On the Complex Symmetric and Skew-Symmetric Operators with a Simple Spectrum

Sergey M. ZAGORODNYUK

School of Mathematics and Mechanics, Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61077, Ukraine E-mail: Sergey.M.Zagorodnyuk@univer.kharkov.ua

Received December 14, 2010, in final form February 11, 2011; Published online February 16, 2011 doi:10.3842/SIGMA.2011.016

Abstract. In this paper we obtain necessary and sufficient conditions for a linear bounded operator in a Hilbert space H to have a three-diagonal complex symmetric matrix with non-zero elements on the first sub-diagonal in an orthonormal basis in H. It is shown that a set of all such operators is a proper subset of a set of all complex symmetric operators with a simple spectrum. Similar necessary and sufficient conditions are obtained for a linear bounded operator in H to have a three-diagonal complex skew-symmetric matrix with non-zero elements on the first sub-diagonal in an orthonormal basis in H.

Key words: complex symmetric operator; complex skew-symmetric operator; cyclic operator; simple spectrum

2010 Mathematics Subject Classification: 44A60

1 Introduction

In last years an increasing interest is devoted to the subject of operators related to bilinear forms in a Hilbert space (see [1, 2, 3] and references therein), i.e. to the following forms:

$$[x,y]_J := (x,Jy)_H, \qquad x,y \in H,$$

where J is a conjugation and $(\cdot, \cdot)_H$ is the inner product in a Hilbert space H. The conjugation J is an *antilinear* operator in H such that $J^2x = x, x \in H$, and

$$(Jx, Jy)_H = (y, x)_H, \qquad x, y \in H.$$

Recall that a linear operator A in H is said to be J-symmetric (J-skew-symmetric) if

$$[Ax, y]_J = [x, Ay]_J, \qquad x, y \in D(A), \tag{1}$$

or, respectively,

$$[Ax, y]_J = -[x, Ay]_J, \qquad x, y \in D(A).$$

$$\tag{2}$$

If a linear bounded operator A in a Hilbert space H is J-symmetric (J-skew-symmetric) for a conjugation J in H, then A is said to be complex symmetric (respectively complex skewsymmetric). The matrices of complex symmetric (skew-symmetric) operators in certain bases of H are complex symmetric (respectively skew-symmetric) semi-infinite matrices. Observe that for a bounded linear operator A conditions (1) and (2) are equivalent to conditions

$$JAJ = A^*, (3)$$

and

$$JAJ = -A^*,$$

respectively.

Recall that a bounded linear operator A in a Hilbert space H is said to have a simple spectrum if there exists a vector $x_0 \in H$ (cyclic vector) such that

$$\operatorname{Lin}\{A^k x_0, \ k \in \mathbb{Z}_+\} = H$$

Observe that these operators are also called *cyclic operators*.

It is well known that a bounded self-adjoint operator with a simple spectrum has a bounded semi-infinite real symmetric three-diagonal (Jacobi) matrix in a certain orthonormal basis (e.g. [4, Theorem 4.2.3]).

The aim of our present investigation is to describe a class $C_+ = C_+(H)$ $(C_- = C_-(H))$ of linear bounded operators in a Hilbert space H, which have three-diagonal complex symmetric (respectively skew-symmetric) matrices with non-zero elements on the first sub-diagonal in some orthonormal bases of H. We obtain necessary and sufficient conditions for a linear bounded operator in a Hilbert space H to belong to the class C_+ (C_-) . The class C_+ (C_-) is a subset of the class of all complex symmetric (respectively skew-symmetric) operators in H with a simple spectrum. Moreover, it is shown that $C_+(H)$ is a proper subset.

