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Abstract. This paper studies relationships between the order reductions of ordinary
differential equations derived by the existence of λ-symmetries, telescopic vector fields and
some nonlocal symmetries obtained by embedding the equation in an auxiliary system. The
results let us connect such nonlocal symmetries with approaches that had been previously
introduced: the exponential vector fields and the λ-coverings method. The λ-symmetry
approach let us characterize the nonlocal symmetries that are useful to reduce the order and
provides an alternative method of computation that involves less unknowns. The notion
of equivalent λ-symmetries is used to decide whether or not reductions associated to two
nonlocal symmetries are strictly different.
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1 Introduction

Local (or Lie point) symmetries have been extensively used in the study of differential equa-
tions [41, 42, 45]. For ordinary differential equations (ODEs), a local symmetry can be used
to reduce the order by one. The equation can be integrated by quadratures if a sufficiently
large solvable algebra of local symmetries is known. There are equations lacking local symmet-
ries that can also be integrated [21, 22]. Several generalizations to the classical Lie method
have been introduced with the aim of including these processes of integration. A number of
them are based on the existence of nonlocal symmetries, i.e. symmetries with one or more of the
coefficient functions containing an integral. Many of them appear in order reduction procedures
as hidden symmetries [1, 2, 4, 5, 6, 29, 40]. During the last two decades a considerable number of
papers have been devoted to the study of nonlocal symmetries and their role in the integration
of differential equations [7, 24], including equations lacking Lie point symmetries [3, 23].

An alternative approach that avoids nonlocal terms is based on the concept of λ-symmet-
ry [34], that uses a vector field v and certain function λ; the λ-prolongation of v is done by
using this function λ. A complete system of invariants for this λ-prolongation can be constructed
by derivation of lower order invariants [36]. As a consequence, the order of an ODE invariant
under a λ-symmetry can be reduced as for Lie point symmetries. Many of the procedures to
reduce the order of ODEs, including equations that lack Lie point symmetries, can be explained
by the existence of λ-symmetries [30]. From a geometrical point of view, several studies and
interpretations of λ-symmetries have been made by several authors [12, 13, 14, 27] including
further extensions of λ-symmetries to systems [15, 28], to partial differential equations [18],
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to variational problems [16, 38] and to difference equations [25]. Several applications of the
λ-symmetry approach to relevant equations of the mathematical physics appear in [9, 10, 46].

A nonlocal interpretation of the λ-symmetries was proposed by D. Catalano-Ferraioli in [12]
(see also [13] from a theoretical point of view). By embedding the equation into a suitable system
(λ-covering) determined by the function λ, the λ-symmetries of the ODE can be connected to
some standard but generalized symmetries of the system (that in the variables of the ODE
involve nonlocal terms).

These techniques have been recently used in [11, 19, 20] to calculate some nonlocal symmetries
of ODEs. In this work we show that cited method is essentially included in the framework of the
λ-coverings and that the obtained reductions are consequence of the existence of λ-symmetries.

A review of the main results on λ-symmetries that are used in the paper is contained in
Section 2, including the study of some new relationships with the telescopic vector fields intro-
duced in [44]. A telescopic vector field can be considered as a λ-prolongation where the two
first infinitesimals can depend on the first derivative of the dependent variable. We also prove
the existence of a (generalized) λ-symmetry associated to any telescopic vector field that leaves
invariant the given equation (Corollary 1).

Motivated by the fact that the reduction procedure associated to the nonlocal symmetries
obtained by the λ-covering method uses the method of the differential invariants, we prove
in Section 3 the existence of a λ-symmetry associated to a nonlocal symmetry of this type.
In Theorem 5 such correspondence between the nonlocal symmetries and the λ-symmetries
is explicitly established. In Section 4 we prove that, for some special cases, such nonlocal
symmetries are the called exponential vector fields introduced by P. Olver some years ago [41],
which are related to λ-symmetries [34].

In Section 5 we show how to construct nonlocal symmetries of exponential type associated to
a known λ-symmetry, which recovers the nonlocal interpretation of λ-symmetries given in [12].
This result shows that nonlocal symmetries of exponential type are a kind of prototype of the
nonlocal symmetries useful to reduce the order. In fact, this is the usual form of the nonlocal
symmetries reported in the references.

In Section 6 we investigate when two reductions associated to two different nonlocal sym-
metries are strictly different. This problem is, as far as we know, new in the literature and it
is difficult to establish in terms of the nonlocal symmetries, because the reduction procedures
correspond to different symmetries of different systems (the coverings associated to different
functions). To overcome this difficulty we use the corresponding λ-symmetries and the notion of
equivalent λ-symmetries introduced in [33] to provide an easy-to-check criterion to know whether
or not two order reductions are equivalent.

