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Abstract. The original continuous-time “goldfish” dynamical system is characterized by
two neat formulas, the first of which provides the N Newtonian equations of motion of this
dynamical system, while the second provides the solution of the corresponding initial-value
problem. Several other, more general, solvable dynamical systems “of goldfish type” have
been identified over time, featuring, in the right-hand (“forces”) side of their Newtonian
equations of motion, in addition to other contributions, a velocity-dependent term such as
that appearing in the right-hand side of the first formula mentioned above. The solvable
character of these models allows detailed analyses of their behavior, which in some cases is
quite remarkable (for instance isochronous or asymptotically isochronous). In this paper we
introduce and discuss various discrete-time dynamical systems, which are as well solvable,
which also display interesting behaviors (including isochrony and asymptotic isochrony) and
which reduce to dynamical systems of goldfish type in the limit when the discrete-time
independent variable ` = 0, 1, 2, . . . becomes the standard continuous-time independent
variable t, 0 ≤ t <∞.
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isochronous discrete-time dynamical systems; discrete-time dynamical systems of goldfish
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1 Introduction

The original “goldfish” dynamical system [1, 2] is characterized by the system of N Newtonian
equations of motion

z̈n =
N∑

k=1,k 6=n

2żnżk
zn − zk

, n = 1, . . . , N, (1.1a)

and by the following neat prescription yielding the solution of the corresponding initial-value
problem: the N values of the dependent variables zn ≡ zn(t) at time t are the N solutions of
the algebraic equation (for the unknown z)

N∑
k=1

żk(0)

z − zk(0)
=

1

t
, (1.1b)

i.e. the N roots of the polynomial equation of degree N in the variable z that obtains by

multiplying this formula by the polynomial
N∏
j=1

[z − zj(0)].

?This paper is a contribution to the Proceedings of the Conference “Symmetries and Integrability of
Difference Equations (SIDE-9)” (June 14–18, 2010, Varna, Bulgaria). The full collection is available at
http://www.emis.de/journals/SIGMA/SIDE-9.html
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Notation 1.1. Here and hereafter N is an arbitrary positive integer (generally N ≥ 2), su-
perimposed dots denote differentiations with respect to the independent variable t (“continuous
time”), and the N dependent variables zn ≡ zn(t) may be interpreted as the coordinates of N
point-like unit-mass particles – hence żn denote their velocities and z̈n their accelerations, consis-
tently with the interpretation of (1.1a) as a set of Newtonian equations of motion with velocity-
dependent forces. The indices – such as n, m, j, k – generally run from 1 to N (below, as
a convenient reminder, we often indicate this explicitly; as well as the exceptions to this rule).

Hereafter we denote as “dynamical system of goldfish type” any dynamical system charac-
terized by Newtonian equations of motion featuring in their right-hand sides – which have, in
the Newtonian context, the significance of “forces” – a velocity-dependent term such as that
appearing in the right-hand side of (1.1a) (of course in addition to other terms). Let us also
emphasize that the dynamical system (1.1) is the simplest model belonging to the Ruijsenaars–
Schneider integrable class [3, 4].

For instance a simple extension of the above model (reducing to it for ω = 0) is characterized
by the Newtonian equations of motion:

z̈n = (1− 2α)iωżn + α(α− 1)ω2zn

+

N∑
m=1,m 6=n

2(żn + iαωzn)(żm + iαωzm)

zn − zm
, n = 1, . . . , N. (1.2a)

The corresponding solution of the initial-value problem is again given by a simple rule: the N
values of the dependent variables zn ≡ zn(t) at time t are related by the formula

zn(t) = ζn(t) exp(−iαωt), n = 1, . . . , N, (1.2b)

to the N solutions ζn(t) of the algebraic equation (for the unknown ζ)

N∑
k=1

żk(0) + iαωzk(0)

ζ − zk(0)
=

iω

exp(iωt)− 1
(1.2c)

(which again gets transformed into a polynomial equation of degree N in ζ after multiplication by

the polynomial
N∏
j=1

[ζ− zj(0)]); or, equivalently but more directly, the N values of the dependent

variables zn ≡ zn(t) at time t are the N solutions zn(t) of the algebraic equation (for the
unknown z)

N∑
k=1

żk(0) + iαωzk(0)

z − zk(0) exp(−iαωt)
=
iω exp(iαωt)

exp(iωt)− 1
. (1.2d)

Notation 1.2. Here and hereafter i is the imaginary unit, i2 = −1, ω is an arbitrary constant
(dimensionally, an inverse time), and α is an arbitrary (dimensionless) constant. Clearly – unless
both ω and αω are both imaginary, Re(ω) = Re(αω) = 0 – the time-evolution of this system
takes place in the complex z-plane, i.e. the dependent variables zn ≡ zn(t) are complex ; but
it may as well be viewed as describing the evolution of N point-like particles moving in the
real xy-plane – whose positions at time t are characterized by the (real) Cartesian coordinates
xn ≡ xn(t), yn ≡ yn(t) – by setting zn(t) = xn(t) + iyn(t); and one of the remarkable features
of the resulting real model is the possibility to write its Newtonian equations of motion in
covariant – i.e., rotation-invariant – form, see Chapter 4 of [4]. Hereafter we generally refer to
this model, and its generalizations, see below, in their complex versions.
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Remark 1.1. Clearly for ω = 0 this model, (1.2), reduces to the previous model (1.1). For ω 6= 0
the time evolution of this model, (1.2), depends mainly on the values of the two constants ω
and αω, as displayed by its solution, see (1.2d). If both these constants are real, Im(ω) =
Im(αω) = 0 (hence as well Im(α) = 0), the time evolution of this model is confined, indeed
completely periodic if the real number α is rational, while if α is irrational it is multiply periodic,
being a nonlinear superposition of two periodic evolutions with the two noncongruent periods
T = 2π/ |ω| and T/α. Note that these outcomes obtain for generic initial data: hence, for α
rational, α = q/p with q and p coprime integers (and p > 0), this system is isochronous, its
generic solutions being completely periodic with period pT – or possibly with a period which
is a, generally small, integer multiple of pT : indeed, when the equation (1.2d) is itself periodic
with period pT , the unordered set of its N roots is clearly periodic with the same period pT ,
but the periodicity of the time-evolution of each individual coordinate zn(t) may then be a,
generally small, integer multiple of pT due to the possibility that different roots get exchanged
through the time evolution (for a discussion of this phenomenology – including a justification
of the assertion that the relevant integer multiple of pT is generally small – see [5]).

On the other hand, if ω is real but α is imaginary, say αω = iγ with γ real and nonvanishing,
then clearly in the remote future – i.e., as t → ∞, and up to relative corrections of order
exp(−|γ|t) – all the N coordinates zn(t) tend to the origin, zn(∞) = 0, if γ < 0, while if γ > 0
they all diverge (see (1.2b) and (1.2c)).

If instead ω is not real, Im(ω) 6= 0, then in the remote future (i.e., as t → ∞, and up to
relative corrections of order exp(−| Im(ω)|t)) the N solutions of (1.2c) become asymptotically, if
Im(ω) > 0, the N solutions ζn = ζn(∞) of the time-independent polynomial equation of order N
in ζ

N∑
k=1

żk(0) + iαωzk(0)

ζ − zk(0)
= −iω,

while if instead Im(ω) < 0 the equation (1.2c) becomes, in the remote future, the time-
independent polynomial equation

N∑
k=1

żk(0) + iαωzk(0)

ζ − zk(0)
= 0,

hence N −1 of the solutions of (1.2c) tend asymptotically to the N −1 solutions of this equation
(polynomial of degree N − 1 in ζ) and one of them approaches asymptotically the diverging
coordinate

ζasy(t) = exp(iωt)

N∑
k=1

[żk(0) + iαωzk(0)].

Note that this implies (see (1.2b)) that, if Im(ω) > 0 but αω is real, αω = ρ with ρ real and
nonvanishing, then the model (1.2) is asymptotically isochronous, its generic solutions beco-
ming, in the remote future, completely periodic with period 2π/|ρ|, up to corrections vanishing
exponentially as t → ∞ (for a more detailed discussion of the notion of asymptotic isochrony
see Chapter 6, entitled “Asymptotically isochronous systems”, of [6]).

For ω = 0 (i.e., when the model (1.2) reduces to (1.1)) it is possible to restrict consideration
to real dependent variables zn, but even then it is more interesting not to do so, so that the
time evolution takes place in the plane rather than on the real line: see the remarkable behavior
of this dynamical system in this case (“the game of musical chairs”), as detailed in Section 4.2.4
of [4]. Hence let us reiterate that we always consider the dependent variables zn to be complex
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numbers, both in the continuous-time case, zn ≡ zn(t), 0 ≤ t < ∞, and (see below) in the
discrete-time case, zn ≡ zn(`), ` = 0, 1, 2, . . . .

Another large class of solvable dynamical systems “of goldfish type” is characterized by the
equations of motion

z̈n = a1żn + a2 + a3zn − 2(N − 1)a4z
2
n +

N∑
m=1, m 6=n

(zn − zm)−1
[
2żnżm

+ (a5 + a6zn)(żn + żm) + a7zn(żnzm + żmzn) + 2
(
a8 + a9zn + a10z

2
n + a4z

3
n

)]
,

n = 1, . . . , N, (1.3)

featuring 10 arbitrary constants (see [4, equation (2.3.3-2)]). In this case the solvability is
achieved by identifying the N dependent variables zn(t) with the N roots of a time-dependent
polynomial ψ(z, t) of degree N in z satisfying a linear second-order PDE in the two independent
variables z and t.

For an explanation of the origin of the name “goldfish” attributed to these models see Sec-
tion 1.N of [6] and the literature cited there. In this book [6] (see in particular its Section 4.2.2,
entitled “Goldfishing”, and the papers referred to there) several other solvable models “of
goldfish type” are reported, including isochronous ones (i.e., models featuring solutions which
are completely periodic with a period independent of the initial data). A few additional models
of goldfish type have been identified more recently [7, 8, 9].

The most remarkable aspect of these dynamical systems is their solvability, namely the possi-
bility to solve their initial-value problems by algebraic operations, amounting generally to finding
the N eigenvalues of an N ×N explicitly known time-dependent matrix (see below), or equiva-
lently to finding the N roots of an explicitly known time-dependent polynomial of degree N (see
for instance (1.1b) and (1.2d)). Quite interesting is also the identification of multiply periodic,
completely periodic, or even isochronous or asymptotically isochronous cases.

In the present paper we present various discrete-time dynamical systems “of goldfish type”,
so denoted because all these models reduce, in the limit when the discrete-time independent
variable ` = 0, 1, 2, . . . becomes continuous, to continuous-time dynamical systems of goldfish
type. All these models are moreover solvable, i.e. the solution of their initial value problems can
be achieved by finding the N eigenvalues zn(`) of N × N matrices explicitly known in terms
of the initial data and of the discrete-time independent variable `; or equivalently by finding
the N roots zn(`) of a polynomial, of degree N in the complex variable z, as well explicitly
known in terms of the initial data and of the discrete-time independent variable `. Some of
these models feature interesting behaviors, even isochrony or asymptotic isochrony. Two of
these models (see Subsection 2.1 and 2.2) were treated in the paper [10], which has not been
published because – after it was submitted for publication but before getting any feedback –
new solvable models were identified and it was therefore considered preferable to report all these
models in a single paper, this one. The main properties of each of these discrete-time models
are reported in Section 2, and proven in Section 3. These properties include the display of the
equations of motion of these discrete-time models, the solution of their initial-value problems,
a terse discussion (for the first three models) of their behavior including the possibility that
for special values of some of their parameters they possesses periodic or multiperiodic solutions
or even display isochrony or asymptotic isochrony, and some mention of their continuous-time
limits. Section 4 entitled “Outlook” concludes the paper: in it a general framework is outlined
which might allow the identification of additional solvable discrete-time models. And some
mathematical developments are confined to two appendices.