Notations. As usual, we denote by \mathbb{R} , \mathbb{C} , \mathbb{N} , \mathbb{Z} , \mathbb{Z}_+ the sets of real numbers, complex numbers, positive integers, integers and non-negative integers, respectively; Im $z = \frac{1}{2i}(z - \overline{z})$, $z \in \mathbb{C}$. Everywhere in this paper, all Hilbert spaces are assumed to be separable. By $(\cdot, \cdot)_H$ and $\|\cdot\|_H$ we denote the scalar product and the norm in a Hilbert space H, respectively. The indices may be omitted in obvious cases. For a set M in H, by \overline{M} we mean the closure of M in the norm $\|\cdot\|_H$. For $\{x_n\}_{n\in\mathbb{Z}_+}, x_n \in H$, we write $\operatorname{Lin}\{x_n\}_{n\in\mathbb{Z}_+}$ for the set of linear combinations of elements $\{x_n\}_{n\in\mathbb{Z}_+}$. The identity operator in H is denoted by E_H . For an arbitrary linear operator A in H, the operators A^* , \overline{A} , A^{-1} mean its adjoint operator, its closure and its inverse (if they exist). By D(A) and R(A) we mean the domain and the range of the operator A. The norm of a bounded operator A is denoted by $\|A\|$. By $P_{H_1}^H = P_{H_1}$ we mean the operator of orthogonal projection in H on a subspace H_1 in H.

2 The classes $C_{\pm}(H)$

Let $\mathcal{M} = (m_{k,l})_{k,l=0}^{\infty}$, $m_{k,l} \in \mathbb{C}$, be a semi-infinite complex matrix. We shall say that \mathcal{M} belongs to the class \mathfrak{M}_3^+ , if and only if the following conditions hold:

$$m_{k,l} = 0, \qquad k, l \in \mathbb{Z}_+, \qquad |k-l| > 1,$$
(4)

$$m_{k,l} = m_{l,k}, \qquad k, l \in \mathbb{Z}_+, \tag{5}$$

$$m_{k,k+1} \neq 0, \qquad k \in \mathbb{Z}_+. \tag{6}$$

We shall say that \mathcal{M} belongs to the class \mathfrak{M}_3^- , if and only if the conditions (4), (6) hold and

$$m_{k,l} = -m_{l,k}, \qquad k, l \in \mathbb{Z}_+.$$

Let A be a linear bounded operator in an infinite-dimensional Hilbert space H. We say that A belongs to the class $C_+ = C_+(H)$ $(C_- = C_-(H))$ if and only if there exists an orthonormal basis $\{e_k\}_{k=0}^{\infty}$ in H such that the matrix

$$\mathcal{M} = ((Ae_l, e_k))_{k,l=0}^{\infty},\tag{7}$$

belongs to \mathfrak{M}_3^+ (respectively to \mathfrak{M}_3^-).

Let y_0, y_1, \ldots, y_n be arbitrary vectors in $H, n \in \mathbb{Z}_+$. Set

$$\Gamma(y_0, y_1, \dots, y_n) := \det((y_k, y_l)_H)_{k,l=0}^n.$$

Thus, $\Gamma(y_0, y_1, \ldots, y_n)$ is the Gram determinant of vectors y_0, y_1, \ldots, y_n . The following theorem provides a description of the class $C_1(H)$

The following theorem provides a description of the class $C_+(H)$.

Theorem 1. Let A be a linear bounded operator in an infinite-dimensional Hilbert space H. The operator A belongs to the class $C_+(H)$ if and only if the following conditions hold:

- (i) A is a complex symmetric operator with a simple spectrum;
- (ii) there exists a cyclic vector x_0 of A such that the following relations hold:

$$\Gamma(x_0, x_1, \dots, x_n, x_n^*) = 0, \qquad \forall n \in \mathbb{N},$$
(8)

where

$$x_k = A^k x_0, \qquad x_k^* = (A^*)^k x_0, \qquad k \in \mathbb{N};$$

and $Jx_0 = x_0$, for a conjugation J in H such that $JAJ = A^*$.

