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Abstract. We find a two-component generalization of the integrable case of rdDym equa-
tion. The reductions of this system include the general rdDym equation, the Boyer–Finley
equation, and the deformed Boyer–Finley equation. Also we find a Bäcklund transformation
between our generalization and Bodganov’s two-component generalization of the universal
hierarchy equation.

Key words: coverings of differential equations; Bäcklund transformations
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1 Introduction

Recent papers [3, 8, 16] provide two-component generalizations for the hyper-CR Einstein–Weil
structure equation [6, 22]

syy = stx + sysxx − sxsxy, (1.1)

Plebański’s second heavenly equation [25]

sxz = sty + sxxsyy − s2xy (1.2)

and the universal hierarchy equation [18, 19, 22]

sxx = sxsty − stsxy. (1.3)

Namely, equations (1.1)–(1.3) appear from systems

syy = stx + (sy + r)sxx − sxsxy,
ryy = rtx + (sy + r)rxx − sxrxy + r2x;

(1.4)

sxz = sty + sxxsyy − s2xy + r,

rxz = rty + syyrxx + sxxryy − 2sxyrxy,
(1.5)

and

sxx = er(sxsty − stsxy),(
e−r

)
xx

= sxrty − strxy,
(1.6)

respectively, by substituting for r = 0. Other reductions for (1.4) are found in [7, 16]: when
u = 0, system (1.4) gives the Khokhlov–Zabolotskaya (or dispersionless Kadomtsev–Petviashvili)
equation

vyy = vtx + vvxx + v2x,
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while substituting for v = ux in (1.4) produces the normal form

uyy = utx + (ux + uy)uxx − uxuxy,

for the family of equations studied in [7]. Also, we note the reduction v = uy for system (1.4).
This reduction yields equation

uyy = utx − uxuxy

studied in [9, 14, 17, 21].
As it was shown in [3], the reduction s = x for system (1.6) gives the Boyer–Finley equation

rty =
(
e−r

)
xx
. (1.7)

The purpose of the present paper is to introduce the two-component generalization for equa-
tion

uty = uxuxy − uyuxx, (1.8)

which is integrable in the following sense: it has the differential covering [2, 11, 12, 13]

pt = (ux − λ)px, py = λ−1uypx (1.9)

containing the non-removable parameter λ 6= 0 [20]. We show that reductions of the generaliza-
tion include the general r-th dispersionless Dym equation [1]

uty = uxuxy + κuyuxx, (1.10)

the Boyer–Finley equation (1.7), and the deformed Boyer–Finley equation. Also we find a Bäck-
lund transformation between our generalization and Bodganov’s two-component generaliza-
tion (1.6) of the universal hierarchy equation (1.3).

2 The two-component generalization

Along with the covering (1.9) equation (1.8) has the covering

qt = (ux − q)qx, qy = uyq
−1qx, (2.1)

which can be obtained by the method of [20]. While the coverings (1.9) and (2.1) are not
equivalent w.r.t. the pseudo-group of contact transformations, (2.1) can be derived from (1.9)
by the following procedure, see, e.g., [24]. We consider the function p = p(t, x, y) from (1.9) to
be defined implicitly by the equation q(t, x, y, p(t, x, y)) = λ with qp 6= 0. Then for (x1, x2, x3) =
(t, x, y) we have qxi + qppxi = 0, so pxi = −qxi/qp. Substituting these into (1.9) yields (2.1).

Our main observation in this paper is that the covering (2.1) allows the generalization

qt = (ux − q + v)qx + vxq, qy = uyq
−1qx + vy. (2.2)

This system is compatible whenever the two-component system

uty = (ux + v)uxy − uyuxx, (2.3)

vty = (ux + v)vxy − uyvxx + vxvy (2.4)

holds. In other words, (2.2) is a covering for system (2.3), (2.4).
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3 Reductions

By the construction, we have the following reduction for system (2.2):
Reduction A. Substituting for v = 0 in equations (2.3), (2.2) gives equations (1.8) and (2.1),

while (2.4) becomes an identity.
Also, we have three other reductions.
Reduction B. If we put v = −(κ−1 + 1)ux, then (2.3) gets the form

uty = −κ−1uxuxy − uyuxx, (3.1)

while (2.4) is its differential consequence. The transformation u 7→ −κu maps (3.1) to (1.10).
The corresponding reduction of (2.2) produces the covering of (1.10) studied in [20, 23].

Reduction C. Taking v = −ux in (2.3), (2.4), we obtain

uty = −uyuxx

and its differential consequence. Then we divide this equation by uy, differentiate w.r.t. y and
put uy = −ew. This gives the Boyer–Finley equation [4]

wty = (ew)xx (3.2)

This equation is equation (1.7) in a different notation. Substituting for q = ep in the corre-
sponding reduction of (2.2), we have the covering [10, 15, 26] for equation (3.2):

pt = wt − eppx, py = ew−p(wx − px).

Reduction D. Finally, when we put v = uy − ux into (2.3) and (2.4), we get the equation

uty = uy (uxy − uxx)

and its differential consequence. Then for uy = ew we have the deformed Boyer–Finley equa-
tion [5]

wty = (ew)xy − (ew)xx , (3.3)

and the corresponding reduction of equations (2.2) with q = es gives the covering

st = (es − ew)sx − wt, sy = ew(sx − wx + wy).

for (3.3). This covering in other notations was found in [5, 20].

4 Bäcklund transformations

The substitution

ux = −v +
st
sx
, uy = −e

−r

sx
, vx =

rxst
sx
− rt, vy = −e

−rrx
sx

(4.1)

maps system (2.2) to system

qt =

(
st
sx
− q

)
qx +

(
strx
sx
− rt

)
q, qy = −e

−r

qsx
(qx + rxq) (4.2)

found in [3]. This system is the two-component generalization of the covering

qt =

(
st
sx
− q

)
qx, qy = − qx

qsx
.
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of equation (1.3). The compatibility conditions for (4.2) coincide with (1.6). Solving (4.1) for
st, sx, rt, rx yields

st = −(ux + v)
e−r

uy
, sx = −e

−r

uy
, rt =

vy
uy
, rx =

(ux + v)vy
uy

− vx. (4.3)

This system is compatible whenever equations (2.3), (2.4) are satisfied. Thus equations (4.1)
define a Bäcklund transformation from (2.3), (2.4) to (1.6) with the inverse transformation (4.3).
In particular, when v = 0 and r = 0, we have a Bäcklund transformation

ux =
st
sx
, uy = − 1

sx
,

between (1.1) and (1.3) with the inverse transformation

st = −ux
uy
, sx = − 1

uy
.
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