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Abstract. S4 is not a complex manifold, but it is sufficient to remove one point to make
it complex. Using supersymmetry methods, we show that the Dolbeault complex (involving
the holomorphic exterior derivative ∂ and its Hermitian conjugate) can be perfectly well
defined in this case. We calculate the spectrum of the Dolbeault Laplacian. It involves 3
bosonic zero modes such that the Dolbeault index on S4\{·} is equal to 3.
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1 Introduction

We start with reminding the standard definition for a complex manifold. Suppose a manifold
of dimension D = 2d is covered by several overlapping D-dimensional disks. Suppose that in
each such map complex coordinates wj=1,...,d, w̄j̄=1,...,d are introduced such that the metric has
a Hermitian form

ds2 = hjk̄(w, w̄)dwjdw̄k̄, h∗jk̄ = hkj̄ .

In the region where a couple of the maps with coordinates w, w̄ and w̃, ˜̄w overlap the latter
are expressed into one another. The manifold is called complex if this relationship can be made
holomorphic, w̃j = f j(wk).

For example, S2 (actually, any 2-dimensional manifold) is complex. To see that, introduce
the stereographic complex coordinates

w =
x+ iy√

2
, w̄ =

x− iy√
2

such that

ds2 =
2dwdw̄

(1 + w̄w)2
.

This map covers the whole sphere except its north pole (corresponding to w = ∞). Introduce
now another stereographic map that covers the whole sphere but its south pole. The metric is
again

ds2 =
2dw̃d ˜̄w

(1 + ˜̄ww̃)2
.

1On leave of absence from ITEP, Moscow, Russia.
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In the region where the maps overlap (the whole sphere but two points), the holomorphic relation
w̃ = 1/w holds.

Let us try to do the same for S4. Again, we can cover it by two stereographic maps with the
coordinates wj and w̃j

2 such that the metric is, on one hand,

ds2 =
2dwjdw̄j

(1 + w̄w)2
. (1)

(w̄w ≡ w̄jwj = (x2 + y2 + z2 + t2)/2) and, on the other hand,

ds2 =
2dw̃jd ˜̄wj

(1 + ˜̄ww̃)2
. (2)

But the relationship w̃j = w̄j/(w̄w) is not holomorphic anymore meaning that S4 is not complex.
For complex compact manifolds, one can consider a set of holomorphic (p, 0)-forms, introduce

the operator of exterior holomorphic derivative ∂, its Hermitian conjugate ∂† and define thereby
the Dolbeault complex (see e.g. [1]). The operators ∂ and ∂† are nilpotent and the Hermitian
Dolbeault Laplacian ∂∂†+∂†∂ commutes with both ∂ and ∂†. This algebra is isomorphic to the
simplest supersymmetry algebra,

Q2 = Q̄2 = 0, {Q, Q̄} = H.

The supersymmetric description of the Dolbeault complex for any (not necessarily Kähler) com-
plex manifold has been constructed in recent [2]. The superfield action (first written in [3]) is
expressed in terms of d+ d chiral and antichiral superfields

W j = wj +
√

2θψj − iθθ̄ẇj , W̄ j̄ = w̄j̄ −
√

2θ̄ψ̄j̄ + iθθ̄ ˙̄wj̄ ,

S =

∫
dtd2θ

[
−1

4
hjk̄
(
W l, W̄ l̄

)
DW jD̄W̄ k̄ +G(W̄ ,W )

]
.

Deriving with this action the component Lagrangian, then classical and quantum Hamiltonian,
using the Nöther theorem, and accurately resolving the ordering ambiguities [4], we arrive at
the expressions for the quantum supercharges

Q = ψcekc

[
Πk −

i

4
∂k(ln deth) + iψ bψ̄ āΩk,āb

]
,

Q̄ = ψ̄ c̄ek̄c̄

[
Π̄k̄ −

i

4
∂k̄(ln deth) + iψ̄ b̄ψ aΩ̄k̄,ab̄

]
, (3)

where ecj are the vielbeins, ecj ē
c̄
k̄

= hjk̄, chosen such that det e = det ē =
√

deth,

Ωj,b̄a ≡ Ω b
j, a = ebp

(
∂je

p
a + Γpjke

k
a

)
(and the complex conjugate Ω̄j̄,bā ≡ Ω b̄

j̄, ā
) are the holomorphic and antiholomorphic components

of the standard Levi-Civita spin connections3, ψ̄ā = ∂/∂ψa, and

Πk = −i
(

∂

∂zk
− ∂kG

)
, Π̄k̄ = −i

(
∂

∂z̄ k̄
+ ∂k̄G

)
.

2j = 1, 2 and, when going down to S4 with its conformally flat metric, we will not bother to distingush between
covariant and contravariant indices. Neither will we distiguish in this case the indices j and j̄. The summation
over the repeated indices in equations (1), (2) and in all the formulas in Sections 2–4 is assumed, as usual.