Proof. Necessity. Let H be an infinite-dimensional Hilbert space and $A \in C_+(H)$. Let $\{e_k\}_{k=0}^{\infty}$ be an orthonormal basis in H such that the matrix $\mathcal{M} = (m_{k,l})_{k,l=0}^{\infty}$ belongs to \mathfrak{M}_3^+ , where $m_{k,l} = ((Ae_l, e_k))_{k,l=0}^{\infty}$. Observe that

$$Ae_0 = m_{0,0}e_0 + m_{1,0}e_1,$$

$$Ae_k = m_{k-1,k}e_{k-1} + m_{k,k}e_k + m_{k+1,k}e_{k+1}, \qquad k \in \mathbb{N}.$$
(9)

Suppose that

$$e_r \in \operatorname{Lin}\{A^j e_0, \ 0 \le j \le r\}, \qquad 0 \le r \le n$$

for some $n \in \mathbb{N}$ (for n = 0 it is trivial). By (9) we may write

$$e_{n+1} = \frac{1}{m_{n+1,n}} \left(Ae_n - m_{n-1,n}e_{n-1} - m_{n,n}e_n \right) \in \operatorname{Lin}\{A^j e_0, \ 0 \le j \le n+1\}.$$

Here $m_{-1,0} := 0$ and $e_{-1} := 0$. By induction we conclude that

$$e_r \in \operatorname{Lin}\{A^j e_0, \ 0 \le j \le r\}, \qquad r \in \mathbb{Z}_+.$$

$$\tag{10}$$

Therefore $\overline{\text{Lin}\{A^j e_0, j \in \mathbb{Z}_+\}} = H$, i.e. the operator A has a simple spectrum and e_0 is a cyclic vector of A.

Consider the following conjugation:

$$J\sum_{k=0}^{\infty} x_k e_k = \sum_{k=0}^{\infty} \overline{x_k} e_k, \qquad x = \sum_{k=0}^{\infty} x_k e_k \in H.$$

Observe that

$$[Ae_k, e_l]_J = (Ae_k, e_l) = m_{l,k} = m_{k,l} = (Ae_l, e_k) = [Ae_l, e_k]_J, \qquad k, l \in \mathbb{Z}_+.$$

By linearity of the J-form $[\cdot, \cdot]_J$ in the both arguments we get

$$[Ax, y]_J = [Ay, x]_J, \qquad x, y \in H.$$

Thus, the operator A is J-symmetric and relation (3) holds. Notice that $Je_0 = e_0$. It remains to check if relation (8) holds. Set

$$H_r := \operatorname{Lin}\{A^j e_0, \ 0 \le j \le r\}, \qquad r \in \mathbb{Z}_+.$$

By (10) we see that $e_0, e_1, \ldots, e_r \in H_r$, and therefore $\{e_j\}_{j=0}^r$ is an orthonormal basis in H_r $(r \in \mathbb{Z}_+)$. Since $Je_j = e_j, j \in \mathbb{Z}_+$, we have

$$JH_r \subseteq H_r, \qquad r \in \mathbb{Z}_+.$$

Then

$$(A^*)^r e_0 = (JAJ)^r e_0 = JA^r Je_0 = JA^r e_0 \in H_r, \qquad r \in \mathbb{Z}_+.$$

Therefore vectors $e_0, Ae_0, \ldots, A^r e_0, (A^*)^r e_0$, are linearly dependent and their Gram determinant is equal to zero. Thus, relation (8) holds with $x_0 = e_0$.

Sufficiency. Let A be a bounded operator in a Hilbert space H satisfying conditions (i), (ii) in the statement of the theorem. For the cyclic vector x_0 we set

$$H_r := \operatorname{Lin}\{A^j x_0, \ 0 \le j \le r\}, \qquad r \in \mathbb{Z}_+$$

Observe that

$$A^{r+1}x_0 \notin H_r, \qquad r \in \mathbb{Z}_+. \tag{11}$$

In fact, suppose that for some $k \in \mathbb{N}$, we have

 $A^{r+j}x_0 \in H_r, \qquad 1 \le j \le k.$

Then

$$A^{r+k+1}x_0 = AA^{r+k}x_0 = A\sum_{t=0}^r \alpha_{r,k;t}A^t x_0 = \sum_{t=0}^r \alpha_{r,k;t}A^{t+1}x_0 \in H_r, \qquad \alpha_{r,k;t} \in \mathbb{C}.$$

By induction we obtain

$$A^{r+j}x_0 \in H_r, \qquad j \in \mathbb{Z}_+.$$

Therefore $H = H_r$. We obtain a contradiction since H is infinite-dimensional.

