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Abstract. The Stäckel transform is applied to the geodesic motion on Euclidean space,
through the harmonic oscillator and Kepler–Coloumb potentials, in order to obtain ma-
ximally superintegrable classical systems on N -dimensional Riemannian spaces of noncon-
stant curvature. By one hand, the harmonic oscillator potential leads to two families of
superintegrable systems which are interpreted as an intrinsic Kepler–Coloumb system on
a hyperbolic curved space and as the so-called Darboux III oscillator. On the other, the
Kepler–Coloumb potential gives rise to an oscillator system on a spherical curved space as
well as to the Taub-NUT oscillator. Their integrals of motion are explicitly given. The
role of the (flat/curved) Fradkin tensor and Laplace–Runge–Lenz N -vector for all of these
Hamiltonians is highlighted throughout the paper. The corresponding quantum maximally
superintegrable systems are also presented.
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1 Introduction

The coupling constant metamorphosis or Stäckel transform was formerly introduced in [1, 2] and
further developed and applied to several classical and quantum Hamiltonian systems in [3, 4, 5,
6, 7]. This approach has proven to be a useful tool in order to relate different (super)integrable
systems together with their associated symmetries and to deduce new integrable Hamiltonian
systems starting from known ones.

For our purposes, the classical Stäckel transform can be briefly summarized as follows [3, 4].
Consider the conjugate coordinates and momenta q,p ∈ RN with canonical Poisson bracket
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{qi, pj} = δij and the notation:

q2 =
N∑
i=1

q2i , p2 =
N∑
i=1

p2i , |q| =
√

q2.

Let H be an “initial” Hamiltonian, HU an “intermediate” one and H̃ the “final” system given
by

H =
p2

µ(q)
+ V (q), HU =

p2

µ(q)
+ U(q), H̃ =

H

U
=

p2

µ̃(q)
+ Ṽ (q), (1.1)

such that µ̃ = µU and Ṽ = V/U . Then, each second-order integral of motion (symmetry) S
of H leads to a new one S̃ corresponding to H̃ through an “intermediate” symmetry SU of HU .
In particular, if S and SU are written as

S =
N∑

i,j=1

aij(q)pipj +W (q) = S0 +W (q), SU = S0 +WU (q), (1.2)

then one gets a second-order symmetry of H̃ in the form

S̃ = S0 −WUH̃. (1.3)

The aim of this paper is to apply the above procedure when the “initial” Hamiltonian H is
the N -dimensional (ND) free Euclidean motion, and when HU is either the isotropic harmonic
oscillator or the Kepler–Coulomb (KC) Hamiltonian. It is well known that these three systems
are maximally superintegrable (MS), that is, they are endowed with the maximum number of
2N − 1 functionally independent integrals of motion (in these cases, all of them are quadratic
in the momenta). These three systems and their MS property are briefly recalled in the next
section, and we will see that the Stäckel transform gives rise to several MS systems H̃ that
are defined on Riemannian spaces of nonconstant curvature. Moreover, we will show that the
new potential Ṽ can be interpreted as either an (intrinsic) oscillator or a KC potential on the
corresponding curved manifold. In this way, by starting from the Euclidean Fradkin tensor [8],
formerly studied by Demkov in [9], and the Laplace–Runge–Lenz (LRL) N -vector, the Stäckel
transform provides for each case its curved analogue (see [10, 11, 12] and references therein).

In particular, we show in Section 3 that if HU is chosen to be the harmonic oscillator we
obtain two different final MS Hamiltonians, for which H̃ is endowed with a curved Fradkin
tensor; these are a KC system on a hyperbolic space of nonconstant curvature and the so-called
Darboux III oscillator [13, 14, 15]. In Section 4 we take HU as the (flat) KC Hamiltonian and
the Stäckel transform leads to other two different MS systems together with their curved LRL
N -vector; both of them are interpreted as intrinsic oscillators on curved Riemannian manifolds.
Surprisingly enough, one of them is the ND generalization of the Taub-NUT oscillator [16, 17,
18, 19, 20, 21, 22, 23]. We stress that for some systems the dimension N = 2 is rather special as
the underlying manifold remains flat, meanwhile for N ≥ 3 such systems are defined on proper
curved spaces (see Sections 3.1 and 4.1). This is similar to what happens in the classifications
of 2D and 3D integrable systems on spaces of constant curvature (including the flat Euclidean
one) [24, 25, 26, 27, 28, 29, 30, 31] which exhibit some differences according to the dimension
and, in general, the 3D case is usually the cornerstone for the generalization of a given system
to arbitrary dimension.