Finally we collect some examples in Section 7 and prove that the reductions obtained by
using nonlocal symmetries are equivalent to reduction procedures derived by λ-symmetries that
have been previously reported in the literature.

2 λ-symmetries and order reductions

2.1 The invariants-by-derivation property and λ-prolongations

Let us consider a nth order ordinary differential equation written in the form

xn = F (t, x, x1, . . . , xn−1), (2.1)

where t denotes the independent variable, x is the dependent variable and xi = dix/dti, for
i = 1, . . . , n. For i = 1, x1 is sometimes denoted by x′(t). For first-order partial derivatives
of a function of several variables we use subscripts of the corresponding independent variable.
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We require the functions to be smooth, meaning C∞, although most results hold under weaker
differentiability requirements.

Let us assume that (t, x) are in some open set M ⊂ R2 and denote by M (k) the corresponding
jet space of order k, for k ∈ N. Let us consider the total derivative operator

Dt = ∂t + x1∂x + · · ·+ xi∂xi−1 + · · ·

and its restriction to the submanifold defined by the equation,

A = ∂t + x1∂x + · · ·+ xi∂xi−1 + · · ·+ F∂xn−1 ,

that will be called the vector field associated to equation (2.1). For an arbitrary (smooth) vector
field defined on M

v = ξ(t, x)∂t + η0(t, x)∂x (2.2)

and for k ∈ N, the usual kth order prolongation [41] of v is given by

v(k) = ξ∂t + η0∂x +
k∑
i=1

ηi∂xi ,

where, for 1 ≤ i ≤ k,

ηi = Dt

(
ηi−1

)
−Dt(ξ)xi. (2.3)

The infinitesimal Lie point symmetries of equation (2.1) are the vector fields (2.2) such
that v(n) is tangent to the submanifold defined by equation (2.1). The invariance of (2.1)
under v(n) provides an overdetermined linear system of determining equations for the infinitesi-
mals ξ and η0. Assuming that a particular nontrivial solution of the system has been derived,
an order reduction procedure of the equation can be carried out. Briefly, the first step of the
method consists in calculating two invariants of v(1),

z = z(t, x), ζ = ζ(t, x, x1), ζx1 6= 0. (2.4)

Let us recall that if a zero-order differential invariant z = z(t, x) is known then a first-order
invariant ζ = ζ(t, x, x1) can be found by quadrature ([17, Proposition 26.5, p. 97] and [43]). By
successive derivations of ζ with respect to z, a complete system of invariants of v(n)

{z, ζ, ζ1, . . . , ζn−1} (2.5)

is constructed, where ζi+1 denotes Dtζi/Dtz, for i = 1, . . . , n−2. Since equation (2.1) is invariant
under v(n), the equation can be written in terms of (2.5) as a (n − 1)th order equation. This
algorithm is usually known as the method of the differential invariants to reduce the order.

The prolongation defined in (2.3) is not the only prolongation that lets obtain by deriva-
tion a complete system of invariants by using two invariants (2.4) of its first prolongation.
This property of vector fields has been called the invariants-by-derivation (ID) property [36,
Definition 1]. The prolongations with the ID property have been completely characterized in [36]
as the so-called λ-prolongations [34]. For a function λ = λ(t, x, x1) ∈ C∞(M (1)) and a vector
field X = ρ(t, x)∂t + φ0(t, x)∂x, the kth order λ-prolongation of X is the vector field

X[λ,(k)] = ρ∂t + φ0∂x +

k∑
i=1

φ[λ,(i)]∂xi ,
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where

φ[λ,(i)] = Dt

(
φ[λ,(i−1)]

)
−Dt(ρ)xi + λ

(
φ[λ,(i−1)] − ρxi

)
, 1 ≤ i ≤ k, (2.6)

and φ[λ,(0)] = φ0. For k ∈ N, the kth order λ-prolongation of X is characterized [34] as the
unique vector field X[λ,(k)] such that[

X[λ,(k)], Dt

]
= λX[λ,(k)] + µDt, where µ = −(Dt + λ)(ρ). (2.7)

Standard prolongations can be considered as a particular case of λ-prolongations for λ = 0.
We say that the pair (X, λ) defines a C∞(M (1))-symmetry (or that X is a λ-symmetry) of

equation (2.1) if and only if X[λ,(n)] is tangent to the submanifold defined by (2.1). This is
equivalent [34] to the property[

X[λ,(n−1)], A
]

= λX[λ,(n−1)] + µA, (2.8)

where µ = −(Dt + λ)(ρ). Obviously, if a vector field X is a λ-symmetry of equation (2.1) for
the function λ = 0, then X becomes a Lie point symmetry of the equation.