Let us apply the Gram-Schmidt orthogonalization method to the sequence $x_0, Ax_0, A^2x_0, \ldots$. Namely, we set

$$g_0 = \frac{x_0}{\|x_0\|_H}, \qquad g_{r+1} = \frac{A^{r+1}x_0 - \sum_{j=0}^r (A^{r+1}x_0, g_j)_H g_j}{\left\|A^{r+1}x_0 - \sum_{j=0}^r (A^{r+1}x_0, g_j)_H g_j\right\|_H}, \qquad r \in \mathbb{Z}_+.$$

By construction we have

$$H_r = \operatorname{Lin}\{g_j, \ 0 \le j \le r\}, \qquad r \in \mathbb{Z}_+.$$

Therefore $\{g_j\}_{j=0}^r$ is an orthonormal basis in H_r $(r \in \mathbb{Z}_+)$ and $\{g_j\}_{j \in \mathbb{Z}_+}$ is an orthonormal basis in H.

From (8) and (11) we conclude that

$$JA^{n}x_{0} = JA^{n}Jx_{0} = (A^{*})^{n}x_{0} \in H_{n}, \qquad n \in \mathbb{Z}_{+}.$$

Therefore

$$JH_r \subseteq H_r, \qquad r \in \mathbb{Z}_+. \tag{12}$$

Let

$$Jg_r = \sum_{j=0}^{r} \beta_{r,j}g_j, \qquad \beta_{r,j} \in \mathbb{C}, \qquad r \in \mathbb{Z}_+.$$

Using properties of the conjugation and relation (12) we get

$$\beta_{r,j} = (Jg_r, g_j)_H = (Jg_r, JJg_j)_H = \overline{(g_r, Jg_j)_H} = 0,$$

for $0 \leq j \leq r - 1$. Therefore

$$Jg_r = \beta_{r,r}g_r, \qquad \beta_{r,r} \in \mathbb{C}, \qquad r \in \mathbb{Z}_+.$$

Since $||g_r||^2 = ||Jg_r||^2 = |\beta_{r,r}|^2 ||g_r||^2$, we have

$$\beta_{r,r} = e^{i\varphi_r}, \qquad \varphi_r \in [0, 2\pi), \qquad r \in \mathbb{Z}_+$$

 Set

$$e_r := e^{i\frac{\varphi_r}{2}}g_r, \qquad r \in \mathbb{Z}_+.$$

Then $\{e_j\}_{j=0}^r$ is an orthonormal basis in H_r $(r \in \mathbb{Z}_+)$ and $\{e_j\}_{j \in \mathbb{Z}_+}$ is an orthonormal basis in H. Observe that

$$Je_r = Je^{i\frac{\varphi_r}{2}}g_r = e^{-i\frac{\varphi_r}{2}}Jg_r = e^{i\frac{\varphi_r}{2}}g_r = e_r, \qquad r \in \mathbb{Z}_+.$$

Define the matrix $\mathcal{M} = (m_{k,l})_{k,l=0}^{\infty}$ by (7). Notice that

$$m_{k,l} = (Ae_l, e_k)_H = [Ae_l, e_k]_J = [e_l, Ae_k]_J = [Ae_k, e_l]_J = (Ae_k, e_l)_H = m_{l,k},$$

where $k, l \in \mathbb{Z}_+$, and therefore \mathcal{M} is complex symmetric.