These findings are congruent with the recent surge of interest for discrete-time evolutions –
in particular, such evolutions which are in some sense integrable or even solvable. Given the
large body of research devoted to these topics over the last two decades, our reference to the
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relevant literature shall be limited to citing the following surveys: [11, 12, 13, 14, 15]. But
a special mention must be made of the seminal papers by Nijhoff, Ragnisco, Kuznetsov and
Pang, see [16] as well as the earlier paper [17], where discrete-time versions were introduced of
the well-known integrable “Ruijsenaars–Schneider” and “Calogero–Moser” dynamical systems;
as well as of the paper by Suris [18], which treats specifically a discrete-time version of the
original goldfish model. Some results of these papers refer to models whose equations of motion
feature trigonometric/hyperbolic or even elliptic functions, and are therefore more general than
those treated in the present paper, whose equations of motion only feature rational functions
(see below); on the other hand the findings reported below include more general models than
those previously treated, demonstrate the solvability of these models by an approach somewhat
different from those previously employed, and, most significantly, display the possible emer-
gence of remarkable phenomenologies – including periodicity and even isochrony or asymptotic
isochrony, see below – not previously identified for this kind of discrete-time dynamical systems.

Let us also mention that the approach developed below also allows to identify and investi-
gate discrete-time variants of another class of solvable continuous-time dynamical systems, the
prototype of which is characterized by the Newtonian equations of motion

z̈n =
N∑

k=1, k 6=n

c

(zn − zk)3
, n = 1, . . . , N

(with c an arbitrary constant), instead of (1.1a). But in this paper we merely indicate, at the
appropriate point, how to proceed in this direction, postponing a complete treatment of this
development to a separate paper.

And let us finally pay tribute to Olshanetsky and Perelomov who were the first to show, more
than 35 years ago, that the time-evolution of a nontrivial many-body system could be usefully
identified with the evolution of the eigenvalues of a matrix itself evolving in a much simpler,
explicitly solvable, manner: see [19] and their other papers referred to in Section 2.1.3.2 of [4],
entitled “The technique of solution of Olshanetsky and Perelomov”. The present paper extends
their approach to the discrete-time context.

2 Results

In this section we report the main results of this paper; they are then proven in Section 3.

Notation 2.1. Hereafter the dependent variables are indicated again as zn, but they are now
functions, zn ≡ zn(`), of the discrete-time variable ` taking the integer values ` = 0, 1, 2, . . . ; and
superimposed tildes indicate generally a unit increase of the independent variable `, for instance
z̃n ≡ zn(` + 1), ˜̃zn ≡ zn(` + 2). Hereafter δnm is the standard Kronecker symbol, δnm = 1 if
n = m, δnm = 0 if n 6= m, and underlined quantities are N -vectors, for instance z ≡ (z1, . . . , zN ).
For the remaining notation we refer to Notation 1.1, see above, and to specific indications given
case-by-case below.

As reported in this section and explained in Sections 3 and 4, the solvable models considered
in this paper generally feature three equivalent versions of the second-order “equations of mo-
tion” characterizing their evolution in discrete-time. The treatment of the first model given in
Subsections 2.1 and 3.1 is somewhat more detailed than that provided for the other models in
the subsequent subsections where, to avoid repetitions, we often refer to the treatments provided
in Subsections 2.1 and 3.1. And already in this section, as well as in Section 3, we often take
advantage – to simplify the presentation of some results – of identities and lemmata collected
in Appendix A.
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2.1 First model

The first model is defined by the following second-order discrete-time equations of motion: the
N values of the twice-updated variables ˜̃zn ≡ zn(` + 2) are given, in terms of the 2N values of
the variables zm ≡ zm(`), z̃m ≡ zm(` + 1), by the N roots of the following (single) algebraic
equation in the unknown z,

N∑
k=1

( z̃k − azk
z − az̃k

) N∏
j=1, j 6=k

(
z̃k − azj
z̃k − z̃j

) = 1, (2.1a)

which clearly amounts to a polynomial equation of degree N in this variable z (as it is imme-

diately seen by multiplying this equation by the polynomial
N∏
m=1

(z−az̃m)). Here and below a is

an arbitrary (dimensionless, nonvanishing) constant. A neater version of this formula is easily
obtained by multiplying it by a and by then using the identity (A.10) with ηn = az̃n, ζn = a2zn,
n = 1, . . . , N . It reads

N∏
j=1

(
z − a2zj
z − az̃j

)
= 1 + a. (2.1b)

An equivalent formulation of this model is provided by the following system of N polynomial
equations of degree N for the twice-updated coordinates ˜̃zn ≡ zn(`+ 2):

N∑
k=1

(˜̃zk − az̃k
z̃k − azn

)
N∏

j=1, j 6=k

(˜̃zj − az̃k
z̃j − z̃k

) = aN−1, n = 1, . . . , N. (2.2a)

Again, a neater version of this formula is easily obtained by dividing it by a and by then using
the identity (A.10), now with z = a2zn, ηn = a z̃n, ζn = ˜̃zn, n = 1, . . . , N . It reads

N∏
j=1

(˜̃zj − a2zn
z̃j − azn

)
= (1 + a)aN−1, n = 1, . . . , N. (2.2b)

And a third, equivalent version of this model is provided by the following system of N
polynomial equations of degree N for the twice-updated coordinates ˜̃zn ≡ zn(`+ 2):

N∏
j=1

(˜̃zj − az̃n
azj − z̃n

)
= −aN−1, n = 1, . . . , N. (2.3)

The similarities and differences among these three sets of “equations of motion”, (2.1), (2.2)
and (2.3), are remarkable: let us reemphasize that they in fact yield the same evolution in
discrete-time of the N coordinates zn ≡ zn(`). Particularly remarkable is their similarity in the
special a = 1 case, when the 3 versions (2.1b), (2.2b) and (2.3) of the equations of motion read
as follows:

N∏
j=1

(˜̃zn − zj˜̃zn − z̃j
)

= 2, n = 1, . . . , N,

N∏
j=1

(˜̃zj − zn
z̃j − zn

)
= 2, n = 1, . . . , N,
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N∏
j=1, j 6=n

(˜̃zj − z̃n
zj − z̃n

)
= −1, n = 1, . . . , N.

The last of these three systems coincides with equation (1.8) of [18].

Remark 2.1. This model, see (2.1), (2.2) and (2.3) – as the original goldfish model, see (1.2) –
is invariant under an arbitrary rescaling of the dependent variables, zn ⇒ czn with c an arbitrary
constant ; including the special case c = exp(iγ) with γ an arbitrary real constant, corresponding
to an overall rotation around the origin in the complex z-plane.

The solution of the initial-value problem for this model is given by the following

Proposition 2.1. The N values zn(`) of the dependent variables at the discrete time ` are the
N eigenvalues of the N ×N matrix

Unm(`) = δnmzn(0)a` + vm(0)
a` − 1

a− 1
, n,m = 1, . . . , N (2.4a)

with

vm ≡ vm(z, z̃) =

N∏
j=1

(z̃j − azm)

N∏
j=1, j 6=m

[a(zj − zm)]

, m = 1, . . . , N, (2.4b)

where of course vm(0) indicates the value of vm(z, z̃) corresponding to the initial data z = z(0),
z̃ = z̃(0) ≡ z(1).

A neater, equivalent formulation of this finding – obtained from (2.4) via Lemma A.4 with
ζn = zn(0)a` and ηm = vm(0)(a` − 1)/(a − 1) – states that the N coordinates zn(`) are the N
solutions of the following algebraic equation in z:

N∑
k=1


[
zk(1)− azk(0)

z − a`zk(0)

] N∏
j=1, j 6=k

[
zj(1)− azk(0)

azj(0)− azk(0)

] =
a− 1

a` − 1
.

And another, even neater, equivalent formulation – obtained from this via the identity (A.10)
with z replaced by za1−`, ηk = azk(0), ζj = z̃j(0) = zj(1) – states that the coordinates zn(`) are
the N solutions of the following algebraic equation in z:

N∏
k=1

[
z − a`−1zk(1)

z − a`zk(0)

]
=
a`−1 − 1

a` − 1
. (2.5)

The last two equations become of course polynomial equations of degree N in z after multiplica-

tion by the product
N∏
j=1

[z − a`zj(0)].

These formulas are also valid for a = 1 (by taking the obvious limit, i.e. replacing (ap −
1)/(a− 1) with p). If instead |a| < 1, then clearly for all (positive) values of ` the matrix U(`)
is bounded and Unm(∞) = vm(0)/(1− a); hence for all values of ` the N coordinates zn(`) are
bounded and N − 1 of them vanish as `→∞ while one of them tends to the value

zasy = (1− a)−1
N∑
k=1

vk(0) =
1

1− a

N∑
k=1

[zk(1)− azk(0)],
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see (2.4b) and the identity (A.11) (with ηk = a zk(0), ζj = z̃j(0) = zj(1)). If a 6= 1 but it has
unit modulus,

a = exp(2πiλ) (2.6)

with λ real and not integer, then clearly the matrix U(`) is again, for all values of `, bounded;
and if moreover λ is a (strictly, i.e. non integer) rational number,

λ =
K

L
, a = exp

(
2πiK

L

)
, (2.7)

with K and L two coprime integers and L > 1, then clearly the matrix U(`) is periodic with
period L,

U(l + L) = U(l),

hence the (unordered) set of its N eigenvalues zn(`) is as well periodic with period L. This
shows that in this case, see (2.7), the discrete-time goldfish model, see (2.1) or (2.2) or (2.3),
is isochronous. On the other hand if λ is real and irrational, then clearly the time evolution of
this discrete-time dynamical system is not periodic: indeed, while the right-hand side of (2.4a)
(with (2.6) and λ real and irrational) is periodic (with unit period) as a function of the real
variable τ = λ`, clearly it is not periodic as a function of the variable ` taking the integer
values ` = 0, 1, 2, . . . . (We made this analysis, for convenience, referring to the coordinates zn(`)
as the eigenvalues of U(`), see (2.4); of course an analogous discussion could be made on the
basis of the alternative identification of the coordinates zn(`) as the N roots of the polynomial
equation (2.5) – whose similarity with (1.2d) is in any case to be noted, see below.)

To explore the transition from the discrete-time independent variable ` to the continuous-time
variable t one makes the formal replacements

` =⇒ t

ε
, `+ 1 =⇒ t+ ε

ε
, `+ 2 =⇒ t+ 2ε

ε
, (2.8a)

a =⇒ 1− iωε, (2.8b)

and (with a slight abuse of notation)

zn(`) =⇒ zn(t),

z̃n(`) ≡ zn(`+ 1) =⇒ zn(t) + εżn(t) +
ε2

2
z̈n(t) +O

(
ε3
)
,˜̃zn(`) ≡ zn(`+ 2) =⇒ zn(t) + 2εżn(t) + 2ε2z̈n(t) +O

(
ε3
)
, (2.8c)

with ε infinitesimal. It is then a matter of standard, if a bit cumbersome, algebra, to verify
that the insertion of this ansatz, see (2.8b) and (2.8c), in (2.1b) or (2.2b) or (2.3) yields a trivial
identity to order ε0 = 1, while to order ε it reproduces (1.2a) with α = 1, reading

z̈n = −iωżn +

N∑
m=1, m 6=n

2(żn + iωzn)(żm + iωzm)

zn − zm
, n = 1, . . . , N. (2.9a)

Likewise, the discrete-time solution formula (2.5) becomes, in the continuous-time limit,

N∑
k=1

żk(0) + iωzk(0)

z − zk(0) exp(−iωt)
=

iω

1− exp(−iωt)
≡ iω exp(iωt)

exp(iωt)− 1
, (2.9b)

which coincides with (1.2d) with α = 1. A terse outline of the derivation of these results
is provided at the end of Subsection 3.1. To higher order in ε one would obtain additional
relations satisfied by the solution zn(t) of this continuous-time goldfish model, which might
alternatively be obtained by differentiating its equations of motion (2.9a).
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Remark 2.2. Clearly, for ω real and nonvanishing, this continuous-time model, (2.9a), is
isochronous: see (2.9b) and/or Remark 1.1. This is consistent with the fact that the limiting
replacement (2.8b) can be considered to obtain from (2.7) – entailing isochrony of the discrete-
time model – by identifying εω with 2πK/L in the context of the replacement (see (2.8)) of
the unit interval in the discrete-time model with the infinitesimal time interval ε to make the
transition to the continuous-time case.