As a byproduct of this construction, the “growth” of the Fradkin tensor and the LRL vector
from their Euclidean “seeds” to their curved counterparts can be highlighted from a global per-
spective. These results are comprised in Table 1 in the last section. Furthermore we also present
in Table 2 the MS quantization for all of the above systems together with their “additional”
quantum Fradkin/LRL symmetries.
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2 Harmonic oscillator and Kepler potentials on Euclidean space

In order to fix a suitable common framework, we briefly recall the well-known basics of the
superintegrability properties of the Hamiltonians describing free motion, harmonic oscillator
and KC potentials on the ND Euclidean space EN .

As the “initial” Hamiltonian H (1.1) for the Stäckel procedure we consider the one defining
the geodesic motion on EN plus a relevant constant α:

H =
1

2
p2 + α. (2.1)

Obviously this is a MS system, and there are many possibilities to choose its integrals of motion.
We shall make use, throughout the paper, of the following results.

Proposition 1.

(i) The Hamiltonian (2.1) is endowed with the following constants of motion.

• (2N − 3) angular momentum integrals (m = 2, . . . , N):

S(m) =
∑

1≤i<j≤m
(qipj − qjpi)2, S(m) =

∑
N−m<i<j≤N

(qipj − qjpi)2,

S(N) = S(N) ≡ L2, (2.2)

where L2 is the square of the total angular momentum.

• N2 integrals which are the “seeds” of the Fradkin tensor (i, j = 1, . . . , N):

Sij = pipj such that
N∑
i=1

Sii = 2(H − α). (2.3)

• N integrals which are the “seeds” of the components of the LRL vector (i = 1, . . . , N):

Si =

N∑
k=1

pk (qkpi − qipk) such that

N∑
i=1

S2
i = 2L2(H − α). (2.4)

(ii) Each of the three sets {H,S(m)}, {H,S(m)} (m = 2, . . . , N) and {Sii} (i = 1, . . . , N) is
formed by N functionally independent functions in involution.

(iii) Both sets {H,S(m), S(m), Sii} and {H,S(m), S(m), Si} (m = 2, . . . , N and a fixed index i)
are constituted by 2N − 1 functionally independent functions.

As “intermediate” Hamiltonians HU (1.1) we consider either the harmonic oscillator or the
KC system. Since both of them are central potentials, the angular momentum integrals (2.2)

are valid for both cases, that is, S
(m)
U ≡ S(m) and SU,(m) ≡ S(m) in (1.2). We recall that,

in fact, the spherical symmetry of a central potential on EN directly provides such (2N − 3)
independent angular momentum integrals, so they characterize a quasi-MS system [32, 33].
However what makes rather special the harmonic oscillator and KC systems is the existence of
one more independent integral, which is extracted from a new set of integrals that ensure their
MS property and is related to the fact that these two systems are the only ones fulfilling the
classical Bertand’s theorem [34]. In this respect, each of the sets of integrals (2.3) and (2.4)
gives rise to one known set of additional constants for the harmonic oscillator and KC system,
respectively.
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Proposition 2.

(i) The harmonic oscillator Hamiltonian defined by

HU =
1

2
p2 + βq2 + γ (2.5)

has the (2N−3) angular momentum integrals (2.2) together with N2 additional ones given
by the components of the ND Fradkin tensor (i, j = 1, . . . , N):

SU,ij = pipj + 2βqiqj such that

N∑
i=1

SU,ii = 2(HU − γ).

(ii) Each of the three sets {HU , S
(m)}, {HU , S(m)} (m = 2, . . . , N) and {SU,ii} (i = 1, . . . , N)

is formed by N functionally independent functions in involution.

(iii) The set {HU , S
(m), S(m), SU,ii} (m = 2, . . . , N and a fixed index i) provides 2N − 1 func-

tionally independent functions.

Proposition 3.

(i) The KC Hamiltonian given by

HU =
1

2
p2 +

δ

|q|
+ ξ (2.6)

has the (2N −3) angular momentum integrals (2.2) together with the N components of the
LRL vector (i = 1, . . . , N):

SU,i =

N∑
k=1

pk (qkpi − qipk)−
δqi
|q|

such that

N∑
i=1

S2
U,i = 2L2(HU − ξ) + δ2.

(ii) Each of the two sets {HU , S
(m)} and {HU , S(m)} (m = 2, . . . , N) is formed by N func-

tionally independent functions in involution.