If $l \ge k+2$ $(k, l \in \mathbb{Z}_+)$, then

$$m_{k,l} = (Ae_l, e_k)_H = [Ae_l, e_k]_J = [e_l, Ae_k]_J = (e_l, JAe_k)_H = 0,$$

since $JAe_k \in H_{k+1} \subseteq H_{l-1}$, and $e_l \in H_l \ominus H_{l-1}$. Therefore \mathcal{M} is three-diagonal.

Since $e_r \in H_r$, using the definition of H_r we get

$$Ae_r \subseteq H_{r+1}, \qquad r \in \mathbb{Z}_+.$$

Observe that

$$Ae_r \notin H_r, \qquad r \in \mathbb{Z}_+.$$

In fact, in the opposite case we get

$$Ae_j \in H_r, \qquad 0 \le j \le r,$$

and $AH_r \subseteq H_r$. Then $A^k x_0 \in H_r$, $k \in \mathbb{Z}_+$, and $H = H_r$. This is a contradiction since H is an infinite-dimensional space.

Hence, we may write

$$Ae_r = \sum_{j=0}^{r+1} \gamma_{r,j} e_j, \qquad \gamma_{r,j} \in \mathbb{C}, \qquad \gamma_{r,r+1} \neq 0.$$

Observe that

$$m_{r+1,r} = (Ae_r, e_{r+1})_H = \gamma_{r,r+1} \neq 0, \qquad r \in \mathbb{Z}_+.$$

Thus, $\mathcal{M} \in \mathfrak{M}_3^+$ and $A \in C_+(H)$.

Remark 1. Condition (ii) of the last theorem may be replaced by the following condition which does not use a conjugation J:

 $(ii)^*$ there exists a cyclic vector x_0 of A such that the following relations hold:

$$\Gamma(x_0, x_1, \dots, x_n, x_n^*) = 0, \qquad \forall n \in \mathbb{N},$$
(13)

where

$$x_k = A^k x_0, \qquad x_k^* = (A^*)^k x_0, \qquad k \in \mathbb{N},$$

and the following operator:

$$L\sum_{k=0}^{\infty} \alpha_k A^k x_0 := \sum_{k=0}^{\infty} \overline{\alpha_k} \left(A^*\right)^k x_0, \qquad \alpha_k \in \mathbb{C},$$
(14)

where all but finite number of coefficients α_k are zeros, is a bounded operator in H which extends by continuity to a conjugation in H.

Let us show that conditions $(i), (ii) \Leftrightarrow$ conditions $(i), (ii)^*$.

The necessity is obvious since the conjugation J satisfies relation (14) (with J instead of L). Sufficiency. Let conditions (i), $(ii)^*$ be satisfied. Notice that

$$LAA^{k}x_{0} = LA^{k+1}x_{0} = (A^{*})^{k+1}x_{0},$$

$$A^{*}LA^{k}x_{0} = A^{*}(A^{*})^{k}x_{0} = (A^{*})^{k+1}x_{0}, \qquad k \in \mathbb{Z}_{+}$$

By continuity we get $LA = A^*L$. Then condition (*ii*) holds with the conjugation L.

Remark 2. Notice that conditions (13) may be written in terms of the coordinates of x_0 in an arbitrary orthonormal basis $\{u_n\}_{n=0}^{\infty}$ in H:

$$x_0 = \sum_{n=0}^{\infty} x_{0,n} u_n, \qquad A^k x_0 = \sum_{n=0}^{\infty} x_{0,n} A^k u_n, \qquad (A^*)^k x_0 = \sum_{n=0}^{\infty} x_{0,n} (A^*)^k u_n.$$

By substitution these equalities in relation (8) we get some algebraic equations with respect to the coordinates $x_{0,n}$. If cyclic vectors of A are unknown, one can use numerical methods to find approximate solutions of these equations. Then there should be cyclic vectors of A among these solutions.

The following theorem gives an analogous description for the class $C_{-}(H)$.