3In the Kähler case, nonholomorphic components like Ω a
j b̄ vanish. For generic complex manifold, they do

not vanish (though they vanish again for some special torsionful connections (10) below) but do not enter the
supercharges (3). We refer the reader to [2] and to recent [5] for further pedagogical explanations.
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are the covariant derivatives involving the gauge field

Aj,k̄ = (−i∂jG, i∂̄k̄G). (4)

The quantum supercharges (3) act on the wave functions

Ψ
(
wj , w̄k̄;ψa

)
= A(0)

(
wj , w̄k̄

)
+ ψaA(1)

a

(
wj , w̄k̄

)
+ · · ·+ ψa1 · · ·ψadA(d)

[a1···ad]

(
wj , w̄k̄

)
.

The components of this wave function A(0), A
(1)
a , etc. can be mapped onto the space of the

holomorphic forms A(0), eajA
(1)
a dwj , etc. A (p, 0)-form corresponds to the wave function with

the eigenvalue p ≡ F of the fermion charge operator, F̄ = ψaψ̄a. Each component is normalized
with the covariant measure,

µdDx =
√

det gdDx = dethddwddw̄. (5)

The supercharges (3) are conjugate to each other with respect to this measure, Q̄ = µ−1Q†µ,
where Q† is a “naive” Hermitian conjugate.

It was shown in [2] that the supercharge Q in (3) is isomorphic in this setting to the exterior
derivative operator ∂ and the Dolbeault complex is reproduced, if choosing the function G in
a special way,

G =
1

4
ln deth. (6)

Another distinguished choice is G = −(1/4) ln deth when the operator Q̄ is isomorphic to the
antiholomorphic exterior derivative ∂̄, and we arrive at the anti-Dolbeault complex. For an
arbitrary G, we are dealing with a twisted Dolbeault complex.

The Hamiltonian is given by the expression

H = −1

2
4cov +

1

8

(
R− 1

2
hk̄jhl̄thīnCj t īCk̄ l̄ n

)
− 2〈ψaψ̄b̄〉 ekael̄b̄∂k∂l̄G− 〈ψ

aψcψ̄b̄ψ̄d̄〉etaejcel̄b̄e
k̄
d̄(∂t∂l̄ hjk̄). (7)

Here, 〈. . .〉 denotes the Weyl-ordered products of fermions, 〈ψaψ̄b̄〉 = (ψaψ̄b̄− ψ̄b̄ψa)/2, etc. R is
the standard scalar curvature of the metric hjk̄, while

Cjkl̄ = ∂khjl̄ − ∂jhkl̄, Cj̄k̄l = (Cjkl̄)
∗ = ∂k̄hlj̄ − ∂j̄hlk̄ (8)

is the metric-dependent torsion tensor. The covariant Laplacian 4cov is defined with taking
into account the torsion,

−4cov = hk̄j
(
PjP̄k̄ + iΓ̂q̄

jk̄
P̄q̄ + P̄k̄Pj + iΓ̂sk̄jPs

)
,

where Pj = Πj + iΩ̂j,b̄a〈ψaψ̄b̄〉 and P̄k̄ = Π̄k̄ − i ˆ̄Ωk̄,ab̄〈ψaψ̄b̄〉 with some particular torsionfull
affine and spin connections (the so called Bismut connections [6]),

Γ̂MNK = ΓMNK +
1

2
gMLCLNK , (9)

Ω̂M,AB = ΩM,AB +
1

2
eKA e

L
BCKML, M ≡ {m, m̄}. (10)

Note that this rather complicated expression for the Hamiltonian is greatly simplified in the
Kähler case. Then the torsion (8) vanishes, the 4-fermion term in (7) vanishes too, and

HKähl = −1

2
4cov +

R

8
− 2〈ψaψ̄b̄〉ekael̄b̄∂k∂l̄G,

where now −4cov = hk̄j
(
PjP̄k̄ + P̄k̄Pj

)
with Ω̂j,b̄a = Ωj,b̄a = ek̄

b̄
∂je

ā
k̄
.
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In this paper, we are interested, however, with S4, which is not Kähler and, as was mentioned,
not even globally complex. This notwithstanding, one can write the supercharges (3) and the
Hamiltonian (7) with the metric (1), which is well defined everywhere on S4 except the north
pole and study the spectrum.

For sure, to determine the spectrum, we have to define first the spectral problem and to specify
the boundary conditions for the wave functions. There are two different reasonable choices:
(i) We can consider the functions that are regular on S4. (ii) We can allow the singularity at
the pole, but require that the functions are square integrable with the measure (5),∫

|Ψ|2d2wd2w̄

(1 + w̄w)4
<∞.

