(1− u2), η2v1(1− v2)
u2

u1
= −η1u2(1− u2),

so

− Dη2v1(1− v2)
(1− u2)(1− v1)

u2

u1
=

Dη1u2

(1− u1)
= − D

v1 − u1
= − 1

η2

.

Thus the normalization factor is(
b2(m1,m2;N ; η1, η2)(1− η1 − η2)

−N
)−1

.

5 Proof of the recurrence relation (1.9)

By the transformation formula (1.11),

Pm1,m2(x1, x2) = (1− u1)x1(1− v1)x2
∑ (m1 + m2 −N)i+j(−m2)k+l(−x1)i+k(−x2)j+l

i!j!k!l!(−N)i+j+k+l

×
(
−u1

1− u1

)i ( −v1

1− v1

)j (
u2 − u1

1− u1

)k (
v2 − v1

1− v1

)l

.

So, a straightforward calculation gives

(N −m1 −m2)(Pm1+1,m2(x1, x2)− Pm1,m2(x1, x2)) = −(1− u1)x1(1− v1)x2

×
(

u′1
∂

∂u′1
+ v′1

∂

∂v′1

)
((1− u1)−x1(1− v1)−x2Pm1,m2(x1, x2)),

where u′i = ui/(ui − 1), v′i = vi/(vi − 1), i = 1, 2.
Clearly u′i

∂
∂u′i

= ui(1 − ui) ∂
∂ui

, etc. Hence, with a similar expression for Pm1,m2+1 − Pm1,m2 ,
we can write

(N −m1 −m2){A(Pm1+1,m2 − Pm1,m2)−B(Pm1,m2+1 − Pm1,m2)}

= B(1− u2)x1(1− v2)x2

{
u2(1− u2)

∂

∂u2
+ v2(1− v2)

∂

∂v2

}
× ((1− u2)−x1(1− v2)−x2Pm1,m2)−A(1− u1)x1(1− v1)x2

×
{

u1(1− u1)
∂

∂u1
+ v1(1− v1)

∂

∂v1

}
((1− u1)−x1(1− v1)−x2Pm1,m2) (5.1)

for some suitably chosen constants A and B.
A more convenient form of the right-hand side of (5.1) is

{x1(Bu2 −Au1) + x2(Bv2 −Av1)}Pm1,m2 +
{

B

((
u2 (1− u2)

∂

∂u2
+ v2 (1− v2)

∂

∂v2

))
−A

((
u1 (1− u1)

∂

∂u1
+ v1 (1− v1)

∂

∂v1

))}
Pm1,m2 .
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By using the values of A and B indicated in (1.9), and those of u’s and v’s in (1.3) we find that

Bu2 −Au1 = p1 + p2, Bv2 −Av1 = −(p3 + p4).

Similarly,

Cm1(Pm1−1,m2 − Pm1,m2)−Dm2(Pm1,m2−1 − Pm1,m2)

=
{

D

(
u2

∂

∂u2
+ v2

∂

∂v2

)
− C

(
u1

∂

∂u1
+ v1

∂

∂v1

)}
Pm1,m2 .

What we really need to prove is that{
−(A(1− u1) + C)u1

∂

∂u1
− (A(1− v1) + C)v1

∂

∂v1

+ (B(1− u2) + D)u2
∂

∂u2
+ (B(1− v2) + D)v2

∂

∂v2

}
Pm1,m2(x1, x2) = 0.

Straightforward algebra gives

A(1− u1) + C = p4, A(1− u2) + C = −p2,

B(1− u2) + D = −p3, B(1− v2) + D = p1,

so it amounts to showing that(
−p4u1

∂

∂u1
+ p2v1

∂

∂v1
− p3u2

∂

∂u2
+ p1v2

∂

∂v2

)
Pm1,m2 = 0. (5.2)

Since the u’s and v’s are expressed in terms of the 4 p’s, what we need now is to express the
derivatives in (5.2) in terms of those of the p’s. Noting that

(Fu1 , Fv1 , Fu2 , Fv2)
′ = J−1(Fp1 , Fp2 , Fp3 , Fp4)

′,

for any differentiable function F , with the Jacobian J given by the 4× 4 matrix

J = (u1,j , v1,j , u2,j , v2,j), (ui,j) =
(

∂ui

∂p1
,
∂ui

∂p2
,
∂ui

∂p3
,
∂ui

∂p4

)′
, etc., i = 1, 2,

we are reduced to the task of proving that

−p4u1a11 + p2v1a21 − p3u2a31 + p1v2a41 = 0, (5.3)

and 3 more similar relations, where the |J |−1a′ij are elements of the inverse matrix J−1, which,
of course, exists. By a set of long and messy computations we obtain

a11 = −p1v2∆2/p4p
2
2p

2
3S

3, a21 = −u2∆2/p1p2p
2
4S

3,

a31 = −v1∆2/p1p3p
2
4S

3, a41 = −u1∆2/p2
2p

2
3S

3, (5.4)

with S = p1 + p2 + p3 + p4, ∆ = p1p4− p2p3. Substitution of (5.4) proves (5.3). The three other
relations are similarly proved. This completes the proof of (1.9).

An additional comment. After this paper was completed we became aware of a recent
arXiv posting [14], where the authors point out some important work of H. Mizukawa and
H. Tanaka [19]. In a future publication we return to the probabilistic origin of the work of
M. Hoare and M. Rahman and we discuss the relation between the approach in [19], based on
the notion of character algebras, and our own.
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