(iii) The set {HU , S
(m), S(m), SU,i} (m = 2, . . . , N and a fixed index i) is constituted by 2N − 1

functionally independent functions.

In the two next sections we apply the Stäckel transform to each of these two MS systems.
Notice that the proper isotropic harmonic oscillator arises whenever β = ω2/2 with frequency ω
and γ = 0, while the Kepler one corresponds to set δ = −K and ξ = 0. We remark that in
this approach the constant α is essential in order to obtain a curved potential while the others
β, γ, δ and ξ enter in both the kinetic and the potential term giving rise to MS oscillator/KC
potentials on Riemannian spaces of nonconstant curvature, so that they can be regarded as
classical “deformation parameters”.

3 Superintegrable systems from harmonic oscillator potential

If we consider as the initial Hamiltonian H the free system (2.1) and as the intermediate one
the harmonic oscillator HU (2.5), then we obtain the final Hamiltonian H̃

H̃ =
p2

2(γ + βq2)
+

α

γ + βq2
, (3.1)
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so that the relations (1.1) read as

µ = 2, V = α, U = γ + βq2, µ̃ = 2
(
γ + βq2

)
, Ṽ =

α

γ + βq2
.

As far as the symmetries S = S0 +W (1.2) are concerned, we find from Proposition 1 that

S
(m)
0 = S(m), W (m) = 0, S0,(m) = S(m),

W(m) = 0, S0,ij = Sij , Wij = 0,

while from Proposition 2 we obtain the elements WU for the decompositions of SU = S0 +WU ,

W
(m)
U = 0, WU,(m) = 0, WU,ij = 2βqiqj ,

where m = 2, . . . , N and i, j = 1, . . . , N .
Consequently, the Hamiltonian H̃ (3.1) is Stäckel equivalent to the free Euclidean motion,

through the harmonic oscillator potential, and its integrals of motion S̃ come from (1.3) and
turn out to be

S̃(m) = S(m), S̃(m) = S(m), S̃ij = pipj − 2βqiqjH̃(q,p). (3.2)

Thus we have obtained the (2N − 3) angular momentum integrals S(m) and S(m), together

with N2 ones, S̃ij , which form a curved Fradkin tensor. The quasi-MS property of H̃ is ensured
by the preservation of the (2N − 3) angular momentum integrals, that is, each of the two sets
{H̃, S(m)}, {H̃, S(m)} (m = 2, . . . , N) is formed by N functionally independent functions in
involution. Hence, from now on, we assume this fact and only pay attention to the additional
constants S̃ij which characterize (3.1) as a MS system.

In order to perform a preliminary geometrical analysis of H̃ we recall that, in general, any
Hamiltonian of the form

H =
p2

2f(|q|)2
+ V(|q|)

can be interpreted as describing a particle (with unit mass) on an ND spherically symmetric
space M under the action of the central potential V(|q|) [14]. The metric and scalar curvature
of M are given by [35]

ds2 = f(|q|)2dq2,

R = −(N − 1)

(
(N − 4)f ′(r)2 + f(r)

(
2f ′′(r) + 2(N − 1)r−1f ′(r)

)
f(r)4

)
, (3.3)

where we have introduced the radial coordinate r = |q|. For general results on 2D and 3D
(super)integrable systems on conformally flat spaces we refer to [36, 37, 38].

Furthermore, the conformal factor f(|q|) = f(r) is directly related, under the following
prescription, with the intrinsic KC and oscillator potentials on M:

UKC(r) :=

∫ r dr′

r′2f(r′)
, UO(r) :=

1

UKC(r)2
, (3.4)

that was introduced in [14] up to additive and multiplicative constants.
With these ideas in mind, we now analyze the specific systems defined by H̃ (3.1) according to

the values of the parameters β and γ. Notice that α is the constant which governs the potential,
so to setting α = 0 leads to geodesic motion on M, and that β must be always different from
zero, since otherwise H̃ is again the initial H. Therefore we are led to consider two different
cases with generic α: (i) β 6= 0, γ = 0; and (ii) β 6= 0, γ 6= 0.
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3.1 The case with β 6= 0 and γ = 0: a curved hyperbolic KC system

If γ = 0 we scale H̃ to deal with the Hamiltonian

HKC = βH̃ =
p2

2q2
+

α

q2
. (3.5)

Then, f(|q|) = |q| = r so the metric and scalar curvature (3.3) on M reduces to

ds2 = q2dq2, R = −3(N − 1)(N − 2)

r4
, (3.6)

while the intrinsic KC and oscillator potentials (3.4) on this curved space would be

UKC(r) = − 1

2r2
, UO(r) = 4r4.