It turns out that, for the first spectral problem, the Hamiltonian is well defined and Hermitian.
However, the Hilbert space of all nonsingular on S4 functions does not constitute the domain
of the supercharges: there exist nonsingular functions Ψ such that QΨ are singular. In physical
language, this means that the supersymmetry is broken – some states do not have superpartners.
In mathematical language, this means that the Dolbeault complex is not well defined on the
manifolds that are not complex, of which S4 is an example.

What is, however, rather nontrivial and somewhat surprising is that, in the Hilbert space
of square integrable functions, everything works fine. In the main body of the paper, we will
show that all excited square integrable states of the Hamiltonian are doubly degenerate (i.e.
supersymmetry is there) and that there are 3 bosonic zero modes such that the Witten index of
this system is IW = 3. In other words, even though the Dolbeault complex is not well defined
on S4, there is a nontrivial self-consistent way to define it on S4\{·}.

There is a kinship between the problem under consideration and a problem of the Dirac
complex on S2 with noninteger magnetic flux [7]. In both cases, the requirement for the spectrum
to be supersymmetric brings about restrictions on the Hilbert space (see also [8]). However, for
a noninteger flux, these restrictions are extremely stringent: they simply leave the Hilbert space
empty, a Dirac complex with noninteger flux is not defined. And, for S4, the Hilbert space of
regular wave functions is not supersymmetric, while its extension – the space of square integrable
functions is.

2 The Dolbeault Hamiltonian and its spectrum

On S4 with the metric (1) and with G(W̄ ,W ) given by (6), the supercharges (3) acquire the
following simple form

Q = i(1 + w̄w)ψj∂j + iψjψkψ̄jw̄k,

Q̄ = iψ̄j
[
(1 + w̄w)∂̄j − 2wj

]
+ iψ̄jψ̄kψjwk. (11)

The complicated expression (7) for the Hamiltonian also simplifies a lot. There are three sectors:
F = 0, F = 1, and F = 2. Consider first the sector F = 0. We obtain

HF=0 = −(1 + w̄w)2∂j ∂̄j + 2(1 + w̄w)wj∂j . (12)

It is instructive to compare this Dolbeault Laplacian with the standard covariant Laplacian
on S4,

−4S4 = −(1 + w̄w)2∂̄j∂j + (1 + w̄w)
(
wj∂j + w̄j ∂̄j

)
. (13)

Note that both (12) and (13) commute with the angular momentum operator m = wj∂j−w̄j ∂̄j .4
The eigenvalues of m are integer.

4The Hamiltonian (12) commutes also with two other generators of SU(2) such that the states represent
SU(2)-multiplets. The standard Laplacian (13) has O(5) symmetry.
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The supercharges (11) admit 3 normalizable zero modes satisfying QΨ(0) = Q̄Ψ(0) = 0 in the
sector F = 0,

Ψ(0) = 1, w̄1, w̄2. (14)

They represent the ground states of the Hamiltonian (12).
Consider now excited states. The eigenfunctions of the Hamiltonian can be sought for in the

form

Ψms = SmsFms(w̄w), (15)

where Sms (m = 0,±1, . . .; s = 0, 1, . . .) are mutually orthogonal tensor structures that vanish
under the action of the “naive Laplacian” ∂̄j∂j . Each structure Sms has 2s+ |m|+1 independent
components (and the corresponding energy level has degeneracy 2s+ |m|+1). The explicit form
of first few such structures is

S00 = 1, S01 = wjw̄k −
w̄w

2
δjk,

S02 = wiwjw̄kw̄l −
w̄w

4
(wiw̄kδjl + wiw̄lδjk + wjw̄kδil + wjw̄lδik) +

(w̄w)2

12
(δikδjl + δilδjk),

S10 = wj , S11 = wiwjw̄k −
w̄w

3
(wiδjk + wjδik), S−1,0 = w̄j .

It is straightforward to see that the action of the Hamiltonian on the Ansatz (15) preserves
its tensor form. The radial dependence is then determined from the solution of scalar spectral
equations for Fms. It is convenient to introduce the variable

z =
1− w̄w
1 + w̄w

(it is nothing but cos θ, θ being the polar angle on S4).
The spectral equations acquire then the form

(z2 − 1)F ′′(z) + 2(2z +m+ 2s)F ′(z) +
4(m+ s)

1 + z
F (z) = λF (z), m ≥ 0,

(z2 − 1)F ′′(z) + 2(2z + |m|+ 2s)F ′(z) +
4s

1 + z
F (z) = λF (z), m ≤ 0.

Their formal solutions are

F (z) = (1 + z)γmsP |m|+2s+1,±∆ms
n (z),

λmsn = γ2
ms + 3γms + n(n+ |m|+ 2s+ 2±∆ms), (16)

with

γms =
|m|+ 2s− 1±∆ms

2
(17)

and

∆ms =
√

(1−m− 2s)2 + 8(m+ s), m ≥ 0,

∆ms =
√

(1− |m| − 2s)2 + 8s, m ≤ 0.