Remark 2.3. At every step of the discrete-time evolution the N values of the twice-updated
variables ˜̃zn ≡ zn(`+2) are given, in terms of the N unupdated variables zm ≡ zm(`) and the N
once-updated variables z̃m ≡ zm(`+ 1), as the N roots of a polynomial, of degree N in its argu-
ment z, whose coefficients are explicitly defined in terms of the 2N unupdated and once-updated
variables: see (2.1) or (2.2) or (2.3) (hereafter – within this important Remark 2.3 – we generally
identify, for simplicity, this model only via the version (2.1) of its equations of motion). Hence
at every step of this discrete-time evolution the unordered set of N twice-updated variables ˜̃zn
is uniquely determined, but not the value of each of them. This implies a qualitative difference
among the continuous-time respectively the discrete-time evolutions described by the equations
of motions (2.9a) (or, more generally, (1.2a) and (1.3)) respectively by (2.1): in contrast to
the continuous-time case, the discrete-time evolution (2.1) is only deterministic in terms of the
unordered set of N coordinates zm(`), but not for each individual coordinate zn(`). Indeed the
continuous-time Newtonian equations of motion, see for instance (1.2a), determine uniquely the
value of the acceleration z̈n(t) of the n-th moving point in terms of the N positions zm(t) and
the N speeds żm(t) of all moving points; and correspondingly, while the solution formula (1.2d)
determines only the unordered set of N values zn(t) as the N roots of a polynomial of degree N ,
the value of each individual coordinate zn(t) gets then uniquely determined by continuity in
the time variable t. This latter mechanism to identify uniquely the value of the coordinate of
each moving point is instead missing for the discrete-time evolution (2.1). On the other hand
it is clear that there are appropriate ranges of values of the parameter a and of the 2N initial
data zm(0), z̃m(0) ≡ zm(1) – with a sufficiently close to unity, the N initial coordinates zm(0) all
sufficiently well separated among themselves, and each z̃m(0) ≡ zm(1) sufficiently close to the
corresponding zm(0), see (2.8) – which cause the evolution yielded by the discrete-time goldfish
model (2.1) to mimic closely that yielded by the continuous-time goldfish model (2.9), provided
at every step of the discrete-time evolution the appropriate identification is made of the value
of each twice-updated coordinate ˜̃zn ≡ zn(`+ 2) (among the unordered set of N values yielded
by the discrete-time equations of motion) by an argument of contiguity with z̃n ≡ zn(`+ 1) and
zn ≡ zn(`); and likewise an appropriate identification is made by contiguity of each coordinate
zn(`+ 1) with the corresponding coordinate zn(`) (among the unordered set of N values yielded
by Proposition 2.1) – these arguments of contiguity taking the place of the continuity of zn(t) as
function of t applicable in the continuous-time case. But the contiguity argument breaks down if
the positions at time ` of two different points, zn(`) and zm(`) with n 6= m, get too close to each
other, corresponding to a quasi-collision, or even coincide, corresponding to an actual collision;
which is however not featured by the generic solution of the discrete-time model (2.1) – nor of
the standard goldfish models (1.2a) or (1.3) – clearly emerging only for a set of initial conditions
zn(0), z̃(0) ≡ zn(1) having unit codimension in the 2N -dimensional (complex) phase space z, z̃.

This important remark is applicable to all the discrete-time models considered below, al-
though it will not be repeated.

Remark 2.4. Several of the formulas written above (in this section) simplify somewhat via the
following replacement of the dependent variables:

zn(`) ⇒ a`zn(`), n = 1, . . . , N.
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In particular the 3 equivalent versions (2.1b), (2.2b) and (2.3) of the discrete time equations of
motion are thereby reformulated to read

N∏
j=1

(˜̃zn − zj˜̃zn − z̃j
)

= 1 + a, n = 1, . . . , N,

N∏
j=1

(˜̃zj − zn
z̃j − zn

)
=

1 + a

a
, n = 1, . . . , N,

N∏
j=1

(˜̃zj − z̃n
zj − z̃n

)
= −1

a
, n = 1, . . . , N,

and correspondingly the formula (2.5) providing the solution of the initial-value problem reads

N∏
k=1

[
zn(`)− a−1zk(1)

zn(`)− zk(0)

]
=
a`−1 − 1

a` − 1
, n = 1, . . . , N.

Somewhat analogous remarks are applicable to all the discrete-time models considered below;
their explicit implementation is left to the interested reader.

2.2 Second model

In this subsection we treat rather tersely a discrete-time dynamical system that generalizes
the discrete-time goldfish model described in the preceding Subsection 2.1. This generalization
amounts to the presence of an additional free parameter, b: indeed, for b = 0 one reobtains the
model treated in the preceding Subsection 2.1 (hence in this subsection we assume that b does
not vanish, b 6= 0).

The three equivalent versions of the equations of motion of this model read as follows. The
first version identifies the twice updated coordinates zn(`+2) as the N solution of the following
equation in z (amounting to the identification of the N roots of a polynomial of degree N in
this variable):

N∑
k=1


(
z̃k − azk
z − az̃k

)(
1 + bz̃k
1 + bzk

) N∏
j=1, j 6=k

[(
z̃k − azj
z̃k − z̃j

)(
1 + bz̃j/a

1 + bzj

)] = 1. (2.10a)

The second and third versions consist of the following two systems:

N∑
k=1

(˜̃zk − az̃k
z̃k − azn

)(
1 + bzn
1 + bz̃k

) N∏
j=1, j 6=k

(˜̃zj − az̃k
z̃j − z̃k

) = aN−1, n = 1, . . . , N ; (2.10b)

 N∏
j=1

(˜̃zj − az̃n
azj − z̃n

) N∏
j=1, j 6=n

(
1 + bzj

1 + bz̃j/a

) = aN−1
(1 + bz̃n)

(1 + bzn)
, n = 1, . . . , N. (2.10c)

Remark 2.5. This model – as the original goldfish model (1.2a), and as the model treated
above, see Remark 2.1 – is invariant under a rescaling of the dependent variables, zn ⇒ czn
with c an arbitrary constant ; but only provided the parameter b is also rescaled, b⇒ b/c.

The solution of this model is provided by an analog of (the first part of) Proposition 2.1,
reading as follows:
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Proposition 2.2. The N values zn(`) of the dependent variables at the discrete time ` are the
N eigenvalues of the N ×N matrix

U(`) = U(0)[aI + bV (0)]` + V (0)[(a− 1)I + bV (0)]−1
{

[aI + bV (0)]` − I
}
, (2.11a)

where again (see (2.4))

U(0) = diag[zn(0)], Unm(0) = δnmzn(0), (2.11b)

while the N ×N matrix V (0) is now defined componentwise as follows:

[V (0)]nm =
vm(0)

1 + bzm(0)
, n,m = 1, . . . , N, (2.11c)

with the quantities vm(0) defined again as in Subsection 2.1 (see (2.4b) and the sentence following
this formula). Let us recall that I is the N×N unit matrix (whose presence in (2.11a), however,
might well be considered pleonastic).

As evidenced by a comparison of (2.11a) with (2.4a), the behavior of the solutions of this
model (with b 6= 0) are less simple than those of the model discussed in the preceding Subsec-
tion 2.1. In particular a confined behavior emerges only, see (2.11a), from initial data zn(0),
z̃n(0) ≡ zn(1) implying, via (2.11c) and (2.4b), that all the N eigenvalues of the N ×N matrix
aI + bV (0) have modulus not larger than unity, reading exp(−qn + 2πirn) with the numbers qn
and rn real and the N numbers qn nonnegative, qn ≥ 0. If moreover the N numbers qn all
vanish and the N numbers rn are all rational, the behavior is periodic (but not isochronous,
since these numbers, qn and rn, generally depend on the initial data; see (2.11c) and (2.4b)).
While, if some of (but not all) the N numbers qn are positive, and none is negative, then the
phenomenology we just described (corresponding to the qn’s all vanishing) emerges only asymp-
totically, as `→∞, up to corrections of order exp(−q`) with q the smallest of the nonvanishing
numbers qn – provided all those rn’s are rational whose corresponding qn vanish.

Let us finally mention that, also for this second model, a transition from the discrete-time
independent variable ` to the continuous-time variable t can be performed (as tersely outlined
at the end of Subsection 3.2); but the continuous-time goldfish-type model obtained in this
manner turned out to be, to the best of our knowledge, new, hence it seemed appropriate to
devote a separate paper to it, see [8].

2.3 Third model

The third model is another one-parameter extension of the model treated in Subsection 2.1
(different from that treated in the preceding Subsection 2.2). Again its discrete-time equations
of motion can be presented in three equivalent versions.

The first is characterized by this prescription: the twice-updated N coordinates ˜̃zn ≡ zn(`+2)
are the N roots of the following equation in the variable z,

N∑
k=1

( z̃k − a+zk
z − a+z̃k

) N∏
j=1, j 6=k

(
z̃k − a+zj
z̃k − z̃j

) =
1

a−
, (2.12a)

amounting again to the determination of the N roots of a polynomial of degree N in the vari-
able z. Here and below a+ and a− are 2 arbitrary constants.

Remark 2.6. As entailed by a comparison of these discrete-time second-order equations of
motion with those of the first model, see (2.1a), this third model coincides, for a− = 1, with the
first model with a = a+.
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A neater formulation of these equations of motion reads (after multiplication by a+, via (A.10)
with ζk = a2+zk, ηk = a+z̃k) as follows:

N∏
j=1

(
z − a2+zj
z − a+z̃j

)
=
a− + a+
a−

. (2.12b)

An equivalent, second formulation of this model is provided by the following system of N
polynomial equations for the twice-updated coordinates ˜̃zn ≡ zn(`+ 2):

N∑
k=1

(˜̃zk − a+z̃k
z̃k − a+zn

)
N∏

j=1, j 6=k

(
a+z̃k − ˜̃zj
z̃k − z̃j

) = a−a
N−1
+ , n = 1, . . . , N ; (2.13a)

and a neater version of these equations of motion reads (again via (A.10), but now with ζk = ˜̃zk,
ηk = a+z̃k and z replaced by a2+zn)

N∏
j=1

(˜̃zj − a2+zn
z̃j − a+zn

)
= (a+ + a−)aN−1+ , n = 1, . . . , N. (2.13b)

And a third, also equivalent, version of these equations of motion reads as follows:

N∏
j=1

(˜̃zj − a+z̃n
a+zj − z̃n

)
= −a−aN−1+ , n = 1, . . . , N. (2.14)

Remark 2.7. Remark 2.1 also holds for this model.

The solution of the initial-value problem for this discrete-time dynamical system is provided
by the following

Proposition 2.3. The N coordinates zn(`) are the N eigenvalues of the N ×N matrix

U(`) = (a+)`C+ + (a−)`C−, (2.15a)

where the two constant (i.e., `-independent) N × N matrices C+ and C− are defined in terms
of the 2N initial data zn(0) and z̃(0) ≡ zn(1) by the formula

C± = ±(a+ − a−)−1[U(1)− a∓U(0)] (2.15b)

with the two matrices U(0) and U(1) defined componentwise as follows:

[U(0)]nm = δnmzn(0), (2.15c)

[U(1)]nm = a1−N+

 N∑
k=1

zk(1)− a+
N∑

k=1, k 6=n
zk(0)


×

N∏
j=1, j 6=m

[
a+zm(0)− zj(1)

zm(0)− zj(0)

]
, n,m = 1, . . . , N. (2.15d)

Note that we are, for simplicity, assuming that the two coupling constants a± are different,
a+ 6= a− (see (2.15b)).
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It is plain from these formulas that, if the two “coupling constants” a± (are different and)
are conveniently written as follows,

a± = exp(−q± + 2πir±) (2.16)

with q± and r± real, then, if the two numbers q± are both nonnegative, q± ≥ 0, the time
evolution of the N ×N matrix U(`) is bounded for all values of the discrete-time independent
variable ` = 0, 1, 2, . . . , hence its N eigenvalues zn(`) are all as well bounded (the motion is
confined); if in particular the two numbers q± both vanish, q± = 0, and the two numbers r±
are both rational numbers, r± = K±/L± with K+, L+ and K−, L− coprime integers (and,
for definiteness, L± > 0), then the discrete-time evolution of the matrix U(`) is periodic (with
a period L independent of the initial data, being the minimum common multiple of L+ and L−,
L = mcm[L+, L−]) hence the discrete-time dynamical system (2.12) is isochronous; while if, of
the two numbers q±, one vanishes and the other is positive, q+ = 0, q− = q > 0 respectively
q− = 0, q+ = q > 0, and r+ respectively r− are rational numbers, then the isochronous behavior
(with period L+ respectively L−) only emerges asymptotically, as ` → ∞, up to corrections of
order exp(−q`). While clearly if q+ and q− are both positive entailing (see (2.16)) |a±| < 0,
then (see (2.15a)) the matrix U(`), hence as well all it eigenvalues zn(t), vanish asymptotically
(as t→∞): zn(∞) = 0, n = 1, . . . , N .