The latter result shows that HKC (3.5) always defines an intrinsic KC potential on the spaceM.
Nevertheless the curvature (3.6) vanishes for N = 2, while the space is of nonconstant curvature
for N ≥ 3. Therefore, for N = 2 the Hamiltonian must correspond to the usual KC system on the
Euclidean space. This fact can be explicitly proven by applying toHKC (3.5) the Kustaanheimo–
Stiefel canonical transformation defined by [39, 40]

q̃1 =
1

2

(
q21 − q22

)
, p̃1 =

p1q1 − p2q2
q21 + q22

, q̃2 = q1q2, p̃2 =
p2q1 + p1q2
q21 + q22

, (3.7)

so with canonical Poisson bracket {q̃i, p̃j} = δij . In this way we recover the 2D KC Hamiltonian

HKC =
p21 + p22

2(q21 + q22)
+

α

q21 + q22
=

1

2

(
p̃21 + p̃22

)
+

α

2
√
q̃21 + q̃22

and the five symmetries (3.2) reduce to three integrals of motion, namely

S(2) = S(2) = L2 = (q1p2 − q2p1)2 = 4(q̃1p̃2 − q̃2p̃1)2,

S̃11 = p21 − 2q21HKC = 2p̃2(q̃2p̃1 − q̃1p̃2)−
αq̃1√
q̃21 + q̃22

− α, S̃22 = −S̃11 − 2α,

S̃12 = S̃21 = p1p2 − 2q1q2HKC = 2p̃1(q̃1p̃2 − q̃2p̃1)−
αq̃2√
q̃21 + q̃22

.

Hence, by taking into account Proposition 3 for N = 2, we find that, under the above canonical
transformation, the only angular momentum integral S(2) is kept, while the four constants com-
ing from the 2D Fradkin tensor reduce to the two components of the LRL vector: (S̃11, S̃22)→ S̃1
and (S̃12, S̃21)→ S̃2.

Consequently, a proper curved KC system arises whenever N ≥ 3 and its full integrability
properties can be summarized as follows.

Proposition 4.

(i) For N ≥ 3, the Hamiltonian HKC (3.5) determines an intrinsic KC system on the hyper-
bolic space of nonconstant curvature (3.6).

(ii) HKC is endowed with the (2N − 3) angular momentum integrals (2.2) together with N2

ones which are the components of an ND curved Fradkin tensor (i, j = 1, . . . , N):

S̃ij = pipj − 2qiqjHKC such that
N∑
i=1

S̃ii = −2α and {S̃ii, S̃jj} = 0.

(iii) The set {HKC, S
(m), S(m), S̃ii} (m = 2, . . . , N and a fixed index i) is formed by 2N − 1

functionally independent functions.
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3.2 The case with β 6= 0 and γ 6= 0: the Darboux III oscillator

If both β, γ 6= 0, we can write the Hamiltonian (3.1) in the form

Hλ = γH̃ − α =
p2

2(1 + λq2)
− λαq2

1 + λq2
, λ = β/γ. (3.8)

Then the metric and scalar curvature (3.3) on the corresponding manifold M are given by

ds2 =
(
1 + λq2

)
dq2, R = −λ

(N − 1)
(
2N + 3(N − 2)λr2

)
(1 + λr2)3

, (3.9)

and the intrinsic potentials (3.4) read

UKC(r) = −
√

1 + λr2

r
, UO(r) =

r2

1 + λr2
. (3.10)

In this way, we recover the ND spherically symmetric generalization of the Darboux surface of
type III [41, 42, 43, 44] introduced in [14, 35]. Notice that the domain of r = |q| and the type
of the underlying curved manifold depends on the sign of λ [15]:

λ > 0 : R(0) = −2λN(N − 1), r ∈ [0,∞);

λ < 0 : R(0) = 2|λ|N(N − 1), r ∈ [0, 1/
√
|λ|),

where we have written the value of the scalar curvature (3.9) at the origin r = 0. We stress
that R(0) coincides either with the scalar curvature of the ND hyperbolic space with negative
constant sectional curvature equal to −2λ for λ > 0, or with that corresponding to the ND
spherical space with sectional curvature equal to 2|λ| for λ < 0.