Pα,βn (n = 0, 1, . . .) are the Jacobi polynomials,

Pα,βn (z) =
1

2n

n∑
k=0

(
n+ α
k

)(
n+ β
n− k

)
(1 + z)k(z − 1)n−k.

For α > −1, β > −1, the Jacobi polynomials are mutually orthogonal on the interval z ∈ (−1, 1)
with the weight µ = (1− z)α(1 + z)β.

Not all the solutions in (16) are admissible, however. One can observe the following:
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• First of all, all the solutions with s > 0 and/or m > 0 and the negative sign of ∆ms

in (16), (17) are not square integrable and should not be included in the spectrum. If
s = 0 and m ≤ 0, the solution with negative sign of ∆ms are not independent being
expressed into the solutions with positive sign in virtue of the identity

Pα,−βn+β (z) = 2−β(z + 1)β
n!(n+ α+ β)!

(n+ α)!(n+ β)!
Pα,βn (z), (18)

which holds for integer α [9].

• On the other hand, the solutions with positive sign of ∆ms and with nonnegative m are
all not only square integrable, but also nonsingular on S4. In addition, they belong to the
domain of Q: QΨm≥0,s is never singular.

• Most of the solutions with m < 0 also have this property. However, there are three
distinguished families of solutions: the solutions

Ψ−1,0,n = w̄jP
2,0
n (z), (19)

the solutions

Ψ−2,0,n =
w̄jw̄k

1 + w̄w
P 3,1
n (z), (20)

and the solutions

Ψ−3,0,n =
w̄jw̄kw̄l

(1 + w̄w)2
P 4,2
n (z). (21)

(i) The functions (19) are all singular at infinity, but integrable. Two lowest such functions
Ψ = w̄j are zero modes of the Hamiltonian (12). The functions QΨ−1,0,n are less singular:
they do not grow at infinity (though do not have a definite value there when n > 0).

(ii) The functions (20) are bounded at infinity. The supercharge action produces growing
functions, QΨ−2,0,n(w =∞) =∞. Still, QΨ−2,0,n is square integrable.

(iii) The functions (21) are regular at infinity. The supercharge action produces singular
bounded functions.

• Note that if Ψ is a non-normalizable eigenfunction in the sector F = 0, the function QΨ
is also not normalizable. Indeed, the action of Q brings about generically an extra power
of |w|, which makes the divergence still stronger. An exception would only be provided by
the functions with the asymptotics ∝ w̄j1 · · · w̄jk at infinity. But the only eigenfunctions
with such asymptotics are written in equation (19). They are normalizable.

Consider now the sector F = 2. The Hamiltonian is

HF=2 = −(1 + w̄w)2∂̄j∂j + 2(1 + w̄w)wj∂j + 2(2 + w̄w).

The eigenfunctions have the same form as in (15), (16), (17) with modified

∆F=2
ms =

√
(1−m− 2s)2 + 8(m+ s+ 1), m ≥ 0,

∆F=2
ms =

√
(1− |m| − 2s)2 + 8(s+ 1), m ≤ 0.

Again, almost all functions with negative sign in (17) are not normalizable. The exceptions are
the sectors s = 0, m = 0,−2, where the functions with the negative sign are expressed into the
functions with positive sign. Speaking of the latter, they are not only normalizable, but also
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nonsingular in this case. All these functions are annihilated by Q and belong to the domain
of Q̄, Q̄ΨF=2 being regular on S4.

In the sector F = 1, the wave functions have two components, ΨF=1 = ψjCj(w̄k, wk). No
new zero modes appear. Indeed, if the Hamiltonian had zero modes in this sector, they would
satisfy the conditions QΨ = Q̄Ψ = 0 giving

(1 + w̄w)∂[jCk] − w̄[jCk] = 0,

(1 + w̄w)∂̄kCk − 3wkCk = 0.

The first equation can be rewritten as

∂[j

[
Ck]

1 + w̄w

]
= 0

with a generic solution Ck = (1+ w̄w)∂kΦ. Then the second equation gives HF=0Φ = 0. If Ck is
normalizable, Φ must also be normalizable (modulo a pure antiholomorphic part). But we have
seen that the only normalizable zero modes of HF=0 are 1 and w̄j annihilated by holomorphic
derivatives and giving Ck = 0.5

To find the nonzero modes in the sector F = 1, one needs not to solve the Schrödinger
equation again. All such normalizable functions are obtained by the action of Q or Q̄ onto the
normalizable functions in the sectors F = 0 or F = 2, correspondingly. This follows from the
last itemized statement above, which is valid also in the sector F = 2. By construction, these
functions are annihilated by Q or Q̄ and belong to the domain of Q̄ or Q, correspondingly.