Finally let us mention the transition from this discrete-time model to its continuous-time
counterpart. The treatment is completely analogous to that detailed at the end of Subsection 2.1;
except that now (2.8b) must be replaced by

a± =⇒ 1− iω±ε

with

ω+ = αω, ω− = (α− 1)ω.

It is then easily seen that again, at order ε0 = 1, one gets from (2.12b) or (2.13b) or (2.14) a trivial
identity, while at order ε one gets the continuous-time goldfish equations of motion (1.2a); and
the solution of this model, see Proposition 2.3, reproduces in this continuous-time limit the
prescription (1.2d).

2.4 Fourth model

The fourth model is also characterized by three equivalent versions of its discrete-time equations
of motion. The first consists of the following prescription: the twice-updated N coordinates˜̃zn ≡ zn(`+ 2) are the N roots of the following equation in the variable z,

N∑
k=1

[
ĝk(z, z̃)

z − az̃k − b

]
=

1

γ
, (2.17a)

where the N quantities ĝk(z, z̃) are defined as follows:

ĝn(z, z̃) = a1−N (ηz̃n + β)

 N∏
j=1

(
z̃n − azj − b
ηzj + β

)
×

 N∏
j=1, j 6=n

(
ηz̃j + aβ − bη

z̃n − z̃j

) , n = 1, . . . , N. (2.17b)
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Throughout this subsection, the following Subsection 3.4, and Appendix B,

a = α+
ηρ

1− γ
, b =

βρ

1− γ
, (2.17c)

entailing

αβ = aβ − bη, ηρ = (a− α)(1− γ), βρ = b(1− γ), (2.17d)

where α, β, γ, η and ρ are 5 arbitrary constants (but the 3 constants β, η, ρ only enter as βρ
and ηρ, hence any one of these three constants could be replaced by unity without significant
loss of generality); in the following we use interchangeably these constants in order to simplify
some formulas.

An equivalent formulation of these discrete-time equations of motion reads as follows:

N∑
k=1

[
ǧk
(
z̃, ˜̃z)

(ηz̃k + β)(z̃k − azn − b)

]
=

1

(ηzn + β)
, n = 1, . . . , N, (2.18a)

with

ǧn
(
z̃, ˜̃z) =

a1−N

γ

(˜̃zn − az̃n − b) N∏
j=1, j 6=k

(˜̃zj − az̃n − b
z̃j − z̃n

)
, n = 1, . . . , N. (2.18b)

It is a matter of trivial algebra to rewrite these equations of motion, (2.18), as follows:

N∑
k=1

 1

(ηz̃k + β)(z̃k − azn − b)

N∏
j=1

(˜̃zj − az̃k − b)
N∏

j=1, j 6=k

(
z̃j − z̃k

)
 =

γaN−1

ηzn + β
, n = 1, . . . , N. (2.19a)

And, as shown at the end of Appendix B, a neater version of this system of equations of motion
then reads as follows:

N∏
j=1

[˜̃zj − a2zn − b(1 + a)

z̃j − azn − b

]
−

N∏
j=1

(
η˜̃zj + αβ

ηz̃k + β

)
= γaN−1

ηazn + β + ηb

ηzn + β
,

n = 1, . . . , N. (2.19b)

And a third, equivalent formulation of these equations of motion reads as follows:

ǧn
(
z̃, ˜̃z) = ĝn(z, z̃), n = 1, . . . , N, (2.20)

with ǧn
(
z̃, ˜̃z) respectively ĝn(z, z̃) defined by (2.18b) respectively (2.17b).

Remark 2.8. Above and below we assume for simplicity that the parameters characterizing
this model have generic values, for instance γ 6= 0 and γ 6= 1 (see (2.17a) and (2.17c)) and a 6= 0
(see (2.18b)).

Remark 2.9. This model – as the original goldfish model (1.2a), and as the models treated
above, see Remarks 2.1, 2.5 and 2.6 – is invariant under a rescaling of the dependent variables,
zn ⇒ czn with c an arbitrary constant ; but only provided the parameter β – hence as well the
parameter b, see (2.17c) – is also rescaled, β ⇒ cβ, b⇒ cb.

The solution of the initial-value problem for this discrete-time dynamical system is provided
by the following
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Proposition 2.4. The N coordinates zn(`) are the N eigenvalues of the N ×N matrix

U(`) = U(0)P (0, `− 1) +
∑̀
k=1

[
(Bγk−1 + b)P (k, `− 1)

]
, (2.21a)

where the N ×N matrix P (`1, `2) is defined as follows

P (`1, `2) =

`2∏
j=`1

(Aγj + a), (2.21b)

and the two `-independent N ×N matrices A and B are defined as follows

A = ηV (0)− η

β
b, B = βV (0)− b. (2.21c)

Here and throughout we use the convention that (for arbitrary finite Xj)
`2∏
j=`1

Xj = I if `1 > `2

and
k2∑

k=k1

Xj = 0 if k1 > k2. As for the two N ×N matrices U(0) and V (0), they are defined in

terms of the 2N initial data zn(0) and z̃n(0) ≡ zn(1) as follows:

U(0) = Z(0) = diag[zn(0)],

V (0) = [ηZ(0) + β]−1
{
M(0)Z(1)[M(0)]−1 − αZ(0)

}
,

with the N ×N matrices Z(`) and M(0) defined, componentwise, as follows:

Z(`) = diag[zn(`)]; Znm(`) = δnmzn(`), n,m = 1, . . . , N,

Mnm(0) =
ĝm(0)

zm(1)− azn(0)− b
, n,m = 1, . . . , N,

where the notation ĝm(0) is an abbreviation for ĝm(z, z̃), see (2.17b), evaluated at z = z(0),
z̃ = z̃(0) ≡ z(1). Note that Lemma A.5 (with fn = 1, gm = ĝm(0), ξm = zm(1), ηn = azn(0) + b)
entails the following componentwise definition of the inverse matrix [M(0)]−1:

{
[M(0)]−1

}
nm

= a1−N
[
zn(1)− azm(0)− b

ĝn(0)

]
N∏

j=1, j 6=n

[
zj(1)− azm(0)− b
zj(1)− zn(1)

]
×


N∏

j=1, j 6=m

[
zn(1)− azj(0)− b
zm(0)− zj(0)

] , n,m = 1, . . . , N,

hence an explicit expression of the N ×N matrix V (0) reads, componentwise, as follows:

Vnm(0) = − αzn(0)

ηzn(0) + β
δnm +

a1−N

ηzn(0) + β

N∑
k=1

zk(1)


N∏

j=1, j 6=k

[
zj(1)− azm(0)− b
zj(1)− zk(1)

]
×


N∏

j=1, j 6=n
[zk(1)− azj(0)− b]∏

j=1, j 6=m
[zm(0)− zj(0)]


 .
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Remark 2.10. It is relevant to this expression, (2.21), of the N × N matrix U(`) – whose N
eigenvalues provide the N coordinates zn(`) – that (2.21b) and (2.21c) entail

P (`1, `2) = Qdiag[pn(`1, `2)]Q
−1, A = Qdiag[an]Q−1, B = Qdiag[bn]Q−1,

pn(`1, `2) =

`2∏
j=`1

(anγ
j + a), an = ηvn −

η

β
b, bn = βvn − b, n = 1, . . . , N,

with vn the N (`-independent) eigenvalues of the N ×N matrix V (0) and Q the corresponding
(`-independent) diagonalizing matrix,

V (0) = Qdiag(vn)Q−1.

And let us mention that, also for this fourth model, a transition from the discrete-time
independent variable ` to the continuous-time variable t can be performed (see the end of
Subsection 3.4). And, as in the case of the second model, also in this case the continuous-time
goldfish model thereby obtained turned out to be, to the best of our knowledge, new. Hence it
seemed appropriate to devote to this model a separate paper [9].

3 Proofs

In this section we prove the findings reported in the preceding Section 2.
The basic strategy to obtain all these results goes as follows. The starting point is a solvable

system of two matrix first-order discrete-time ODEs, say

Ũ = F1(U, V ), Ṽ = F2(U, V ), (3.1)

where ` = 0, 1, 2, . . . is the discrete-time independent variable, the two dependent variables
U ≡ U(`), V ≡ V (`) are N ×N matrices and of course superimposed tildes denote the updating
of the discrete-time, Ũ ≡ U(`+ 1), Ṽ ≡ V (`+ 1). The solvable character of this matrix system
entails the possibility to obtain explicitly the solution of its initial-value problem. Four cases
when this is possible – corresponding to 4 simple assignments of the functions F1(U, V ) and
F2(U, V ) – are treated in the following 4 subsections. Note that the two functions F1(U, V ),
F2(U, V ) are assumed to depend on no other matrix besides U and V (and the unit matrix I);
they may of course feature some scalar constants, and the order in which the two, generally
noncommuting, matrices U and V appear in their definition is of course relevant: see below.

One assumes moreover that the N × N matrix U ≡ U(`) is diagonalizable and denotes as
R ≡ R(`) the diagonalizing N ×N matrix:

U ≡ RZR−1, U(`) ≡ R(`)Z(`)[R(`)]−1, (3.2a)

Z = diag[zn], Z(`) = diag[zn(`)], (3.2b)

where the notation zn(`) for the N eigenvalues of the N×N matrix U ≡ U(`) shall be justified by
the identification, see below, of these quantities with the dependent variables of the discrete-time
dynamical systems introduced above.

Remark 3.1. These formulas entail that the matrix R(`) is defined up to right-multiplication
by an arbitrary diagonal matrix D(`), R(`)⇒ R(`)D(`).

Next we introduce the two matrices M(`) and Y (`) defined as follows:

M = R−1R̃, M(`) = [R(`)]−1R(`+ 1), (3.3a)
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V = RY R̃−1, V (`) = R(`)Y (`)[R(`+ 1)]−1, (3.3b)

so that

V = RYM−1R−1, V (`) = R(`)Y (`)[M(`)]−1[R(`)]−1. (3.3c)

Remark 3.2. The element of freedom in the definition of the matrix R(`), see Remark 3.1,
entails that the matrix M(`) is defined up to the “gauge transformation” resulting by inserting
in its definition (3.3a) the N ×N matrix [R(`)D(`)]−1 = [D(`)]−1[R(`)]−1 in place of the matrix
[R(`)]−1 (and of course R(` + 1)D(` + 1) in place of R(` + 1)): hence, as a consequence of the
arbitrary nature of the diagonal matrix D(`), out of the N2 elements of the N × N matrix
M ≡M(`) only N2 −N are significant. Likewise for the matrix Y ≡ Y (`).

One then, by inserting (3.2a) and (3.3c) in (3.1), obtains the following system of two first-
order discrete-time N ×N matrix evolution equations:

MZ̃ = F1

(
Z, YM−1

)
M, MỸ = F2

(
Z, YM−1

)
MM̃ ; (3.4)

and from these two matrix equations, by making a convenient ansatz for the two matrices M ≡
M(`) and Y ≡ Y (`) in terms of the 2N quantities zn ≡ zn(`) and z̃n ≡ zn(` + 1) – an ansatz
which must of course be consistent with these two matrix evolution equations – one obtains
a system of N second-order discrete-time evolution equations for the N coordinates zn ≡ zn(`).
This last step is of course only possible for special assignments, in the discrete-time matrix
evolution equations (3.1), of the two matrix functions F1(U, V ) and F2(U, V ), see below.