By taking into account the above geometrical considerations and expressions (3.10), we find
that Hλ comprises both an intrinsic hyperbolic oscillator potential and a spherical one on M
according to the sign of λ. Strictly speaking the curved oscillator potentials arise by introducing
the frequency ω2 = −2λα and, in that form, the limit λ→ 0 gives rise to the harmonic oscillator
on EN , so λ behaves as a classical deformation parameter governing the curvature and the
potential. The MS property of Hλ is then characterized by [13, 15]:

Proposition 5.

(i) The Hamiltonian Hλ (3.8) defines an intrinsic curved hyperbolic Darboux oscillator for
λ > 0 and r ∈ [0,∞) and a curved spherical Darboux one for λ < 0 and r ∈ [0, 1/

√
|λ|).

(ii) Besides the (2N−3) angular momentum integrals (2.2), Hλ Poisson-commutes with the N2

components of the ND curved Fradkin tensor (i, j = 1, . . . , N) given by

S̃ij = pipj − 2λqiqj (Hλ + α) such that

N∑
i=1

S̃ii = 2Hλ and {S̃ii, S̃jj} = 0.

(iii) The set {Hλ, S(m), S(m), S̃ii} (m = 2, . . . , N and a fixed index i) is formed by 2N − 1
functionally independent functions.

4 Superintegrable systems from the Kepler–Coulomb potential

In this case we consider the initial Hamiltonian H (2.1) and the KC system HU (2.6) for the
intermediate one; this provides the final Hamiltonian H̃ (1.1)

H̃ =
|q|p2

2(δ + ξ|q|)
+

α|q|
δ + ξ|q|

, (4.1)
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where

µ = 2, V = α, U =
δ + ξ|q|
|q|

, µ̃ =
2(δ + ξ|q|)
|q|

, Ṽ =
α|q|

δ + ξ|q|
.

From Proposition 1 we obtain the decomposition of the symmetries S = S0 +W (2.2) and (2.4)
(m = 2, . . . , N and i = 1, . . . , N):

S
(m)
0 = S(m), W (m) = 0, S0,(m) = S(m), W(m) = 0, S0,i = Si, Wi = 0,

while from Proposition 3 we find the one corresponding to SU = S0 +WU (1.2)

W
(m)
U = 0, WU,(m) = 0, WU,i = −δqi

|q|
.

Therefore, the Hamiltonian H̃ (4.1) is Stäckel equivalent to the free Euclidean motion, through
the KC potential, and its integrals of motion S̃ (1.3) are given by

S̃(m) = S(m), S̃(m) = S(m), S̃i =

N∑
k=1

pk (qkpi − qipk) +
δqi
|q|

H̃(q,p). (4.2)

Hence, H̃ (4.1) is endowed with the (2N − 3) angular momentum integrals (2.2) together
with a curved LRL N -vector with components S̃i.

Notice that the parameter δ cannot vanish in order to avoid the initial system H. Thus,
similarly to the previous section, we study two systems covered by H̃ (4.1): (i) δ 6= 0, ξ = 0;
and (ii) δ 6= 0, ξ 6= 0.

4.1 The case with δ 6= 0 and ξ = 0: a curved spherical oscillator system

If ξ = 0 we have the Hamiltonian system

HO = δH̃ =
1

2
|q|p2 + α|q|. (4.3)

We stress that for N = 3 this system was early considered in [2]. The metric and scalar
curvature (3.3) give

ds2 =
1

|q|
dq2, R =

3(N − 1)(N − 2)

4r
, (4.4)

and the intrinsic KC and oscillator potentials (3.4) turn out to be

UKC(r) = − 2√
r
, UO(r) =

r

4
.

Hence HO (4.3) determines an intrinsic oscillator potential on M. However, for N = 2 the
curvature is equal to zero, so this case should actually be the 2D harmonic oscillator. This can
be proven by means of the canonical transformation

q̃1 =
q2(√

q21 + q22 − q1
)1/2 , p̃1 =

(p1q2 − 2p2q1)
(√

q21 + q22 − q1
)

+ p2q
2
2(√

q21 + q22 − q1
)3/2 ,

q̃2 =

(√
q21 + q22 − q1

)1/2

, p̃2 =
p2q2 − p1

(√
q21 + q22 − q1

)
(√

q21 + q22 − q1
)1/2 ,
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which is just the inverse of the canonical transformation (3.7); this yields the expected system

HO =
1

2

√
q21 + q22

(
p21 + p22

)
+ α

√
q21 + q22 =

1

4

(
p̃21 + p̃22

)
+

1

2
α
(
q̃21 + q̃22

)
.