2.2 λ-symmetries and order reductions

Since λ-prolongations have the ID property, the method of the differential invariants can be
used to reduce the order, as well as for Lie point symmetries [34]:

Theorem 1. If the pair (X, λ) defines a C∞(M (1))-symmetry of equation (2.1) and (2.4) are
invariants of X[λ,(1)] then the equation (2.1) can be written in terms of (2.5) as an ODE of
order n− 1.

Such method has been successfully applied to reduce the order of a number of ODEs, many
of them lacking Lie point symmetries [30]. In fact, many of the known reduction processes can
be obtained via the above method as a consequence of the existence of λ-symmetries.

In this context, it is important to recall that the converse of Theorem 1 also holds. Although
this result has been proven in [30], we present here an alternative proof that constructs explicitly
the λ-symmetry that will be used later in the proof of Theorem 5.

Let us assume that there exist two functions z = z(t, x) and ζ = ζ(t, x, x1) such that equa-
tion (2.1) can be written in terms of {z, ζ, ζ1, . . . , ζn−1} as an ODE of order n − 1, denoted by
∆(z, ζ, . . . , ζn−1) = 0. Let us determine a vector field X = ρ(t, x)∂t + φ0(t, x)∂x and a function
λ = λ(t, x, x1) with the conditions X(z) = 0 and X[λ,(1)](ζ) = 0. The condition X(z) = 0 is
satisfied, for instance, if we choose ρ = −zx and φ0 = zt, i.e., we can choose

X = −zx(t, x)∂t + zt(t, x)∂x. (2.9)

The function λ may be obtained from the condition X[λ,(1)](ζ) = 0,

λ =
zxζt − ztζx
Dt(z)ζx1

− Dt(zt) +Dt(zx)x1

Dt(z)
. (2.10)

By construction, it is clear that (2.4) are invariants of X[λ,(1)] and, by the ID property, the
corresponding set (2.5) is a complete system of invariants of X[λ,(n)].

Let us prove that (X, λ) defines a λ-symmetry of (2.1). In order to construct a local system
of coordinates on M (n), we complete (2.5) with a function α = α(t, x) functionally independent
with z(t, x). Since (2.5) are invariants of X[λ,(n)], in the new coordinates X[λ,(n)] is of the form
ϕ(z, α)∂α, where ϕ(z, α) = X(α(t, x)).

Since ϕ(z, α)∂α(∆(z, ζ, . . . , ζn−1)) = 0, we conclude that the pair (X, λ) given by (2.9) and
(2.10) defines a λ-symmetry of (2.1). Therefore the following result, converse of Theorem 1,
holds:
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Theorem 2. If there exist two functions z = z(t, x) and ζ = ζ(t, x, x1) such that equation (2.1)
can be written in terms of {z, ζ, ζ1, . . . , ζn−1} as an ODE of order n − 1 then the pair (X, λ)
given by (2.9) and (2.10) defines a λ-symmetry of equation (2.1). The functions z and ζ are
invariants of X[λ,(1)].

Remark 1. We recall that if the pair (X, λ) defines a λ-symmetry of (2.1) and f = f(t, x) is
any smooth function, then (fX, λ̃) is also a λ-symmetry of (2.1) for λ̃ = λ−Dt(f)/f (see [34,

Lemma 5.1]). Since (fX)[λ̃,(1)] = fX[λ,(1)], it is clear that (fX)[λ̃,(1)] and X[λ,(1)] have the same
invariants, if f is a non-null function. We conclude that, in the conditions of Theorem 2, there
exist infinitely many λ-symmetries of the equation that also have the same invariants z and ζ.

2.3 Generalized λ-prolongations and telescopic vector fields

The prolongations of vector fields X defined on M ⊂ R2 to the kth jet space M (k) that have
the ID property are characterized by (2.7). It is easy to check that the vector fields Y on M (k)

that satisfy

[Y,Dt] = λY + µDt, (2.11)

for some functions λ and µ ∈ C∞(M (k)), also have a ID property, in the sense that if g =
g(t, x, . . . , xi) and h = h(t, x, . . . , xj) are invariants of Y then hg = Dth/Dtg is also an invariant
of Y . Relation (2.11) implies that Y can be written in the form

Y = ρ(t, x, . . . , xi1)∂t + φ0(t, x, . . . , xi2)∂x +
k∑
j=1

φ[λ,(j)](t, x, . . . , xij )∂xj , (2.12)

where the functions φ[λ,(j)] are defined by recurrence as in (2.6). Even if ρ, φ0 and λ depend on
derivatives up to some finite order, formulae (2.6) are well-defined and, formally, we can write
Y = (ρ∂t + φ0∂x)[λ,(k)].