2.1 Twisted Dolbeault complex

The Hamiltonian (7) is supersymmetric not only under the condition (6) that distinguishes
the pure Dolbeault complex, but also with other choices of G describing twisted Dolbeault
complexes.

First of all, we can set G = 0. As was shown in [2], the Hamiltonian (7) with G = 0 coincides
with the extended N = 4 supersymmetric Hamiltonian written in [10],

H = −1

2
f3∂2

M

1

f
− 1

2
ψσ†[MσN ]ψ̄f(∂Mf)∂N + f(∂2f)

(
ψψ̄ − 1

2
(ψψ̄)2

)
, (22)

with f = 1 + x2
M/2.

This model belongs to the class of the so called “hyperkähler with torsion” (HKT) mo-
dels [11], which were classified using the harmonic superspace formalism in recent [12]. The
Hamiltonian (22) does not admit normalizable zero-energy solutions and its index is zero.

Consider now a model with

G =
q

4
ln deth = −q ln(1 + w̄w)

with an integer q > 1. The supercharges are then

Q = i(1 + w̄w)ψj∂j + i(q − 1)w̄wψjw̄j + iψjψkψ̄jw̄k,

Q̄ = iψ̄j
[
(1 + w̄w)∂̄j − (q + 1)wj

]
+ iψ̄jψ̄kψjwk.

The zero modes all dwell in the sector F = 0. They have the form

Ψ(0) =
P (w̄)

(1 + w̄w)q−1
,

5Note that if one lifts the normalizability condition, a nontrivial solution of the equation HF=0Φ = 0 exists:
Φ = w̄w + 2 ln(w̄w)− 1

w̄w
giving Ck = w̄k(1 + w̄w)3/(w̄w)2.
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where P (w̄) is an antiholomorphic polynomial of degree 2q − 1. It has 2q2 + q independent
coefficients, which gives 2q2 + q independent zero modes.

When q is negative, the analysis is similar. It gives 2q2 − q zero modes in the sector F = 2.
The same consideration as in the pure Dolbeault case displays the absence of the normalized zero
modes in the sector F = 1. The final result for the index of the twisted Dolbeault complex is

I(q) = 2q2 + |q|. (23)

3 The index and the functional integral

As was mentioned, for pure Dolbeault complex, there are 3 bosonic zero modes (14) in the sector
F = 0 and no zero modes in the other sectors. This means that the Witten index of this system,

IW = Tr
{

(−1)F e−βH
}

is equal to 3.
For compact complex manifolds, the Witten index of the supersymmetric Hamiltonian (7)

under the condition (6) is known to mathematicians by the name of arithmetic genus of the
manifold. This invariant admits an integral representation known as the Hirzebruch–Riemann–
Roch theorem [13],6

I =

∫
Td(TM),

where the symbol Td(TM) (Todd class of a complex tangent bundle associated with the mani-
fold M) is spelled out as

Td(TM) =
n∏

α=1

λα/2π

1− e−λα/2π
, (24)

where λα are eigenvalues of the curvature matrix corresponding to this bundle7.
The representation (24) can be derived by using the fact that the sum of the supercharges (11)

can be interpreted as a Dirac operator involving an Abelian gauge field and torsions. (The
presence of torsions is a complication that distinguishes the HRR theorem from a version of
the Atiyah–Singer theorem discussed usually by physicists.) It is important in this derivation
that the gauge field represents a regular fiber bundle on the manifold, while torsions are regular
tensors.

In our S4 case, however, these conditions are not fulfilled: the gauge field and the torsion are
singular at w = ∞. Indeed, the torsion (8) with the metric (1) behaves at infinity as ∼ |x|−5.
Then gMNgPQgSTCMPSCNQT ∼ (x4)3 · (x−5)2 ∼ x2 and diverges. The gauge field (4), (6) is
rather peculiar. It is disguised as a benign fiber bundle having an integer Chern class

Ch2 =
1

8π2

∫
F ∧ F = 2. (25)

However, a topologically nontrivial U(1) bundle on S4 does not exist because π3[U(1)] = 1.8

Indeed, the field strength tensor is singular in this case, which manifests itself in the fact that
the “action integral” ∼

∫
d4x
√
gFMNF

MN diverges logarithmically.

6Following the ideas of [14], it has been recently derived also in physical way by studying the path integral for
the supersymmetric partition function [5].

7For (24) to be correct and simply to make sense, the connection and its curvature should respect the complex
structure. For example, the Bismut connection (9) is appropriate for this purpose, while the usual torsionless
Levi-Civita connection is not, if the manifold is not Kähler.