The canonical transformation of the three symmetries (4.2) gives

S(2) = S(2) = L2 = (q1p2 − q2p1)2 =
1

4
(q̃1p̃2 − q̃2p̃1)2,

S̃1 = p2(q2p1 − q1p2) +
q1√
q21 + q22

HO =
1

4

(
p̃21 − p̃22

)
+

1

2
α
(
q̃21 − q̃22

)
,

S̃2 = p1(q1p2 − q2p1) +
q2√
q21 + q22

HO =
1

2
p̃1p̃2 + αq̃1q̃2.

Then the four components of the 2D Euclidean Fradkin tensor S̃ij are recovered, in the new
canonical variables, from the set of constants (HO, S̃1, S̃2) by setting

S̃11 = 2(HO + S̃1) = p̃21 + 2αq̃21, S̃22 = 2(HO − S̃1) = p̃22 + 2αq̃22,

S̃12 = S̃21 = 2S̃2 = p̃1p̃2 + 2αq̃1q̃2.

Therefore the proper curved system arises whenever N ≥ 3, which yields the following

Proposition 6.

(i) For N ≥ 3, the Hamiltonian HO (4.3) defines an intrinsic oscillator potential on the
spherical space of nonconstant curvature (4.4).

(ii) HO Poisson-commutes with the (2N − 3) angular momentum integrals (2.2) and with the
components of the LRL N -vector given by (i = 1, . . . , N):

S̃i =

N∑
k=1

pk (qkpi − qipk) +
qi
|q|
HO such that

N∑
i=1

S̃2
i = H2

O − 2αL2.

(iii) The set {HO, S
(m), S(m), S̃i} (m = 2, . . . , N and a fixed index i) is formed by 2N − 1

functionally independent functions.

4.2 The case with δ 6= 0 and ξ 6= 0: the Taub-NUT oscillator

We scale the Hamiltonian (4.1) as

Hη = ξH̃ =
|q|p2

2(η + |q|)
+

α|q|
η + |q|

, η = δ/ξ. (4.5)

Notice that the limit η → 0 reduces to the free Hamiltonian in Euclidean space. The metric and
scalar curvature (3.3) on the corresponding manifold M turn out to be

ds2 =
η + |q|
|q|

dq2, R = η(N − 1)

(
4(N − 3)r + 3(N − 2)η

)
4r(η + r)3

, (4.6)

so that the domain of r = |q| in M depends on the sign of η:

η > 0 : r ∈ (0,∞); η < 0 : r ∈ [|η|,∞). (4.7)
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The intrinsic potentials (3.4) are given by

UKC(r) = −2

η

√
η + r

r
, UO(r) =

η2r

4(η + r)
. (4.8)

Consequently, Hη defines two intrinsic oscillators, which are different systems according to (4.7).

It is worth comparing (4.5) with the Taub-NUT system [16, 17, 18, 19, 20, 21, 22, 23] which
can be written as [14]:

HTaub-NUT =
p2

2(1 + 4m/|q|)
+

µ2

2(4m)2

(
1 +

4m

|q|

)
=

|q|p2

2(4m+ |q|)
+
µ2|q|/(4m)2

2(4m+ |q|)
+

µ2

2|q|(4m+ |q|)
+
µ2/(4m)

4m+ |q|
. (4.9)

The relationship with Hη is established by setting

η = 4m, α = − µ2

2(4m)2
,

which gives

Hη=4m +
µ2

(4m)2
=

|q|p2

2(4m+ |q|)
+
µ2|q|/(4m)2

2(4m+ |q|)
+
µ2/(4m)

4m+ |q|
,

so that we recover three terms in the “expanded” expression for HTaub-NUT (4.9); namely, the
kinetic term defining the geodesic motion on the Taub-NUT space (4.6), the insintric oscillator
potential (4.8) and the one which comes out by adding a constant to the oscillator potential.
There is one missing term, the third one in (4.9), which corresponds to the Dirac monopole.
However we notice that this can be derived from the angular momentum by introducing hyper-
spherical coordinates in the form [14]

p2 = p2r + r−2L2 and next L2 → L2 + µ2.

From this viewpoint, Hη can be regarded as an ND MS generalization of the Taub-NUT system
which is recovered for η > 0, being the case with η < 0 a different physical oscillator potential.

The symmetry properties for Hη are summarized in

Proposition 7.

(i) The Hamiltonian Hη (4.5) characterizes two intrinsic oscillator potentials on the corre-
sponding Riemannian space of nonconstant curvature (4.6) according to (4.7).