The discrete-time dynamical system thereby obtained is then solvable, since the quantities
zn ≡ zn(`) are the N eigenvalues of the N × N matrix U ≡ U(`) which, as solution of the,
assumedly solvable, matrix evolution system (3.1), can be explicitly evaluated. How this works
out is shown in detail in the following subsections: in more detail in Subsection 3.1, where the
simplest case is treated.

Let us also mention, once and for all, that in the following we will conveniently assume that
the matrix U is initially diagonal:

U(0) = Z(0) ≡ diag[zn(0)], (3.5a)

implying (up to the ambiguity mentioned above, see Remark 3.1)

R(0) = I. (3.5b)

Here and throughout I is the N ×N unit matrix, i.e., componentwise, Inm = δnm.

3.1 Solution of the first model

The point of departure to obtain the findings reported in Subsection 2.1 is the following discrete-
time first-order, linear, matrix system (see (3.1)):

Ũ = aU + V, Ṽ = V, (3.6a)

where a is an arbitrary scalar constant. Note that the second of these two ODEs entails that in
this case V is a constant (i.e., `-independent) N ×N matrix, V (`) = V (0). It is plain that the
solution of the corresponding initial-value problem for the N ×N matrix U reads

U(`) = U(0)a` + V (0)
a` − 1

a− 1
. (3.6b)
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Let us now proceed as indicated in the first part of Section 3. It is then easily seen
(via (3.2) and (3.3)) that the first of the two discrete-time matrix evolution equations (3.6a)
yields (see (3.4)) the matrix equation

MZ̃ − aZM = Y, (3.7a)

namely, componentwise,

Mnm =
Ynm

z̃m − azn
, n,m = 1, . . . , N. (3.7b)

Likewise, the second of the two discrete-time matrix evolution equations (3.6a) yields the
matrix relation

Y M̃ = MỸ .

Via (3.7b) this matrix equation implies the following N2 relations:

N∑
k=1

{
YnkỸkm

[(˜̃zm − az̃k)−1 − (z̃k − azn)−1
]}

= 0, n,m = 1, . . . , N. (3.8)

This derivation shows that this system of N2 discrete-time equations of motion is equivalent
to the solvable equation of motion (3.6a) for the N×N matrix U ; hence it is just as solvable. Note
that the dependent variables are now the N coordinates zn and the N2 matrix elements Ynm
(of which only N(N − 1) are significant, see Remark 3.2; so the number of equations and the
number of dependent variables tally). To obtain a model that qualifies as discrete-time analog
of the continuous-time goldfish model (2.9a) we need to distill from this system a set of only N
equations of motion involving only the N coordinates zn. The standard trick to do so (see, for
instance, Section 4.2.2 entitled “Goldfishing” of [6]) is to identify – if possible – an ansatz which
expresses the N2 components of the matrix Y in terms of the 2N quantities zn, z̃n, yielding
N equations of motion involving only the N coordinates zn, z̃n and ˜̃zn – to be interpreted
as equations of motion of the discrete-time goldfish – and implying that the N2 equations of
motion (3.8) are all satisfied, thanks to these very equations of motion.

An educated guess for such an ansatz reads as follows:

Ynm = gm, n,m = 1, . . . , N. (3.9)

Note that we reserve at this stage the option to assign the N quantities gm.
Via this ansatz the equations (3.8) become

N∑
k=1

(
gk˜̃zm − az̃k − gk

z̃k − azn

)
= 0, n,m = 1, . . . , N, (3.10a)

hence they amount to the following 2 systems, each involving only N equations:

N∑
k=1

(
gk

z̃k − azn

)
= 1, n = 1, . . . , N, (3.10b)

N∑
k=1

(
gk˜̃zn − az̃k

)
= 1, n = 1, . . . , N. (3.10c)

The unit in the right-hand sides could of course be replaced by an arbitrary constant c – of
course the same constant in (3.10b) and (3.10c) – but this would merely entail an irrelevant
rescaling of gk by c; see below.
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These are now two sets of N equations, each featuring linearly the N quantities gk, that
we like to eliminate in order to obtain a set of N “equations of motion” determining the twice
updated coordinates ˜̃zn ≡ zn(`+2) in terms of the 2N coordinates zn ≡ zn(`) and z̃n ≡ zn(`+1).
There are three alternative strategies to achieve this goal. One can solve the first linear system
thereby obtaining gk as a function of z and z̃, and then insert this expression gk ≡ ĝk (z, z̃) in
the second system; alternatively, one can solve the second linear system, thereby obtaining gk
as a function of z̃ and ˜̃z, and then insert this expression gk ≡ ǧk

(
z̃, ˜̃z) in the first system; or

one can equate the two expressions of gk obtained solving the first, respectively the second,
system, i.e. write ĝk(z, z̃) = ǧk

(
z̃, ˜̃z). Clearly the three sets of equations of motion obtained

in this manner are equivalent, i.e. they characterize the same discrete-time evolution of the N
coordinates zn ≡ zn(`); but they may seem quite different (indeed, see (2.1), (2.2) and (2.3)).
Note that we introduced a superimposed decoration on the functions ĝk(z, z̃) respectively ǧk

(
z̃, ˜̃z)

to emphasize that the functional dependence on their arguments is generally different, as implied
by their definitions as solutions of (3.10b) respectively of (3.10c).

Let us first of all see what the first approach yields. From (3.10b) one obtains (via Lemma A.1
reported in Appendix A, with ξk = z̃k, ηn = azn, c = 1) the following expression of gk ≡ ĝk(z, z̃):

ĝk(z, z̃) = (z̃k − azk)
N∏

j=1, j 6=k

(
z̃k − azj
z̃k − z̃j

)
, k = 1, . . . , N. (3.11)

The insertion of this expression of gk in (3.10c) yields the equations of motions (2.1a).
Likewise, the second approach yields, from (3.10c) (again via Lemma A.1, but now with

ξk = az̃k, ηn = ˜̃zn, c = −1) the following expression of gk ≡ ǧk
(
z̃, ˜̃z):

ǧk
(
z̃, ˜̃z) = a1−N

(˜̃zk − az̃k) N∏
j=1, j 6=k

(˜̃zj − az̃k
z̃j − z̃k

)
, k = 1, . . . , N. (3.12)

The second version, (2.2a), of the discrete-time equations of motion follows by inserting this
expression of gk in (3.10b).

And the third approach yields, by equating (3.11) to (3.12), the third version, (2.3), of the
discrete-time equations of motion.

We have seen that the solutions zn(`) of these discrete-time equations of motion are provided
by the eigenvalues of the N × N matrix U(`), see (3.6b). To prove Proposition 2.1 we must
now obtain from (3.6b) (also taking advantage of the ansatz (3.9)) the expression (2.4) of this
matrix in terms of the initial data zn(0), z̃n(0) ≡ zn(1) of the discrete-time dynamical system.

This requires that we express the two matrices U(0) and V (0) appearing in the right-hand
side of (3.6b) in terms of the initial data zn(0), z̃n(0) ≡ zn(1).

The expression of U(0) is an immediate consequence of (3.5a):

[U(0)]nm = δnmzn(0). (3.13)

To obtain V (0) we note first of all that (3.3c) and (3.5b) imply

V (0) = Y (0)[M(0)]−1,

while (3.7b) with the ansatz (3.9) implies (at ` = 0)

Mnm(0) =
ĝm(0)

zm(1)− azn(0)
, n,m = 1, . . . , N,

where of course ĝm(0) stands for ĝm(z, z̃), see (3.11), evaluated at z = z(0), z̃ = z̃(0) ≡ z(1).
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We then evaluate the matrix [M(0)]−1 via Lemma A.5 (with ξm = zm(1), ηn = a zn(0),
fn = 1 and gm = ĝm(0)) and, using again the ansatz (3.9) (at ` = 0), we obtain the following
expression of the N ×N matrix V (0):

[V (0)]nm = vm(0)unm, n,m = 1, . . . , N,

with vm(0) defined as in Subsection 2.1 (see (2.4b) and the sentence following this formula) and

unm =
N∑
k=1


N∏

j=1, j 6=m
[zk(1)− azj(0)]

N∏
j=1, j 6=k

[zk(1)− zj(1)]

 , n,m = 1, . . . , N.

But the identity (A.8) (with ηk = zk(1), ζj = azj(0)) entails unm = 1, hence

[V (0)]nm = vm(0), n,m = 1, . . . , N. (3.14)

The insertion of these expressions of U(0) and V (0), (3.13) and (3.14), in (3.6b) yields (2.4),
thereby completing the proof of Proposition 2.1.

Let us now provide a terse treatment of the transition from the discrete-time equations of
motion (2.1b), which we conveniently re-write here as follows,

N∏
j=1

(˜̃zn − a2zj˜̃zn − a z̃j
)

= 1 + a, n = 1, . . . , N, (3.15)

to the continuous-time case, see (2.9a). It is then appropriate to treat separately the factor with
j = n in the product appearing in the left-hand side of (3.15), and all the other factors with
j 6= n. The basic equations are (2.8), entailing

˜̃zn − a2zn = 2ε(żn + iωzn) + ε2
(
2z̈n + ω2zn

)
+O

(
ε3
)
,

˜̃zn − az̃n = ε(żn + iωzn) +
ε2

2
(3z̈n + 2iωżn) +O

(
ε3
)
,˜̃zn − a2zj = zn − zj + 2ε(żn + iωzj) +O

(
ε2
)
, j 6= n,˜̃zn − az̃j = zn − zj + ε(2żn − żj + iωzj) +O
(
ε2
)
, j 6= n.

Hence, after a little algebra,

˜̃zn − a2 zn˜̃zn − az̃n = 2 + ε
−z̈n − 2iωżn + ω2zn

żn + iωzn
+O

(
ε2
)
, (3.16a)

˜̃zn − a2zj˜̃zn − az̃j = 1 + ε
żj + iωzj
zn − zj

+O
(
ε2
)
, j 6= n, (3.16b)

implying

N∏
j=1

(˜̃zn − a2zj˜̃zn − az̃j
)

=

(
2 + ε

−z̈n − 2iωżn + ω2zn
żn + iωzn

)

×

1 + ε

N∑
j=1, j 6=n

(
żj + iωzj
zn − zj

)+O
(
ε2
)
. (3.16c)
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While of course

1 + a = 2− iωε, (3.16d)

see (2.8b). It is then clear that the insertion of these two formulas, (3.16c) and (3.16d), in (3.15)
yields, at order ε0 = 1, the trivial identity 2 = 2, and at order ε the equations of motion of the
continuous-time goldfish model (2.9a).

In an analogous manner one reobtains (2.9a) from (2.2b) or from (2.3).
Let us also show that (2.5), which we rewrite here conveniently as follows,

N∏
k=1

[
z − a`zk(1)a−1

z − a`zk(0)

]
=
a`a−1 − 1

a` − 1
, (3.17)

yields, in the continuous-time limit, (2.9b). Indeed the relation a = 1− iεω (see (2.8b)) entails

a−1 = 1 + iεω +O
(
ε2
)
,

a` = exp(−iωt)
(

1− εω
2t

t

)
+O

(
ε2
)

(via the first of the three relations (2.8a)), and

zk(1) = zk(0) + εż(0) +O
(
ε2
)

(via the second of the three relations (2.8c), with ` = 0). Via these three relations (3.17) becomes

N∏
k=1

[
z − exp(−iωt)

(
1− εω2t/2

)
{zk(0) + ε[żk(0) + iωzk(0)]}+O

(
ε2
)

z − exp(−iωt)
(
1− εω2t/2

)
zk(0) +O

(
ε2
) ]

=
exp(−iωt)

(
1− εω2t/2

)
(1 + iεω)− 1 +O

(
ε2
)

exp(−iωt)
(
1− εω2t/2

)
− 1 +O (ε2)

,

i.e. (dividing each numerator by the corresponding denominator)

N∏
k=1

[
1− ε [żk(0) + iωzk(0)]

z − exp(−iωt)zk(0)
+O

(
ε2
)]

= 1 + ε
iω

exp(−iωt)− 1
+O

(
ε2
)
.

