Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 067, 29 pages      arXiv:1204.4501      https://doi.org/10.3842/SIGMA.2012.067

Discrete Fourier Analysis and Chebyshev Polynomials with G2 Group

Huiyuan Li a, Jiachang Sun a and Yuan Xu b
a) Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
b) Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222, USA

Received May 04, 2012, in final form September 06, 2012; Published online October 03, 2012

Abstract
The discrete Fourier analysis on the 30°-60°-90° triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G2, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of m-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type.

Key words: discrete Fourier series; trigonometric; group G2; PDE; orthogonal polynomials.

pdf (813 kb)   tex (857 kb)

References

  1. Beerends R.J., Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator, Trans. Amer. Math. Soc. 328 (1991), 779-814.
  2. Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, Vol. 290, 3rd ed., Springer-Verlag, New York, 1999.
  3. Dudgeon D.E., Mersereau R.M., Multidimensional digital signal processing, Prentice-Hall Inc, Englewood Cliffs, New Jersey, 1984.
  4. Dunkl C.F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, Vol. 81, Cambridge University Press, Cambridge, 2001.
  5. Fuglede B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101-121.
  6. Koornwinder T.H., Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III, Nederl. Akad. Wetensch. Proc. Ser. A 77 (1974), 357-369.
  7. Koornwinder T.H., Two-variable analogues of the classical orthogonal polynomials, in Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Academic Press, New York, 1975, 435-495.
  8. Krall H.L., Sheffer I.M., Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. (4) 76 (1967), 325-376.
  9. Li H., Sun J., Xu Y., Discrete Fourier analysis, cubature, and interpolation on a hexagon and a triangle, SIAM J. Numer. Anal. 46 (2008), 1653-1681, arXiv:0712.3093.
  10. Li H., Sun J., Xu Y., Discrete Fourier analysis with lattices on planar domains, Numer. Algorithms 55 (2010), 279-300, arXiv:0910.5286.
  11. Li H., Xu Y., Discrete Fourier analysis on fundamental domain and simplex of Ad lattice in d-variables, J. Fourier Anal. Appl. 16 (2010), 383-433, arXiv:0809.1079.
  12. Marks II R.J., Introduction to Shannon sampling and interpolation theory, Springer Texts in Electrical Engineering, Springer-Verlag, New York, 1991.
  13. Moody R.V., Patera J., Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups, Adv. in Appl. Math. 47 (2011), 509-535, arXiv:1005.2773.
  14. Munthe-Kaas H.Z., On group Fourier analysis and symmetry preserving discretizations of PDEs, J. Phys. A: Math. Gen. 39 (2006), 5563-5584.
  15. Stroud A.H., Approximate calculation of multiple integrals, Prentice-Hall Series in Automatic Computation, Prentice-Hall Inc., Englewood Cliffs, N.J., 1971.
  16. Suetin P.K., Orthogonal polynomials in two variables, Analytical Methods and Special Functions, Vol. 3, Gordon and Breach Science Publishers, Amsterdam, 1999.
  17. Sun J., Multivariate Fourier series over a class of non tensor-product partition domains, J. Comput. Math. 21 (2003), 53-62.
  18. Szajewska M., Four types of special functions of G2 and their discretization, Integral Transforms Spec. Funct. 23 (2012), 455-472, arXiv:1101.2502.
  19. Xu Y., Polynomial interpolation in several variables, cubature formulae, and ideals, Adv. Comput. Math. 12 (2000), 363-376.

Previous article  Next article   Contents of Volume 8 (2012)