Theorem 2. Let A be a linear bounded operator in an infinite-dimensional Hilbert space H. The operator A belongs to the class $C_{-}(H)$ if and only if the following conditions hold:

- (i) A is a complex skew-symmetric operator with a simple spectrum;
- (ii) there exists a cyclic vector x_0 of A such that the following relations hold:

$$\Gamma(x_0, x_1, \dots, x_n, x_n^*) = 0, \qquad \forall n \in \mathbb{N},$$
(15)

where

$$x_k = A^k x_0, \qquad x_k^* = (A^*)^k x_0, \qquad k \in \mathbb{N};$$
(16)

and $Jx_0 = x_0$, for a conjugation J in H such that $JAJ = -A^*$.

Condition (ii) of this theorem may be replaced by the following condition:

 $(ii)^*$ there exists a cyclic vector x_0 of A such that relations (15), (16) hold and the following operator:

$$L\sum_{k=0}^{\infty} \alpha_k A^k x_0 := \sum_{k=0}^{\infty} (-1)^k \overline{\alpha_k} \left(A^*\right)^k x_0, \qquad \alpha_k \in \mathbb{C},$$

where all but finite number of coefficients α_k are zeros, is a bounded operator in H which extends by continuity to a conjugation in H.

The proof of the latter facts is similar and essentially the same as for the case of $C_+(H)$.

The following example shows that condition (ii) (or $(ii)^*$) can not be removed from Theorem 1.

Example 1. Let $\sigma(\theta)$ be a non-decreasing left-continuous bounded function on $[0, 2\pi]$ with an infinite number of points of increase and such that

$$\int_0^{2\pi} \ln \sigma'(\theta) d\theta = -\infty.$$
(17)

Consider the Hilbert space $L^2([0, 2\pi], d\sigma)$ of (classes of equivalence of) complex-valued functions $f(\theta)$ on $[0, 2\pi]$ such that

$$\|f\|_{L^{2}([0,2\pi],d\sigma)}^{2} := \left(\int_{0}^{2\pi} |f(\theta)|^{2} d\sigma(\theta)\right)^{\frac{1}{2}} < \infty$$

The condition (17) provides that algebraic polynomials of $e^{i\theta}$ are dense in $L^2([0, 2\pi], d\sigma)$ [5, p. 19]. Therefore the operator

$$Uf(\theta) = e^{i\theta}f(\theta), \qquad f \in L^2([0, 2\pi], d\sigma),$$

is a cyclic unitary operator in H, with a cyclic vector $f_0(\theta) = 1$. Set

$$Jf(\theta) = \overline{f(\theta)}, \qquad f \in L^2([0, 2\pi], d\sigma).$$

Then

$$JUJf(\theta) = Je^{i\theta}\overline{f(\theta)} = e^{-i\theta}f(\theta) = U^{-1}f(\theta) = U^*f(\theta).$$

Thus, U is a complex symmetric operator with a simple spectrum and condition (i) of Theorem 1 is satisfied.

However, $U \notin C_+(H)$. In fact, suppose to the contrary that there exists an orthonormal basis $\{e_j\}_{j\in\mathbb{Z}_+}$ such that the corresponding matrix $\mathcal{M} = (m_{k,l})_{k,l=0}^{\infty}$ from (7) belongs to the class \mathfrak{M}_3^+ . Since U is unitary, we have

$$\mathcal{E} = \mathcal{M}\mathcal{M}^*,$$

with the usual rules of matrix operations, $\mathcal{E} = (\delta_{k,l})_{k,l=0}^{\infty}$. However, the direct calculation shows that the element of the matrix \mathcal{MM}^* in row 0, column 2 is equal to $m_{0,1}\overline{m_{2,1}} \neq 0$. We obtained a contradiction. Thus, $U \notin C_+(H)$. Consequently, condition (ii) in Theorem 1 is essential and can not be removed.