Clearly to order ε0 = 1 this yields the trivial identity 1 = 1, and to order ε just the formula (2.9b).
Let us end this subsection by pointing out that there is another ansatz that allows to trans-

form the system of N2 equations (3.8) into two separate systems of N equations, but only in
the special case a = 1. This alternative ansatz reads (instead of (3.9))

Ynm =
fm

z̃m − zn
, n,m = 1, . . . , N,

entailing (but only provided a = 1) the replacement of the system of N2 equations (3.8) with
the following two systems of N equations:

N∑
k=1

[
fk

(z̃k − zn)2

]
= 1, n = 1, . . . , N,

N∑
k=1

[
fk(˜̃zn − z̃k)2

]
= 1, n = 1, . . . , N.

But, as indicated at the end of Section 1, we postpone the treatment of the corresponding class
of discrete-time dynamical systems to a separate paper.
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3.2 Solution of the second model

The proof of the findings reported in Subsection 2.2 is analogous to that provided above, see
Subsection 3.1, so our treatment in this subsection is quite terse, being limited to indicate the
changes with respect to that reported in the preceding Subsection 3.1. Now the system of matrix
evolution equations (3.6a) is generalized to read

Ũ = U(aI + bV ) + V, Ṽ = V ; (3.18)

hence its solution is given by (2.11a). Clearly this evolution equation, (3.18), respectively its
solution, (2.11a), reduce to (3.6a) respectively to (3.6b) when b vanishes.

The rest of the treatment is analogous. (3.7a) is now generalized to read

MZ̃ − aZM = (I + bZ)Y,

hence it yields, in place of (3.7b),

Mnm =

(
1 + bzn
z̃m − azn

)
Ynm, n,m = 1, . . . , N.

In place of (3.10a) (again via the ansatz (3.9)) one now has

N∑
k=1

[
gk(1 + bz̃k)(˜̃zm − az̃k) − gk(1 + bzn)

z̃k − azn

]
= 0, n,m = 1, . . . , N, (3.19a)

hence in place of (3.10b) and (3.10c) one gets the two sets of N equations

N∑
k=1

[
gk

z̃k − azn

]
=

1

1 + bzn
, n = 1, . . . , N, (3.19b)

N∑
k=1

[
gk(1 + bz̃k)˜̃zn − az̃k

]
= 1, n = 1, . . . , N. (3.19c)

By solving the first set one obtains (via Lemma A.2, with ξk = z̃k, ηn = azn, cn = 1/(1+bzn),
and then the identity (A.7) with z = −a/b, ηk = azk, ζj = z̃j) the following expression of
gk ≡ ĝk(z, z̃):

ĝk(z, z̃) =

(
z̃k − azk
1 + bzk

) N∏
j=1, j 6=k

[(
z̃k − azj
z̃k − z̃j

)(
1 + bz̃j/a

1 + bzj

)]
. (3.20a)

By solving instead the second set one obtains (via Lemma A.1, with ξk = −az̃k, ηn = −˜̃zn,
c = 1 and gk replaced by gk(1 + bz̃k)) the following expression of gk ≡ ǧk

(
z̃, ˜̃z):

ǧk
(
z̃, ˜̃z) = a1−N

(˜̃zk − az̃k
1 + bz̃k

)
N∏

j=1, j 6=k

(˜̃zj − az̃k
z̃j − z̃k

)
. (3.20b)

The three versions, (2.10), of the equations of motion reported in Subsection 2.2 then follow
by inserting (3.20a) in (3.19c), by inserting (3.20b) in (3.19b), and by equating (3.20a) to (3.20b).

Next, let us prove Proposition 2.2. One proceeds again in close analogy to the treatment
of the preceding Subsection 3.1, hence we only mention where the treatment here differs from
that provided there. It is easily seen that the expression of U(0) is the same as that given
there, see (3.13), while the expression of V (0) (because one must now use Lemma A.5 with
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fn = 1 + bzn(0) rather than fn = 1) is now given by (2.11c). The insertion of these expressions
of U(0) and V (0) in (3.18) reproduce (2.11), thereby proving Proposition 2.2.

Let us end this subsection by outlining what happens in the continuous-time limit which
obtains by setting

a = 1 + εbη, V (0) = εB

with ε infinitesimal, and correspondingly replacing the discrete-time matrix evolution equa-
tion (3.18) with the matrix ODE

U̇ = bU(ηI +B) +B, (3.21a)

the solution of which reads

U(t) = U(0) exp[b(ηI +B)t] +B[b(ηI +B)]−1{exp[b(ηI +B)t]− I}. (3.21b)

As already mentioned in Subsection 2.2, the (continuous-time) goldfish-type model obtainable
by focussing appropriately on the evolution of the N eigenvalues zn(t) of this N×N matrix U(t)
(evolving according to (3.21a)) was, to the best of our knowledge, new, when the solvable matrix
evolution equation (3.21a) was identified as continuous-time limit of (3.18); its treatment is
provided in [8].

3.3 Solution of the third model

The starting point is the following linear system of two discrete-time matrix evolution equations:

Ũ = a+U + βV, Ṽ = a−V, (3.22a)

where the 3 constants a±, β are a priori arbitrary (β 6= 0). It is easily seen that the solution of
the initial-value problem for U reads as follows (with an analogous formula for V ):

U(`) = a`+C+ + a`−C−, (3.22b)

and the two constant matrices C± given by (2.15b).

Remark 3.3. This solution U(`) of the initial-value problem for the discrete-time N × N
matrix evolution equation (3.22a) depends only on the 2 constants a±: see (3.22b) and (2.15b).
Indeed the system of two first-order discrete-time evolution equations (3.22a) is easily seen to
correspond to the single second-order evolution equation

˜̃U − (a+ + a−)Ũ + a+a−U = 0,

from which the constant β has disappeared (but note that this second-order matrix ODE obtains
only if β 6= 0; indeed if β = 0, U satisfies a first-order evolution equation, see the first of the
two equations (3.22a).

Remark 3.4. For a+ = a, β = 1, a− = 1, the system (3.22a) coincides with (3.6a) hence this
model reduces to the first model, confirming Remark 2.6.

We then proceed as in the first part of Section 3. It is then easily seen that the two matrix
evolution equations (3.22a) become

MZ̃ = a+ZM + βY,
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MỸ = a−Y M̃.

Via (3.2b) the first of these two equations reads, componentwise,

Mnm =
βYnm

z̃m − a+zn
, n,m = 1, . . . , N, (3.23)

and using this formula it is easily seen that the second can be written, componentwise, as follows:

N∑
k=1

[
YnkỸkm

(
a−˜̃zm − a+z̃k − 1

z̃k − a+zn

)]
= 0, n,m = 1, . . . , N. (3.24)

At this point we use again the ansatz (3.9) for the matrix Ynm, the consistency of which
is vindicated by the subsequent developments. Here the N quantities gm are again a pri-
ori arbitrary; they shall be determined as functions of the 2N un-updated and once-updated
coordinates zn ≡ zn(`) and z̃n ≡ zn(`+ 1), or alternatively of the once and twice updated coor-
dinates z̃n ≡ zn(`+ 1) and ˜̃zn ≡ zn(`+ 2), see below. It is indeed immediately seen that via the
ansatz (3.9) the system of N2 equations (3.24) becomes

N∑
k=1

(
a−gk˜̃zm − a+z̃k − gk

z̃k − a+zn

)
= 0, n,m = 1, . . . , N ; (3.25a)

hence it can be replaced by the following two separated systems of only N equations:

N∑
k=1

(
gk

z̃k − a+zn

)
= 1, n = 1, . . . , N, (3.25b)

N∑
k=1

(
gk˜̃zn − a+z̃k

)
=

1

a−
, n = 1, . . . , N. (3.25c)

The first, (3.25b), of these two systems defines uniquely the N quantities gk ≡ ĝk (z, z̃),
yielding again, via (A.13), the expression (3.11) (with a replaced by a+):

ĝk(z, z̃) = (z̃k − a+zk)
N∏

j=1, j 6=k

(
z̃k − a+ zj
z̃k − z̃j

)
, k = 1, . . . , N. (3.26)

Insertion of this expression in the second, (3.25c), of the two systems written just above then
yields the evolution equation (2.12a). The identification of the third discrete-time dynamical
system of goldfish type, see (2.12a), is thereby accomplished.

The second version, (2.13a), of this model obtains by solving for gk ≡ ǧk
(
z̃, ˜̃z) the se-

cond, (3.25c), of the two systems written above (via Lemma A.1, with ξk = a+z̃k, ηn = ˜̃zn
and c = −1/a−), thereby obtaining

ǧk
(
z̃, ˜̃z) =

(˜̃zk − a+z̃k
a−

)
N∏

j=1, j 6=k

(
a+z̃k − ˜̃zj
a+z̃k − a+z̃j

)
, k = 1, . . . , N ; (3.27)

and by then inserting this expression of gk in (3.25b).
And the third version, (2.14), of this model obtains by equating (3.26) to (3.27).
As for the proof of Proposition 2.3, it follows immediately from the above treatment, see

in particular (2.15); there only remains to justify the identification of the two matrices U(0)
and U(1), see (2.15c) and (2.15d).
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The first of the two formulas, (2.15c), is just (3.5a).

To prove the second, (2.15d), we note that (3.5a) and (3.3a) entail (for ` = 0)

R(1) = M(0), (3.28)

while (3.2) (with ` = 0) reads

U(1) = R(1)Z(1)[R(1)]−1. (3.29a)

Hence (via (3.28))

U(1) = M(0)Z(1)[M(0)]−1. (3.29b)

We now note that (3.23) and the ansatz (3.9) imply that the N ×N matrix M(0) is defined
componentwise as follows:

Mnm(0) =
gm(0)

zm(1)− a+zn(0)
, n,m = 1, . . . , N, (3.30a)

with (see (3.26))

gm(0) = [zm(1)− a+zm(0)]

N∏
j=1, j 6=m

[
zm(1)− a+zj(0)

zm(1)− zj(1)

]
, m = 1, . . . , N, (3.30b)

so that

Mnm(0) =
zm(1)− a+zm(0)

zm(1)− a+zn(0)

N∏
j=1, j 6=m

[
zm(1)− a+zj(0)

zm(1)− zj(1)

]
, n,m = 1, . . . , N. (3.30c)

Next, we note that the expression (3.30a) of the matrix M(0) entails – via Lemma A.5 (with
fn = 1, gm = gm(0), ξm = zm(1), ηn = a+zn(0)) and the expression of gm(0) given above – that
its inverse, appearing in the right-hand-side of (3.29b), is explicitly given, componentwise, as
follows:

{
[M(0)]−1

}
nm

= a1−N+

[
a+zm(0)− zm(1)

a+zm(0)− zn(1)

] N∏
j=1, j 6=m

[
a+zm(0)− zj(1)

zm(0)− zj(0)

]
,

n,m = 1, . . . , N. (3.30d)

The insertion of this formula and (3.30c) in (3.29b) entails that the matrix U(1) reads compo-
nentwise as follows:

Unm(1) = a1−N+

N∏
j=1, j 6=m

[
a+zm(0)− zj(1)

zm(0)− zj(0)

]

×
N∑
k=1

zk(1)

∏
j=1, j 6=n

[zk(1)− a+zj(0)]∏
j=1, j 6=k

[zk(1)− zj(1)]

 , n,m = 1, . . . , N.

And it is then immediately seen that this formula yields, via the identity (A.12) (with ηk = zk(1),
k = 1, . . . , N ; ζj = a+zj(0), j = 1, . . . , n− 1, n+ 1, . . . , N), the formula (2.15d).
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3.4 Solution of the fourth model

The treatment in this subsection is rather terse, since it is analogous to that of the preceding
subsections; and the notation is of course analogous. But now the starting point is the following
nonlinear system of two discrete-time matrix evolution equations:

Ũ = αU + βV + ηUV, Ṽ = ρ+ γV, (3.31)

featuring the 5 arbitrary constants α, β, η, ρ, γ (which, as noted in Subsection 2.4, can be
reduced to 4 by taking advantage of the freedom to rescale V ).