8On the other hand, topologically nontrivial bundles on S4 with non-Abelian gauge groups (instantons), of
course, exist.
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For such a singular Dirac operator, one cannot get rid of torsions by a smooth deformation
(a key step in the derivation of (24)), because the index integral may in this case acquire
contributions from total derivatives of singular expressions. Moreover, with all probability, the
Dirac operator on S4 with the singular field (4) and without torsions does not describe a benign
supersymmetric system – the situation must be the same as for the gauge field on S2 with
non-integer magnetic flux [7].

Having no further mathematical methods at our disposal (at least, we are not aware of such
methods), we can try to calculate the Witten index in a physical way by evaluating directly the
corresponding path integral,

I =

∫
dµ exp

{
−
∫ β

0
LE(τ)dτ

}
,

where LE is the Euclidean Lagrangian of our supersymmetric quantum system, dµ is the appro-
priate functional integral measure, and the periodic boundary conditions are imposed onto all
variables.

For most supersymmetric systems, this integral is reduced for small β to an ordinary phase
space integral [15]. This is true e.g. for a supersymmetric Hamiltonian describing the de Rham
complex on a compact manifold, where the Witten index is given by its Euler characteristics. For
the Dirac complex on compact manifolds, the situation is more complicated, a naive semiclassical
reduction is not justified and one has to perform a honest calculation of the path integral
in the one-loop approximation [14], which is not so trivial (see [2] for detailed pedagogical
explanations). For the Dolbeault complex on compact non-Kähler complex manifolds, the life
is still more difficult. Generically, one has to perform a two-loop calculation for 4d and 6d
manifolds, a three-loop calculation for 8d and 10d manifolds, etc. This complication is due to
the appearance of the new 4-fermionic term in the Lagrangian,

LE =
1

2

[
gMN ẋ

M ẋN + gMN ψ
M∇̂ψN +

1

6
∂PCMNTψ

PψMψNψT
]

− iAM ẋM +
i

2
FMNψ

MψN (26)

(∇̂ψM = ψ̇M +Γ̂MNK ẋ
NψK is the Bismut covariant derivative). For example, for a 4-dimensional

manifold, the leading (at small β) contribution to the index is

I ∼ 1

β

∫
d4x εMNPQ∂MCNPQ. (27)

For sure, the integrand is a total derivative here and the integral vanishes, but the appearance of
the large factor 1/β does not allow one to ignore 2-loop corrections anymore. They are essential.
For 8d manifolds, the leading contribution in the integrand is of order ∼ 1/β2, and this makes
essential 3 loop contributions, etc.

As was mentioned above, for compact manifolds, one needs not actually to come to grips with
these complicated multiloop contributions. One can, instead, perform a smooth deformation
that kills the torsion and makes the problem and the corresponding path integral tractable.
For a particular class of manifolds where the fermion term in (26) vanishes (the so called SKT
manifolds), this program was in fact carried out in [6]. (In this mathematical paper, path
integrals and supersymmetry were not mentioned and the author described the results in the
language of heat kernel technique, which is equivalent, however, to the path integral approach.)
The generic case is discussed in [5].

For S4, we have no other choice than to try to evaluate the path integral directly. In 4 di-
mensions, this is difficult, but feasible and, in the case when the Dirac operator involves only
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torsions, but no extra gauge field (G = 0 in our language), has been performed in [16]. The
index integral has been represented in these papers as

I = − 1

4π2

∫
d4x
√
g

{
1

2β
∇MBM

+
1

192

1
√
g
εRSKL

[
RMNRSR

MN
KL +

1

2
BRSBKL

]
+

1

24
∇MKM

}
+O(β) (28)

with

KM =

(
∇N∇N +

1

4
BNBN +

1

2
R

)
BM , BMN = ∇MBN −∇NBM . (29)

Here ∇M is the standard Levi-Civita covariant derivative and RMNRS is the standard Riemann
tensor. BM is the axial vector dual to the torsion tensor,

BM =
1

6
√
g
εMNPQCNPQ = 2xM

(
1 + x2/2

)
.

The first term in equation (28) is a singular (∼ 1/β ) but vanishing integral of a total derivative.
It was discussed before. The last term also represents a total derivative and also vanishes9.
The “field strength” BMN is zero in our case. The quadratic in the Riemann tensor integral is
proportional to a certain topological invariant called Hirzebruch signature. For S4, it vanishes.

As a result, the index of the corresponding supersymmetric Hamiltonian vanishes. This agrees
with the direct analysis of its spectrum (see the remark after equation (22)).

When G 6= 0, the Lagrangian and the Hamiltonian involve an extra gauge field. The func-
tional integral for the index acquires the (tree-level) contribution (25).