(ii) Hη is endowed with the (2N − 3) angular momentum integrals (2.2) together with the
components of the curved LRL N -vector given by (i = 1, . . . , N):

S̃i =

N∑
k=1

pk (qkpi − qipk) + η
qi
|q|
Hη such that

N∑
i=1

S̃2
i = 2L2(Hη − α) + η2H2

η.

(iii) The set {Hη, S(m), S(m), S̃i} (m = 2, . . . , N and a fixed index i) is formed by 2N − 1
functionally independent functions.
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Table 1. Maximally superintegrable classical oscillator and KC Hamiltonians in N dimensions.

• Geodesic motion on Euclidean space

H = 1
2
p2 + α

∗ Common (2N − 3) angular momentum integrals of motion

S(m) =
∑

1≤i<j≤m

(qipj − qjpi)2, S(m) =
∑

N−m<i<j≤N

(qipj − qjpi)2 , S(N) = S(N) ≡ L2

∗ “Seeds” of the ND Fradkin tensor ∗ “Seeds” of the LRL N -vector

Sij = pipj Si =

N∑
k=1

pk (qkpi − qipk)

• Harmonic oscillator • Euclidean KC

HU =
1

2
p2 + βq2 + γ HU =

1

2
p2 +

δ

|q| + ξ

∗ Flat ND Fradkin tensor ∗ Flat LRL N -vector

SU,ij = pipj + 2βqiqj SU,i =

N∑
k=1

pk (qkpi − qipk)− δ qi|q|

• Curved hyperbolic KC (N ≥ 3) • Curved spherical oscillator (N ≥ 3)

HKC =
p2

2q2
+

α

q2
HO =

1

2
|q|p2 + α|q|

∗ Curved ND Fradkin tensor ∗ Curved LRL N -vector

S̃ij = pipj − 2qiqjHKC S̃i =

N∑
k=1

pk (qkpi − qipk) +
qi
|q|HO

• Darboux III oscillator • Taub-NUT oscillator

Hλ =
p2

2(1 + λq2)
− λαq2

1 + λq2
Hη =

|q|p2

2(η + |q|) +
α|q|
η + |q|

∗ Curved ND Fradkin tensor ∗ Curved LRL N -vector

S̃ij = pipj − 2λqiqj (Hλ + α) S̃i =

N∑
k=1

pk (qkpi − qipk) + η
qi
|q|Hη

5 Outlook and superintegrable quantization

So far we have obtained and interpreted four MS classical Hamiltonian systems on Riemannian
spaces of nonconstant curvature by starting from free motion on EN and applying the Stäckel
transform through the harmonic oscillator and KC potentials. The main results here obtained
are displayed in Table 1 where the transition from the “seeds” of the Fradkin tensor and the LRL
vector up to their curved analogues is laid bare by reading the table through its two columns.
Recall, however, that the Darboux III and the Taub-NUT oscillators give rise, each of them, to
two different physical systems according to the sign of the parameters λ and η, respectively.

Some related comments are in order. All the Hamiltonians shown in Table 1 are constructed
on spherically symmetric spaces so that they are endowed with an so(N) Lie–Poisson symmetry.
In particular, let us consider the generators of rotations Jij = qipj − qjpi with i < j and
i, j = 1, . . . , N which span the so(N) Lie–Poisson algebra

{Jij , Jik} = Jjk, {Jij , Jjk} = −Jik, {Jik, Jjk} = Jij , i < j < k.

Then the “common” (2N − 3) angular momentum integrals S(m) and S(m) (2.2) can be written
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Table 2. Maximally superintegrable quantum oscillator and KC Hamiltonians in N dimensions.

∗ Common (2N − 3) quantum angular momentum operators

Ŝ(m) =
∑

1≤i<j≤m

(q̂ip̂j − q̂j p̂i)2, Ŝ(m) =
∑

N−m<i<j≤N

(q̂ip̂j − q̂j p̂i)2 , Ŝ(N) = Ŝ(N) ≡ L̂2

• Quantum hyperbolic KC (N ≥ 3) • Quantum spherical oscillator (N ≥ 3)