It is a standard task to see that the solution of the initial-value problem for this matrix
system reads as follows:

V (`) = γ`V (0) + ρ
γ` − 1

γ − 1
I,

with U(`) given by (2.21).

We now proceed again as in the first part of Section 3. Via (3.3a) and (3.3c) we get from (3.31)
the two matrix equations

MZ̃ = αZM + (β + ηZ)Y, (3.32a)

MỸ = ρMM̃ + γY M̃. (3.32b)

The first, (3.32a), of these two matrix equations entails, componentwise,

Ynm =

(
z̃m − αzn
ηzn + β

)
Mnm, n,m = 1, . . . , N ;

hence the second, (3.32b), of these two matrix equations yields (when written componentwise)
the following N2 equations:

N∑
k=1

[
MnkM̃km

(˜̃zm − αz̃k
ηz̃k + β

− ρ− γ z̃k − αzn
ηzn + β

)]
= 0, n,m = 1, . . . , N, (3.33a)

which, as can be easily verified, can be conveniently rewritten as follows:

N∑
k=1

[
MnkM̃km

(˜̃zm − az̃k − b
ηz̃k + β

− γ z̃k − azn − b
ηzn + β

)]
= 0, n,m = 1, . . . , N, (3.33b)

with the two constants a and b defined by (2.17c).

Next, we make the following ansatz for the matrix Mnm:

Mnm =
gm

z̃m − azn − b
, n,m = 1, . . . , N. (3.34)

Here the N quantities gm are a priori arbitrary; they shall be determined as functions of the
2N un-updated and once-updated coordinates zn ≡ zn(`) and z̃n ≡ zn(`+ 1), or of the once and
twice updated coordinates z̃n ≡ zn(`+1) and ˜̃zn ≡ zn(`+2), see below. It is indeed immediately
seen that via this ansatz (3.34) the system of N2 equations (3.33b) can be rewritten as follows:

N∑
k=1

[
gk(ηzn + β)

(ηz̃k + β)(z̃k − azn − b)
− γ gk(˜̃zm − az̃k − b)

]
= 0, n,m = 1, . . . , N ; (3.35a)
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hence it can be replaced by the following two separated systems of only N equations:

N∑
k=1

[
gk

(ηz̃k + β)(z̃k − azn − b)

]
=

1

(ηzn + β)
, n = 1, . . . , N, (3.35b)

N∑
k=1

(
gk˜̃zn − az̃k − b

)
=

1

γ
, n = 1, . . . , N. (3.35c)

The first of these two systems defines uniquely the N quantities gk ≡ ĝk(z, z̃), yielding their
expression (2.17b) (see Appendix B for a proof). The second equation then yields the evolution
equation (2.17a).

The alternative possibility is to determine (via Lemma A.1, with ξk = a z̃k, ηn = ˜̃zn− b, c =
−1/γ) the quantities gk ≡ ǧk

(
z̃, ˜̃z) as solutions of the second system, yielding the formula (2.18b);

and to then insert these expressions of gk ≡ ǧk
(
z̃, ˜̃z) in the first system of equations. Clearly in

this manner one arrives at the equations of motion (2.19a).
And a third possibility is of course to equate (2.17b) to (2.18b), see (2.20).
The identification of the three variants of the equations of motion of the fourth discrete-time

dynamical system of goldfish type, see Subsection 2.4, is thereby accomplished.
The proof of Proposition 2.4 follows immediately from the above treatment; and we trust

that the identification in terms of the 2N initial data zn(0) and zn(1) of the two matrices U(0)
and V (0), see (2.4) and (2.4), is sufficiently obvious (also in the light of the analogous treatment
in the preceding subsections of this section) not to require an explicit justification here.

We end this subsection with a terse mention of the continuous-time model that obtains from
that treated above (in this subsection) via the limiting transition from discrete to continuous
time. The point of departure for the treatment of the continuous-time dynamical system of
goldfish type obtained in this manner is the following continuous-time system of two first-order
matrix evolution equations

U̇ = a1U + a2V + a3UV, V̇ = a4 + a5V,

that obtains from (3.31) via the assignments t ⇒ ε`, U(`) ⇒ U(t), V (`) ⇒ V (t), α = 1 + εa1,
β = εa2, η = εa3, ρ = εa4, γ = 1 + εa5, with ε infinitesimal. The resulting model of goldfish
type was, to the best of our knowledge, new ; a detailed treatment of it is provided in [9].

4 Outlook

In this paper we have introduced and tersely analyzed 4 different discrete-time dynamical
systems of goldfish type. The possibility to identify other discrete-time evolution equations
amenable to exact treatment by variations of the methodology used in this paper is open: let
us outline here an avenue to such generalizations.

Consider the system of two N ×N matrix discrete-time first-order evolution equations

S1∑
s=1

[
F1,s(U)F2,s(Ũ)

]
=

S2∑
s=1

[
Φ1,s(U)V Φ2,s

(
Ũ
)]
, (4.1a)

S3∑
s=1

[
F3,s(U)F4,s

(
Ũ
)]
Ṽ = Φ3(U)V Φ4

(
Ũ
)
, (4.1b)

where the two N ×N matrices U ≡ U(`) and V (`) are the dependent variables, ` = 0, 1, 2, . . .
is the independent discrete-time variable, S1, S2, S3 are 3 arbitrary positive integers, F1,s(u),
F2,s(u), F3,s(u), F4,s(u) and Φ1,s(u), Φ2,s(u), Φ3(u), Φ4(u) are 2(S1 + S2 + S3 + 1) a priori
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arbitrary (scalar) functions of their (scalar) argument u (of course becoming N × N matrices
when the scalar u is replaced by an N ×N matrix). Then introduce the eigenvalues zn(`) of the
matrix U(`), as well as the matrices Z ≡ Z(`), R ≡ R(`), M ≡ M(`) and Y ≡ Y (`), as above
(see (3.2) and (3.3)). It is then plain that the matrix evolution equation (4.1a) becomes

S1∑
s=1

[
F1,s(Z)MF2,s

(
Z̃
)]

=

S2∑
s=1

[
Φ1,s(Z)Y Φ2,s

(
Z̃
)]

(4.2a)

entailing componentwise

Mnm =

S2∑
s=1

[
Φ1,s(zn)Φ2,s(z̃m)

]
S1∑
s=1

[
F1,s(zn)F2,s

(
z̃m
)]Ynm, n,m = 1, . . . , N. (4.2b)

Likewise (4.1b) becomes

S3∑
s=1

[
F3,s(Z)MF4,s(Z̃)

]
Ỹ = Φ3(Z)Y Φ4

(
Z̃
)
M̃,

entailing componentwise (via (4.2b))

N∑
k=1

YnkỸkm
[
S2∑
s=1

F3,s(zn)F4,s(z̃k)

] S2∑
σ=1

[
Φ1,σ(zn)Φ2,σ(z̃k)

]
S1∑
σ=1

[
F1,σ(zn)F2,σ(z̃k)

]


= Φ3(zn)
N∑
k=1

YnkỸkmΦ4(z̃k)

S2∑
s=1

[
Φ1,s(z̃k)Φ2,s

(˜̃zm)]
S1∑
s=1

[
F1,s(z̃k)F2,s

(˜̃zm)]
 , n,m = 1, . . . , N.

And via the ansatz Ynm = gm (see (3.9)) this system of N2 equations can clearly be replaced
by the following two systems of N linear algebraic equations for the N quantities gk:

N∑
k=1

gk
[
S2∑
s=1

F3,s(zn)F4,s(z̃k)

] S2∑
σ=1

[
Φ1,σ(zn)Φ2,σ(z̃k)

]
S1∑
σ=1

[
F1,σ(zn)F2,σ(z̃k)

]
 = Φ3(zn), n = 1, . . . , N, (4.3a)

N∑
k=1

gkΦ4(z̃k)

S2∑
s=1

[
Φ1,s(z̃k)Φ2,s

(˜̃zn)]
S1∑
s=1

[
F1,s(z̃k)F2,s

(˜̃zn)]
 = 1, n = 1, . . . , N. (4.3b)

One can then solve the first, (4.3a), respectively the second, (4.3b), of these two linear systems
for the N quantities gk, getting the expressions gk = ĝk(z, z̃) respectively gk = ǧk

(
z̃, ˜̃z). One

arrives thereby at three equivalent systems of N discrete-time second-order evolution equations
for the N coordinates zn (`): (i) by inserting the expression ĝk(z, z̃) in (4.3b); (ii) by inserting the
expression ǧk

(
z̃, ˜̃z) in (4.3a); (iii) by setting ĝn(z, z̃) = ǧn

(
z̃, ˜̃z). While of course the evolution

in the discrete time ` entailed by these equations of motions corresponds to the evolution of
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the eigenvalues of the matrix U(`) solution of the matrix evolution equation (4.1a) (with the
ansatz (3.9) properly taken into account). Hence if that matrix evolution equation, (4.1a), is
solvable, the discrete-time dynamical system described by these three equivalent sets of second-
order evolution equations is as well solvable.

One has thereby identified a discrete-time solvable dynamical system. A remaining open
question is the extent to which its equations of motion can be exhibited in reasonably neat
form: this depends on the extent that the two quantities gk ≡ ĝk(z, z̃) respectively gk ≡ ǧk

(
z̃, ˜̃z)

defined as solutions of the two linear systems (4.3a) respectively (4.3b) can be expressed more
explicitly than via the standard Cramer formula (ratio of two determinants).

Clearly the 4 models treated in this paper belong to this class (4.1) (the last one, however,
only if ρ = 0): see (3.6a), (3.18), (3.22a) and (3.31). The interest of additional models treatable
via this approach depends on the neatness of the corresponding equations of motion, which can
only be investigated on a case-by-case basis.

A Appendix

In this appendix we collect various mathematical developments whose treatment in the body of
the paper would interrupt the flow of the presentation.

First of all we report several mathematical identities. We consider all of them well-known,
but for completeness we either prove them below, or indicate where proofs can be found. These
formulas feature sets of N numbers such as ξn or ηn or ζn; these numbers are arbitrary but
for simplicity we assume them to be distinct. The formulas of course remain valid when these
numbers are not distinct, but possibly only by taking appropriate limits. Sometimes an arbitrary
number z also appears.

N∑
k=1

 N∏
j=1, j 6=k

(
ζj − z
ζj − ζk

) = 1, (A.1)

N∑
k=1

 1

ζk

N∏
j=1, j 6=k

(
1

ζj − ζk

) =
N∏
j=1

(
1

ζj

)
, (A.2)

N∑
k=1

ζn−1k

N∏
j=1, j 6=k

(
ζj − z
ζj − ζk

) = zn−1, n = 1, 2, . . . , N, (A.3)

N∑
k=1

ζn−1k

N∏
j=1,j 6=k

(
1

ζk − ζj

) = δnN , n = 1, 2, . . . , N, (A.4)

N∏
j=1, j 6=m

(
ζj − ζn
ζj − ζm

)
= δnm, n,m = 1, 2, . . . , N, (A.5)

N∑
k=1


 N∏
j=1, j 6=k

(
ξj − ηn
ξj − ξk

) N∏
j=1, j 6=m

(
ηj − ξk
ηj − ηm

) = δnm, n,m = 1, 2, . . . , N, (A.6)

N∑
k=1


(

1

z − ηk

) N∏
j=1, j 6=n

(ζj − ηk)

N∏
j=1, j 6=k

(ηj − ηk)

 =

N∏
j=1, j 6=n

(ζj − z)

N∏
j=1

(ηj − z)
≡ 1

z − ζn

N∏
j=1

(
ζj − z
ηj − z

)
,

n = 1, 2, . . . , N, (A.7)
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N∑
k=1


N∏

j=1, j 6=n
(ζj − ηk)

N∏
j=1, j 6=k

(ηj − ηk)

 ≡
N∑
k=1

(ηk − ζk
ηk − ζn

) N∏
j=1, j 6=k

(
ζj − ηk
ηj − ηk

) = 1,

n = 1, 2, . . . , N, (A.8)