Proposition 1. Let H be an arbitrary infinite-dimensional Hilbert space. The class $C_+(H)$ is a proper subset of the set of all complex symmetric operators with a simple spectrum in H.

Proof. Consider an arbitrary infinite-dimensional Hilbert space H. Let V be an arbitrary unitary operator which maps $L^2([0, 2\pi], d\sigma)$ (see Example 1) onto H. Then $\hat{U} := VUV^{-1}$ is a unitary operator in H with a simple spectrum and it has a cyclic vector $\hat{x}_0 := V1$. Since $JUJ = U^*$, we get

$$JV^{-1}\widehat{U}VJ = V^{-1}\widehat{U}^*V, \qquad VJV^{-1}\widehat{U}VJV^{-1} = \widehat{U}^*.$$

Observe that $\widehat{J} := VJV^{-1}$ is a conjugation in H. Therefore \widehat{U} is a complex symmetric operator in H. Suppose that $\widehat{U} \in C_+(H)$. Let $\mathcal{F} = \{f_k\}_{k=0}^{\infty}$ be an orthonormal basis in H such that the matrix $M = (m_{k,l})_{k,l=0}^{\infty}$, $m_{k,l} = (\widehat{U}f_l, f_k)_H$, belongs to \mathfrak{M}_3^+ . Observe that $\mathcal{G} = \{g_k\}_{k=0}^{\infty}$, $g_k := V^{-1}f_k$, is an orthonormal basis in $L^2([0, 2\pi], d\sigma)$ and

$$(Ug_l, g_k)_{L^2([0,2\pi], d\sigma)} = (V^{-1}\widehat{U}Vg_l, g_k)_{L^2([0,2\pi], d\sigma)} = (\widehat{U}f_l, f_k)_H = m_{k,l}, \qquad k, l \in \mathbb{Z}_+.$$

Therefore $U \in C_+(L^2([0, 2\pi], d\sigma))$. This is a contradiction with Example 1. Consequently, we have $\hat{U} \notin C_+(H)$.

On the other hand, the class $C_+(H)$ is non-empty, since an arbitrary matrix from \mathcal{M}_3^+ with bounded elements define an operator B in H which have this matrix in an arbitrary fixed orthonormal basis in H.

Remark 3. The classical Jacobi matrices are closely related to orthogonal polynomials [4]. Let us indicate some similar relations for the class \mathfrak{M}_3^+ . Choose an arbitrary $\mathcal{M} = (m_{k,l})_{k,l=0}^{\infty} \in \mathfrak{M}_3^+$, where $m_{k,l} \in \mathbb{C}$. Let $\{p_n(\lambda)\}_{n=0}^{\infty}$, deg $p_n = n$, $p_0(\lambda) = 1$, be a sequence of polynomials defined recursively by the following relation:

$$m_{n,n-1}p_{n-1}(\lambda) + m_{n,n}p_n(\lambda) + m_{n,n+1}p_{n+1}(\lambda) = \lambda p_n(\lambda), \qquad n = 0, 1, 2, \dots,$$
(18)

where $m_{0,-1} := 1$, $p_{-1} := 0$. Set $c_n = m_{n,n+1}$, $b_n = m_{n,n}$, $n \in \mathbb{Z}_+$; and $c_{-1} := 1$. By (5), (18) we get

$$c_{n-1}p_{n-1}(\lambda) + b_n p_n(\lambda) + c_n p_{n+1}(\lambda) = \lambda p_n(\lambda), \qquad n = 0, 1, 2, \dots$$
 (19)

Let $p_n(\lambda) = \mu_n \lambda^n + \cdots, \mu_n \in \mathbb{C}, n \in \mathbb{Z}_+$. Comparing coefficients by λ^{n+1} in (19) we get

$$\mu_{n+1} = \frac{1}{c_n} \mu_n, \qquad n \in \mathbb{Z}_+.$$

By induction we see that

$$\mu_n = \left(\prod_{j=0}^{n-1} c_j\right)^{-1}, \qquad n \in \mathbb{N}, \qquad \mu_0 = 1.$$

