Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 102, 22 pages      arXiv:1206.1151      https://doi.org/10.3842/SIGMA.2012.102
Contribution to the Special Issue “Geometrical Methods in Mathematical Physics”

Old and New Reductions of Dispersionless Toda Hierarchy

Kanehisa Takasaki
Graduate School of Human and Environmental Studies, Kyoto University, Yoshida, Sakyo, Kyoto, 606-8501, Japan

Received June 06, 2012, in final form December 15, 2012; Published online December 19, 2012

Abstract
This paper is focused on geometric aspects of two particular types of finite-variable reductions in the dispersionless Toda hierarchy. The reductions are formulated in terms of ''Landau-Ginzburg potentials'' that play the role of reduced Lax functions. One of them is a generalization of Dubrovin and Zhang's trigonometric polynomial. The other is a transcendental function, the logarithm of which resembles the waterbag models of the dispersionless KP hierarchy. They both satisfy a radial version of the Löwner equations. Consistency of these Löwner equations yields a radial version of the Gibbons-Tsarev equations. These equations are used to formulate hodograph solutions of the reduced hierarchy. Geometric aspects of the Gibbons-Tsarev equations are explained in the language of classical differential geometry (Darboux equations, Egorov metrics and Combescure transformations). Flat coordinates of the underlying Egorov metrics are presented.

Key words: dispersionless Toda hierarchy; finite-variable reduction; waterbag model; Landau-Ginzburg potential; Löwner equations; Gibbons-Tsarev equations; hodograph solution; Darboux equations; Egorov metric; Combescure transformation; Frobenius manifold; flat coordinates.

pdf (459 kb)   tex (28 kb)