On top of this, there might have been a 1-loop contribution associated with the 4-fermion
term. To evaluate it, it is convenient to expand the periodic fields xM (τ) and ψM (τ) into the
Fourrier modes,

xM (τ) = xM0 +
∑
m6=0

xMm e
2πimτ/β , ψM (τ) = ψM0 +

∑
m 6=0

ψMm e
2πimτ/β ,

with integer m (x̄Mm = xM−m, ψ̄Mm = ψM−m). We obtain instead of (27)

I ∼ 1

β

∫
d4x0 ε

MNPQ∂MCNPQµ

×
∏

M,m6=0

dxMm dψ
M
m exp

{
− 1

2β

∑
m

(2πm)2xMm x
N
−m

(
gMN −

βFMN

2πm

)

+ i
∑
m

(2πm)ψMm ψ
N
−m

(
gMN −

βFMN

2πm

)}
, (30)

where ∂C, g, F , and the infinite factor µ 10 depend on the zero coordinate modes xM0 .

9This vanishing is due to a certain cancellation. One can easily check that individual terms ∼ ∇N∇N and
∼ BNBN in (29) are expressed into the integral ∼

∫
d4x ∂M (xM/x4) that does not vanish. These contributions

cancel, however, in the sum.
10It can be made finite when imposing an ultraviolet cutoff, see equation (6.27) of [2]. When F = 0,

µ

∫ ∏
M,m 6=0

dxMm dψ
M
m exp{· · · } = 1.
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The individual contributions due to bosonic and fermionic Gaussian integrals are nontrivial.
For example, the fermionic integral gives

fermion factor =
∞∏
m=1

det

∥∥∥∥δ N
M −

βF N
M

2πm

∥∥∥∥ = det1/2 2 sin(βF/2)

βF
.

Formally, the correction to unity is proportional to β2, but it multiplies Tr{F 2} = −FMNF
MN ,

which grows at infinity ∼ x4. The integral is then saturated by large x values, and, as a result,
the correction is of order β. When multiplied by the overall factor 1/β in front of the integral,
this gives a correction of order 1 to the index.

Anyway, as is clear from (30), this fermionic correction exactly cancels the bosonic one (ob-
viously, this cancelation is due to supersymmetry), and we have to conclude that the functional
integral calculation gives the value (25) for the index, which contradicts the direct analysis above
giving I = 3. In addition, for the twisted Dolbeault complex, we obtain

Ifunct. int. = 2q2,

which contradicts the estimate (23) above.
Certainly, this mismatch is disappointing and paradoxical. We want to emphasize, however,

that there is no logical contradiction here. We calculated the functional integral by semiclassical
methods expanding it in β. In particular, we studied only one-loop corrections to the index
associated with gauge field, because two- and higher-loop corrections are suppressed by the
naive β counting. We have seen, however, that this expansion breaks down near the singularity
where β is multiplied by a large factor ∼ x2. In this situation, one cannot reliably justify ignoring
higher-loop contributions. They can give something (though we do not see at the moment how
this can come about).

Note that there are some other examples where the presence of singularities invalidates the
semiclassical calculation of the path integral. In particular, in [17], we constructed SQM systems
associated with chiral supersymmetric gauge theories in finite volume. The Hamiltonian of these
systems is singular near the origin, H ∼ 1/x2. And, though this singularity is of repulsive benign
nature, unitarity is not broken, and the spectrum of the Hamiltonian is discrete, the semiclassical
approximation for the path integral breaks down near the origin. This manifests itself in the
senseless fractional values of the path integral for the index evaluated at the leading order.

Definitely, more studies of this very interesting question are necessary.

4 S6

A similar analysis can be done for S6 and also for higher even-dimensional spheres. The metric
of S6 is still given by equation (1) where now j = 1, 2, 3. The supercharges of the SQM system
describing the pure Dolbeault complex have almost the same form as for S4,

Q = i(1 + w̄w)ψj∂j + iψjψkψ̄jw̄k,

Q̄ = iψ̄j
[
(1 + w̄w)∂̄j − 3wj

]
+ iψ̄jψ̄kψjwk.

The Hamiltonian in the sector F = 0 is

HF=0 = −(1 + w̄w)2∂j ∂̄j + 4(1 + w̄w)wj∂j , j = 1, 2, 3,

to be compared with the standard covariant Laplacian on S6,

−4S6 = −(1 + w̄w)2∂̄j∂j + 2(1 + w̄w)(wj∂j + w̄j ∂̄j).
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We choose the basis

Ψpq = TpqF (w̄w),

where a tensor structure Tpq having p factors w and q factors w̄ and annihilated by ∂j ∂̄j represents

a

(
p
q

)
multiplet of SU(3) and has (p + 1)(q + 1)(p + q + 2)/2 independent components. For

example,

T11 = wjw̄k −
w̄w

3
δjk

is an octet11. The spectral equations for the coefficients F (z) are

(
z2 − 1

)
F ′′(z) + 2(3z + p+ q)F ′(z) +

4p

1 + z
F (z) = λF (z).