N∑
k=1

( 1

ηk − ξn

) N∏
j=1, j 6=k

(
1

ηj − ηk

) =
N∏
j=1

(
1

ηj − ξn

)
, n = 1, 2, . . . , N, (A.9)

N∑
k=1

(ηk − ζk
ηk − z

) N∏
j=1, j 6=k

(
ζj − ηk
ηj − ηk

) ≡ N∑
k=1


N∏
j=1

(ζj − ηk)

(z − ηk)
N∏

j=1, j 6=k
(ηj − ηk)


= 1−

N∏
j=1

(
ζj − z
ηj − z

)
, (A.10)

N∑
k=1


N∏
j=1

(ζj − ηk)

N∏
j=1, j 6=k

(ηj − ηk)

 =
N∑
k=1

(ζk − ηk) , (A.11)

N∑
k=1


ηk

N∏
j=1, j 6=n

(ζj − ηk)

N∏
j=1, j 6=k

(ηj − ηk)

 =
N∑

k=1, k 6=n
(ζk)−

N∑
k=1

(ηk) , n = 1, . . . , N. (A.12)

The identity (A.1) (with z an arbitrary number) is implied by the fact that its left-hand side
is a polynomial in z of degree less than N (in fact, of degree at most N − 1) which clearly has
the value unity at the N points ζn, and the right-hand side, i.e. unity, is the unique polynomial
of degree less than N in z that has the value unity in N distinct points. The identity (A.2)
is the special case of (A.1) with z = 0. The identity (A.3) coincides with equation (2.4.2-32)
of [4] (or, as above, it is implied by the observation that its left-hand side is a polynomial in z
of degree less than N the values of which at the N points ζk coincide with the values of the
polynomial zn at z = ζk). The identity (A.4) coincides with equations (2.4.3-12) and (2.4.3-21)
of [4]. The identity (A.5) is obvious. The identities (A.6) respectively (A.7) coincide with
equations (2.4.2-26) respectively (2.4.2-27) of [4] (via the definition (2.4.2-24), with xn = ξn,
yn = ηn, respectively xn = z, yn = ηn, zn = ζn). The identities (A.8) respectively (A.9) follow
from (A.7) in the limit z → ∞ respectively ζj → ∞. The identity (A.10) follows from (A.8)
and (A.7) via the trivial identity

ζn − ηk
z − ηk

≡ 1− ζn − z
ηk − z

.

Finally, the identity (A.11) follows from (A.10) in the limit z → ∞, and the identity (A.12) is
just the special case of the preceding identity (A.11) with ζn = 0.

Next we report a simple lemma (for a neat proof see for instance [18], or below, after the
proof of the following Lemma A.2).
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Lemma A.1. The solution of the set of N linear algebraic equations for the N variables gk
reading

N∑
k=1

gk
ξk − ηn

= c, n = 1, . . . , N (A.13a)

is provided by the formula

gk = c (ξk − ηk)
N∏

j=1, j 6=k

(
ξk − ηj
ξk − ξj

)
, k = 1, . . . , N. (A.13b)

A generalization of this lemma reads as follows:

Lemma A.2. The solution of the set of N linear algebraic equations for the N variables gk
reading

N∑
k=1

gk
ξk − ηn

= cn, n = 1, . . . , N (A.14a)

is provided by the formula

gk =

N∑
s=1

cs(ξk − ηs)
 N∏
j=1, j 6=k

(
ξj − ηs
ξj − ξk

) N∏
j=1, j 6=s

(
ηj − ξk
ηj − ηs

) ,

n = 1, . . . , N, (A.14b)

or equivalently

gk = (ξk − ηk)

 N∏
j=1, j 6=k

(
ηj − ξk
ξj − ξk

) N∑
s=1

cs


N∏
j=1, j 6=k

(ξj − ηs)

N∏
j=1, j 6=s

(ηj − ηs)


 ,

n = 1, . . . , N. (A.14c)

To prove this formula one inserts this expression, (A.14b), of gk in (A.14a), and notes that
one obtains thereby an equality provided there holds the formula

N∑
k=1

 ξk − ηs
ξk − ηn

 N∏
j=1, j 6=k

(
ξj − ηs
ξj − ξk

) N∏
j=1, j 6=s

(
ηj − ξk
ηj − ηs

) = δsn

or, equivalently,

N∑
k=1


 N∏
j=1, j 6=k

(
ξj − ηn
ξj − ξk

) N∏
j=1, j 6=s

(
ηj − ξk
ηj − ηs

) = δsn

N∏
j=1

(
ξj − ηn
ξj − ηs

)
.

Clearly this formula is implied by the identity (A.6). Lemma A.2 is thus proven.

Note that, by setting cn = c in (A.14c) and using the identity (A.8) (with the dummy index k
replaced by s and the index n replaced by k), one reobtains (A.13b), thereby proving Lemma A.1.

We now report, and prove, 3 other lemmata.



32 F. Calogero

Lemma A.3. There holds the formula

det[I +X] = 1 +
N∑
k=1

xk, (A.15a)

provided I is the N × N unit matrix and the N × N matrix X is defined componentwise as
follows:

Xnm = xm, n,m = 1, . . . , N. (A.15b)

This (presumably well-known) formula is easily proven by recursion.

Lemma A.4. The N eigenvalues of the N ×N matrix

Unm = δnmζn + ηm, n,m = 1, . . . , N, (A.16a)

coincide with the N solutions of the following algebraic equation in z:

N∑
k=1

(
ηk

z − ζk

)
− 1 = 0, (A.16b)

i.e. they are the N roots of the polynomial of degree N in z that obtains by multiplying the

left-hand side of this equation by
N∏
j=1

(z − ζk).

This lemma is an immediate consequence of the preceding Lemma A.3, because the secular
equation associated with the matrix (A.16a) (whose roots provide the eigenvalues) is easily seen
to coincide (up to an overall, hence irrelevant, multiplicative constant) with the vanishing of the
determinant in the left-hand side of (A.15a) with (A.15b) and xk = ηk/(z − ζk).

Lemma A.5. The inverse of the matrix defined componentwise as follows,

Mnm =
fngm
ξm − ηn

, n,m = 1, . . . , N, (A.17a)

is defined componentwise as follows:

[
M−1

]
nm

=

(
ξn − ηm
gnfm

) N∏
j=1, j 6=n

(
ξj − ηm
ξj − ξn

) N∏
j=1, j 6=m

(
ηj − ξn
ηj − ηm

) ,
n,m = 1, . . . , N. (A.17b)

The proof of this formula goes as follows. The matrix formula MM−1 = I, written compo-
nentwise, reads, via (A.17a),

N∑
k=1

(
gk
[
M−1

]
km

ξk − ηn

)
=
δnm
fn

, n,m = 1, . . . , N.

Then, for fixed m, apply Lemma A.2 with gk replaced by gk
[
M−1

]
km

, and cn replaced by
δnm/fn. This yields, rather immediately, the formula (A.17b), which is thereby proven.
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B Appendix

In this appendix we detail the derivation of some findings for the fourth model, firstly the
expression (2.17b) of ĝn(z, z̃) as solution of the linear system (3.35b), and secondly the derivation
of (2.19b) from (2.19a).

Via the identity

1

(ηz̃k + β)(z̃k − azn − b)
=

1

η(azn + b) + β

(
1

z̃k − azn − b
− η

ηz̃k + β

)
, (B.1)

and the definition

σ(0) =

N∑
k=1

(
ηgk

ηz̃k + β

)
, (B.2)

the linear system (3.35b) can be conveniently reformulated as follows:

N∑
k=1

(
gk

z̃k − azn − b

)
= cn,

cn = σ(0) +
η(azn + b) + β

ηzn + β
= σ(0) + a+

a

η

[
β(1− α)

azn + aβ/η

]
.

We now use Lemma A.2 (with ξk = z̃k, ηn = a zn + b and cn defined as above). We thus get

ĝn(z, z̃) = (z̃n − azn − b)

 N∏
j=1, j 6=n

(
z̃n − azj − b
z̃n − z̃j

)[(σ0 + a)σ(1)n +
aβ(1− α)

η
σ(2)n

]
,

σ(1)n =

N∑
k=1


N∏

j=1, j 6=n
(z̃j − azk − b)

N∏
j=1, j=k

(azj − azk)

 , n = 1, . . . , N,

σ(2)n =

N∑
k=1

 1

azk + aβ/η

N∏
j=1, j 6=n

(z̃j − azk − b)

N∏
j=1, j=k

(azj − azk)

 , n = 1, . . . , N.

It is now plain, via the identity (A.8) (with ηk = azk + b, ζj = z̃j) that σ
(1)
n = 1. As for

the sum σ
(2)
n , it is also easily evaluated via the identity (A.7) (now with ηk = azk + b, ζj = z̃j ,

z = b− aβ/η):

σ(2)n =
a−Nη

ηz̃n + aβ − bη

N∏
j=1

(
ηz̃j + aβ − bη

ηzj + β

)
.

Hence

ĝn(z, z̃) = (z̃n − azn − b)

 N∏
j=1, j 6=n

(
azj + b− z̃n
z̃j − z̃n

)(σ(0) + a+
σ(3)

ηz̃n + aβ − bη

)
, (B.3a)

σ(3) = a1−Nβ(1− α)

N∏
j=1

(
ηz̃j + αβ

ηzj + β

)
. (B.3b)
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Now, using this expression of ĝn(z, z̃), we can evaluate σ0 from its definition (B.2), thereby
obtaining

σ(0) =
aσ(4) + σ(3)σ(5)

1− σ(4)
= −a+

a+ σ(3)σ(5)

1− σ(4)
,

σ(4) =
N∑
k=1

( z̃k − azk − b
z̃k + β/η

) N∏
j=1, j 6=k

(
z̃k − azj − b
z̃k − z̃j

) ,
σ(5) =

N∑
k=1

 z̃k − azk − b
(ηz̃k + β)(z̃k + αβ/η)

N∏
j=1, j 6=k

(
azj + b− z̃k
z̃j − z̃k

) .
It is now plain (via (A.10) with ηj = z̃j , ζj = a zj + b, z = −β/η) that

σ(4) = 1−
N∏
j=1

(
ηazj + ηb+ β

ηz̃j + β

)
. (B.4)

To evaluate σ5, we use again an identity analogous to that used above:

1

(ηz̃k + β)(z̃k + αβ/η)
=

1

β(1− α)

(
1

z̃k + αβ/η
− η

ηz̃k + β

)
.

Thereby

σ(5) =
σ(6) − σ(7)

β(1− α)
, (B.5a)

σ(6) =
N∑
k=1

 z̃k − azk − b
z̃k + αβ/η

N∏
j=1, j 6=k

(
azj + b− z̃k
z̃j − z̃k

) , (B.5b)

σ(7) =

N∑
k=1

 z̃k − azk − b
z̃k + β/η

N∏
j=1, j 6=k

(
azj + b− z̃k
z̃j − z̃k

) . (B.5c)

Both these sums can be evaluated via the identity (A.10), with ηk = z̃k, ζj = azj + b, and with
z = αβ/η respectively with z = −β/η, obtaining

σ(6) = 1− aN
N∏
j=1

[
ηzj + β

ηz̃j + αβ

]
, σ(7) = 1−

N∏
j=1

[
η(azj + b) + β

ηz̃j + β

]
,

hence (via (B.5a))

σ(5) =
1

β(1− a) + bη


N∏
j=1

[
η(azj + b) + β

ηz̃j + β

]
− aN

N∏
j=1

[
ηzj + β

ηz̃j + αβ

] ,

and via this formula together with (B.4) and (B.3b) we finally get

σ(0) + a = a1−N
N∏
j=1

(
ηz̃j + αβ

ηzj + β

)
.

The insertion of this expression of σ(0) + a and of the expression (B.3b) of σ(3) in (B.3a)
completes the derivation of the expression (2.17b) of ĝn(z, z̃).

Finally let us tersely outline the derivation of (2.19b) from (2.19a). Firstly one uses in (2.19a)
the identity (B.1); then one uses twice the identity (A.10), with ζk = ˜̃zk − b, ηk = az̃k and with
z = a(azn + b) respectively with z = −aβ/η. And the rest is trivial algebra.
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