References

  1. Ablowitz M.J., Ladik J.F., Nonlinear differential-difference equations, J. Math. Phys. 16 (1975), 598-603.
  2. Bogdanov L.V., Konopelchenko B.G., Symmetry constraints for dispersionless integrable equations and systems of hydrodynamic type, Phys. Lett. A 330 (2004), 448-459, nlin.SI/0312013.
  3. Brini A., The local Gromov-Witten theory of CP1 and integrable hierarchies, Comm. Math. Phys. 313 (2012), 571-605, arXiv:1002.0582.
  4. Brini A., Carlet G., Rossi P., Integrable hierarchies and the mirror model of local CP1, Phys. D 241 (2012), 2156-2167, arXiv:1105.4508.
  5. Carlet G., The extended bigraded Toda hierarchy, J. Phys. A: Math. Gen. 39 (2006), 9411-9435, math-ph/0604024.
  6. Carlet G., Lorenzoni P., Raimondo A., The reductions of the dispersionless 2D Toda hierarchy and their Hamiltonian structures, J. Phys. A: Math. Theor. 43 (2010), 045201, 13 pages, arXiv:0910.1210.
  7. Chang J.-H., On the waterbag model of dispersionless KP hierarchy, J. Phys. A: Math. Gen. 39 (2006), 11217-11230, nlin.SI/0603007.
  8. Chang J.-H., On the waterbag model of the dispersionless KP hierarchy. II, J. Phys. A: Math. Theor. 40 (2007), 12973-12985, nlin.SI/0702014.
  9. Chang J.-H., Remarks on the waterbag model of dispersionless Toda hierarchy, J. Nonlinear Math. Phys. 15 (2008), suppl. 3, 112-123, arXiv:0709.3859.
  10. Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910.
  11. Dijkgraaf R., Intersection theory, integrable hierarchies and topological field theory, in New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 295, Plenum, New York, 1992, 95-158, hep-th/9291993.
  12. Dubrovin B.A., Geometry of 2D topological field theories, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348, hep-th/9407018.
  13. Dubrovin B.A., On almost duality for Frobenius manifolds, in Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 212, Amer. Math. Soc., Providence, RI, 2004, 75-132, math.DG/0307374.
  14. Dubrovin B.A., On the differential geometry of strongly integrable systems of hydrodynamics type, Funct. Anal. Appl. 24 (1990), 280-285.
  15. Dubrovin B.A., On universality of critical behaviour in Hamiltonian PDEs, in Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 224, Amer. Math. Soc., Providence, RI, 2008, 59-109, arXiv:0804.3790.
  16. Dubrovin B.A., Zhang Y., Extended affine Weyl groups and Frobenius manifolds, Compositio Math. 111 (1998), 167-219, hep-th/9611200.
  17. Eguchi T., Hori K., Yang S.K., Topological σ models and large-N matrix integral, Internat. J. Modern Phys. A 10 (1995), 4203-4224, hep-th/9503017.
  18. Eguchi T., Yang S.K., The topological CP1 model and the large-N matrix integral, Modern Phys. Lett. A 9 (1994), 2893-2902, hep-th/9407134.
  19. Ferapontov E.V., Korotkin D.A., Shramchenko V.A., Boyer-Finley equation and systems of hydrodynamic type, Classical Quantum Gravity 19 (2002), L205-L210, gr-qc/0401118.
  20. Ferguson J.T., Strachan I.A.B., Logarithmic deformations of the rational superpotential/Landau-Ginzburg construction of solutions of the WDVV equations, Comm. Math. Phys. 280 (2008), 1-25, math-ph/0605078.
  21. Gibbons J., Tsarev S.P., Conformal maps and reductions of the Benney equations, Phys. Lett. A 258 (1999), 263-271.
  22. Gibbons J., Tsarev S.P., Reductions of the Benney equations, Phys. Lett. A 211 (1996), 19-24.
  23. Guil F., Mañas M., Martínez Alonso L., The Whitham hierarchies: reductions and hodograph solutions, J. Phys. A: Math. Gen. 36 (2003), 4047-4062, nlin.SI/0209051.
  24. Krichever I.M., The τ-function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math. 47 (1994), 437-475, hep-th/9205110.
  25. Löwner K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), 103-121.
  26. Mañas M., S-functions, reductions and hodograph solutions of the rth dispersionless modified KP and Dym hierarchies, J. Phys. A: Math. Gen. 37 (2004), 11191-11221, nlin.SI/0405028.
  27. Mañas M., Martínez Alonso L., Medina E., Reductions and hodograph solutions of the dispersionless KP hierarchy, J. Phys. A: Math. Gen. 35 (2002), 401-417.
  28. Pavlov M.V., Algebro-geometric approach in the theory of integrable hydrodynamic type systems, Comm. Math. Phys. 272 (2007), 469-505, nlin.SI/0603054.
  29. Riley A., Strachan I.A.B., A note on the relationship between rational and trigonometric solutions of the WDVV equations, J. Nonlinear Math. Phys. 14 (2007), 82-94, nlin.SI/0605005.
  30. Takasaki K., Generalized string equations for double Hurwitz numbers, J. Geom. Phys. 62 (2012), 1135-1156, arXiv:1012.5554.
  31. Takasaki K., Takebe T., Integrable hierarchies and dispersionless limit, Rev. Math. Phys. 7 (1995), 743-808, hep-th/9405096.
  32. Takasaki K., Takebe T., Löwner equations, Hirota equations and reductions of the universal Whitham hierarchy, J. Phys. A: Math. Theor. 41 (2008), 475206, 27 pages, arXiv:0808.1444.
  33. Takasaki K., Takebe T., Radial Löwner equation and dispersionless mcKP hierarchy, nlin.SI/0601063.
  34. Takebe T., Teo L.-P., Zabrodin A., Löwner equations and dispersionless hierarchies, J. Phys. A: Math. Gen. 39 (2006), 11479-11501, math.CV/0605161.
  35. Tsarev S.P., Classical differential geometry and integrability of systems of hydrodynamic type, in Applications of Analytic and Geometric Methods to Nonlinear Differential Equations (Exeter, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 413, Kluwer Acad. Publ., Dordrecht, 1993, 241-249, hep-th/9303092.
  36. Tsarev S.P., On Poisson bracket and one-dimensional systems of hydrodynamic type, Soviet Math. Dokl. 31 (1985), 488-491.
  37. Yu L., Waterbag reductions of the dispersionless discrete KP hierarchy, J. Phys. A: Math. Gen. 33 (2000), 8127-8138.

Previous article  Next article   Contents of Volume 8 (2012)