Set

$$P_n(\lambda) = \prod_{j=0}^{n-1} c_j p_n(\lambda), \qquad n \in \mathbb{N}, \qquad P_0(\lambda) = 1, \qquad P_{-1}(\lambda) = 0.$$

Multiplying the both sides of (19) by $\prod_{j=0}^{n-1} c_j$, $n \ge 1$, we obtain:

$$c_{n-1}^2 P_{n-1}(\lambda) + b_n P_n(\lambda) + P_{n+1}(\lambda) = \lambda P_n(\lambda), \qquad n = 0, 1, 2, \dots$$

$$\int_{\mathbb{R}} P_m(\lambda) P_n(\lambda) d\phi(\lambda) = \left(\prod_{j=0}^{n-1} c_j\right)^2 \delta_{m,n}, \qquad m, n \in \mathbb{Z}_+.$$

Therefore we get

$$\int_{\mathbb{R}} p_m(\lambda) p_n(\lambda) d\phi(\lambda) = \delta_{m,n}, \qquad m, n \in \mathbb{Z}_+$$

Polynomials $\{p_n(\lambda)\}_{n=0}^{\infty}$ were used in [7, 8] to state and solve the direct and inverse spectral problems for matrices from \mathfrak{M}_3^+ . Analogs of some facts of the Weyl discs theory were obtained for the case of matrices from \mathfrak{M}_3^+ with additional assumptions [9]: $m_{n,n+1} > 0, n \in \mathbb{Z}_+$, and

$$m_{n,n} \in \mathbb{C}: \quad r_0 \le \operatorname{Im} m_{n,n} \le r_1,$$

for some $r_0, r_1 \in \mathbb{R}, n \in \mathbb{Z}_+$.

On the other hand, the direct and inverse spectral problems for matrices from \mathfrak{M}_3^- were investigated in [10].

Probably, some progress in the spectral theory of complex symmetric and skew-symmetric operators would provide some additional information about corresponding polynomials and vice versa.

Acknowledgements

The author is grateful to referees for their comments and suggestions.

References

- Garcia S.R., Putinar M., Complex symmetric operators and applications, *Trans. Amer. Math. Soc.* 358 (2006), 1285–1315.
- [2] Garcia S.R., Putinar M., Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), 3913–3931.
- [3] Zagorodnyuk S.M., On a J-polar decomposition of a bounded operator and matrices of J-symmetric and J-skew-symmetric operators, Banach J. Math. Anal. 4 (2010), no. 2, 11–36.
- [4] Akhiezer N.I., Classical moment problem, Fizmatlit, Moscow, 1961 (in Russian).
- [5] Geronimus Ya.L., Orthogonal polynomials on the circle and on an interval. Estimates, asymptotic formulas, orthogonal series, Fizmatlit, Moscow, 1958 (in Russian).
- [6] Chihara T.S., An introduction to orthogonal polynomials, *Mathematics and its Applications*, Vol. 13, Gordon and Breach Science Publishers, New York – London – Paris, 1978.
- [7] Guseinov G.Sh., Determination of an infinite non-self-adjoint Jacobi matrix from its generalized spectral function, Mat. Zametki 23 (1978), 237–248 (English transl.: Math. Notes 23 (1978), 130–136).
- [8] Zagorodnyuk S.M., Direct and inverse spectral problems for (2N + 1)-diagonal, complex, symmetric, non-Hermitian matrices, *Serdica Math. J.* **30** (2004), 471–482.
- [9] Zagorodnyuk S.M., Integral representations for spectral functions of some nonself-adjoint Jacobi matrices, Methods Funct. Anal. Topology 15 (2009), 91–100.
- [10] Zagorodnyuk S.M., The direct and inverse spectral problems for (2N + 1)-diagonal complex transpositionantisymmetric matrices, *Methods Funct. Anal. Topology* **14** (2008), 124–131.