ĤKC =
1

2q̂2
p̂2 +

α

q̂2
ĤO =

1

2
|q̂|p̂2 + α|q̂|

∗ Quantum ND Fradkin tensor ∗ Quantum LRL N -vector

Ŝij = p̂ip̂j − 2q̂iq̂jĤKC Ŝi =
1

2

N∑
k=1

p̂k (q̂kp̂i − q̂ip̂k) +
1

2

N∑
k=1

(q̂kp̂i − q̂ip̂k) p̂k +
q̂i
|q̂| ĤO

N∑
i=1

Ŝii = −2α

N∑
i=1

Ŝ2
i = Ĥ2

O − 2αL̂2 − 1

2
(N − 1)2~2α

• Quantum Darboux III oscillator • Quantum Taub-NUT oscillator

Ĥλ =
1

2(1 + λq̂2)
p̂2 − λα q̂2

1 + λq̂2
Ĥη =

|q̂|
2(η + |q̂|) p̂2 +

α|q̂|
η + |q̂|

∗ Quantum ND Fradkin tensor ∗ Quantum LRL N -vector

Ŝij = p̂ip̂j − 2λq̂iq̂j
(
Ĥλ + α

)
Ŝi =

1

2

N∑
k=1

p̂k (q̂kp̂i − q̂ip̂k) +
1

2

N∑
k=1

(q̂kp̂i − q̂ip̂k) p̂k + η
q̂i
|q̂| Ĥη

N∑
i=1

Ŝii = 2Ĥλ
N∑
i=1

Ŝ2
i = 2L̂2(Ĥη − α) + η2Ĥ2

η +
1

2
(N − 1)2~2(Ĥη − α)

as the quadratic Casimirs of some rotation subalgebras so(m) ⊂ so(N):

S(m) =
∑

1≤i<j≤m
J2
ij , S(m) =

∑
N−m<i<j≤N

J2
ij ,

with S(N) = S(N) = L2 being the quadratic Casimir of so(N). In this respect, we also notice

that all the LRL constants of motion (Si, SU,i, S̃i) given in Table 1 are transformed as N -vectors
under the action of the generators of so(N) (as it should be):

{Jij , S̃k} = δikS̃j − δjkS̃i.

Furthermore, all of these systems possess an sl(2,R) coalgebra symmetry as well [14]. If we
denote J− = q2, J+ = p2 and J3 = q · p we have that

{J3, J+} = 2J+, {J3, J−} = −2J−, {J−, J+} = 4J3,

and the common integrals (2.2) are just the mth (left and right) coproducts of the Casimir of
sl(2,R). This set of (2N − 3) integrals is “universal” for any Hamiltonian function defined by
H = H(q2,p2,q · p) so that this always provides, at least, a quasi-MS system [32, 33]. There-
fore the Hamiltonians shown in Table 1 are distinguished systems since they have “additional”
symmetries.

To end with, we shall present the MS quantization of the four curved classical systems. For
this purpose, we remark that the MS quantization of the Darboux III oscillator has been recently
obtained in [45], and the corresponding quantum dynamics has been fully solved for λ > 0 (the
case with λ < 0 is still an open problem). This quantization has been obtained by applying
the so called “Schrödinger quantization” procedure [46], and its relationship with the Laplace–
Beltrami and position-dependent-mass quantizations has been established in [47] by means of
similarity transformations (see also [48]).
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Therefore, let us consider the quantum position and momenta operators, q̂, p̂, with canonical
Lie bracket [q̂i, p̂j ] = i~δij . The resulting MS quantum Hamiltonians are summarized in the
following final statement.

Proposition 8. Let H be one of the classical Hamiltonians given in Propositions 4–7.

(i) The Schrödinger quantization of H and its quantum symmetries are given in Table 2.

(ii) The quantum Hamiltonian Ĥ is endowed with (2N − 3) quantum angular momentum ope-
rators Ŝ(m) and Ŝ(m), such that {Ĥ, Ŝ(m)} or {Ĥ, Ŝ(m)} (m = 2, . . . , N) is a set of N
algebraically independent commuting observables.

(iii) If Ĥ ∈ (ĤKC, Ĥλ) then it commutes with the N2 components, Ŝij, of a quantum Fradkin
tensor (i, j = 1, . . . , N). The set {Ĥ, Ŝ(m), Ŝ(m), Ŝii} (m = 2, . . . , N and a fixed index i) is
formed by 2N − 1 algebraically independent commuting observables.

(iv) When Ĥ ∈ (ĤO, Ĥη) this commutes with the N components, Ŝi, of a quantum LRL vector
(i = 1, . . . , N). The set {Ĥ, Ŝ(m), Ŝ(m), Ŝi} (m = 2, . . . , N and a fixed index i) is constituted
by 2N − 1 algebraically independent commuting observables.
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as well on superintegrability.

References

[1] Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., Coupling-constant metamorphosis and duality be-
tween integrable Hamiltonian systems, Phys. Rev. Lett. 53 (1984), 1707–1710.
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