Their solutions are

F (z) = (1 + z)γpqP
p+q+2,±∆pq
n (z), λpqn = γ2

pq + 5γpq + n(n+ p+ q + 3±∆pq), (31)

with

γpq =
p+ q − 2±∆pq

2
(32)

and

∆pq =
√

(2− p− q)2 + 16p.

The observations to be made are exactly parallel to the observations in the S4 case. In particular,

• The solutions with p > 0 and the negative sign of ∆pq are not square integrable and should
not be included in the spectrum. If p = 0 or p = q = 1, the solutions with negative sign
of ∆ms are not independent being expressed into the solutions with positive sign in virtue
of (18).

• On the other hand, the solutions with positive sign of ∆pq and p > 0 are all not only
square integrable, but also nonsingular on S6. In addition, they belong to the domain
of Q (meaning here that QΨ are all normalizable).

• The solutions with p = 0 and q > 4 also have this property.

• The normalizable12 families of solutions with p = 0 and q = 0, 1, 2, 3, 4, 5 are

Ψ00n = P 22
n (z), Ψ01n = w̄jP

31
n (z),

Ψ02n = w̄jw̄k P
40
n (z), Ψ03n =

w̄jw̄kw̄l
1 + w̄w

P 51
n (z),

Ψ04n =
w̄jw̄kw̄lw̄p
(1 + w̄w)2

P 62
n (z), Ψ05n =

w̄jw̄kw̄lw̄pw̄s
(1 + w̄w)3

P 73
n (z).

11The (p, q) notation can also be used for S4, in which case m = p− q and s = min{p, q}.
12This means here that∫

|Ψ|2 d3wd3w̄

(1 + w̄w)6
<∞,

such that the singularity Ψ ∼ |w|2 is still allowed, while Ψ ∼ |w|3 is already not.
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The families with q = 1, 2, 3 grow at infinity. The functions Ψ04n are bounded, but still
singular (Ψ(∞) is not defined). However, one cannot restrict oneself with the regular
functions. The last family in the list above is regular on S6, but would not belong to the
domain of Q in this case: QΨ05n is not regular at infinity. In addition, by the same token
as for S4, the family QΨ01n is regular on S6, but does not belong to the domain of Q̄
(because Ψ01n are singular).

For normalizable functions, we probably have a nice complex. As we have just shown, all
normalizable functions in the sector F = 0 have normalizable superpartners.

The Hamiltonian in the sector F = 3 is

H = −(1 + w̄w)2∂j ∂̄j + (1 + w̄w)
(
w̄j ∂̄j + 3wj∂j

)
+ 3(3 + w̄w).

The spectral equations for the coefficients F (z) of the structures Tpq are(
z2 − 1

)
F ′′(z) + 2(3z + p+ q)F ′(z) +

3(p+ 1) + q

1 + z
F (z) = (λ− 6)F (z),

and the solutions are also given by (31), (32) with

∆F=3
pq =

√
(2− p− q)2 + 4[3(p+ 1) + q].

The eigenfunctions have better convergence here than in the sector F = 0. Actually, all nor-
malizable eigenfunctions as well as their superpartners (they have fermion charge F = 2) are
regular on S6.

To prove that the Dolbeault complex is well defined in this case in the space of square
integrable functions, we have also to solve the Schrödinger equation in the sectors F = 1 and
F = 2. In this case, it is more difficult than for S4 because some states in the sector F = 1
are annihilated by Q̄ and cannot be found as superpartners of the states in the sector F = 0.
Likewise, there are states in the sector F = 2 that are not superpartners to the states with
F = 3. (These new states are superpartners to each other.) A special analysis of the matrix
Schrödinger equation is thus required. We do not think, however, that such an analysis would
unravel unpleasant surprises and believe that the Dolbeault complex is well defined on S6\{·}.

The Witten index of this system is equal to

IS
6\{·} = 1 + 3 + 6 = 10.

(There is one zero mode, Ψ = 1, in the sector F = 0, p = q = 0, three zero modes, Ψ = w̄j , in
the sector F = 0, p = 0, q = 1 and six zero modes Ψ = w̄jw̄k, in the sector F = 0, p = 0, q = 2.
No zero modes in the other sectors are present.) Generalizing this analysis to higher spheres,
we obtain the result

IS
2d\{·} = Cd−1

2d−1

for the index of the pure Dolbeault complex.
Again, we can try to make contact of this result with functional integral calculations. Un-

fortunately, this does not work better here than in the S4 case. At the tree level, one obtains
a fractional contribution to the path integral,

1

48π3

∫
F ∧ F ∧ F =

9

2
.

The one-loop contribution associated with the gauge field vanishes by the same token as for S4

(see equation (30) and the discussion thereabout). Higher loops seem to be suppressed for
small β, but the presence of singularity does not allow one to make a definite statement . . . .
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