Let us observe that the class of these vector fields Y contains well-known subclasses of vector
fields that have appeared in the literature:

Generalized λ-prolongations. When the infinitesimals ρ and φ0 in (2.12) only depend
on (t, x), Y projects onto X = ρ∂t + φ0∂x, that is a vector field defined on M ⊂ R2. If λ =
λ(t, x, . . . , xs) ∈ C∞(M (s)), for some s > 1, the vector field Y is the generalized λ-prolongation
of X, i.e., Y = X[λ,(k)] (see Definition 2.1 in [30]). If a given differential equation is invariant
under the λ-prolongation of X, for some function λ ∈ C∞(M (s)), we say that X is a generalized
λ-symmetry or that the pair (X, λ) defines a C∞(M (s))-symmetry of the equation (see [30] for
details).

Telescopic vector fields. A class of vector fields that also satisfy (2.11) is formed by the
called telescopic vector fields [44]. They are defined as the vector fields in M (k) that satisfy the
ID property, but now z in (2.4) can depend on x1, i.e, z and ζ are both independent invariants
of first-order

z̃ = z̃(t, x, x1), ζ̃ = ζ̃(t, x, x1). (2.13)

Telescopic vector fields have been characterized in [44], up to a multiplicative factor, as the
vector fields in M (k) of the form

τ (k) = α(t, x, x1)∂t + β(t, x, x1)∂x +
k∑
i=1

γ(i)(t, x, . . . , xi)∂xi , (2.14)
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where α = α(t, x, x1), β = β(t, x, x1) and γ(1) = γ(1)(t, x, x1) are arbitrary functions such that
β − αx1 6= 0 and, for i = 2, . . . , k, γ(i) = γ(i)(t, x, . . . , xi) is given by

γ(i) = Dt

(
γ(i−1)

)
−Dt(α)xi +

γ(1) + x1Dtα−Dtβ

β − x1α

(
γ(i−1) − αxi

)
. (2.15)

It should be pointed out that the condition β−αx1 6= 0 is necessary to have the ID property
or to be a telescopic vector field in the sense given in [44]. In the case β − αx1 = 0, if (2.13)

are independent invariants of a vector field of the form (2.14), then ζ̃1 = Dtζ
Dtz

=
ζ̃x1
z̃x1

does not

depend on x2. Since z̃t z̃x z̃x1
ζ̃t ζ̃x ζ̃x1
ζ̃1t ζ̃1x ζ̃1x1

 α
αx1

γ(1)

 =

0
0
0

 ,

we conclude that {z̃, ζ̃, ζ̃1} cannot be independent invariants of a vector field of the form (2.14).
Now we give some hints on the relationships between telescopic vector fields and λ-prolon-

gations. By using (2.15), the following characterization of telescopic vector fields can easily be
checked:

Theorem 3. A telescopic vector field (2.14) satisfies[
τ (k), Dt

]
= λτ (k) + µDt, (2.16)

where

λ =
γ(1) + x1Dtα−Dtβ

β − x1α
, (2.17)

and µ = −(Dt + λ)(α). Accordingly, the telescopic vector field (2.14) can be written as τ (k) =
(α∂t + β∂x)[λ,(k)] for the function λ ∈ C∞(M (2)) given by (2.17).

Previous theorem shows that a telescopic vector field is a λ-prolongation where the two
first infinitesimals can depend on the first derivative of the dependent variable. We point out
that a telescopic vector field (2.14) admits a zero-order invariant if and only if α = 0 or the
ratio β/α does not depend on x1. In this case the two first infinitesimals of 1/α · τ (k) (resp.
of 1/β · τ (k) if α = 0) do not depend on x1. If α = α(t, x) and β = β(t, x), we can write
τ (k) = (α∂t + β∂x)[λ,(k)], where the function λ is given by (2.17) and only depends on (t, x, x1).
In other words, the telescopic vector fields that admit an invariant of order zero are standard
λ-prolongations of vector fields in M , with λ ∈ C∞(M (1)).

Example 1. The telescopic vector field τ (2) = x1∂x + x∂x1 + γ(2)∂x2 , where γ(2) is defined
by (2.15), given in [44, equation (48)], is not the λ-prolongation of a vector field on M . However,
since z = t is a zero-order invariant, this telescopic vector field is, up to the multiplicative
factor x1, the λ-prolongation of X = ∂x for λ = t/x1. This pair (X, λ) defines a C∞(M (1))-
symmetry of equation (46) in [44] associated to this telescopic vector field.

In the general case, as a direct consequence of (2.7), (2.16) and the properties of the Lie
bracket, the following relation between telescopic vector fields and λ-prolongations of vector
fields in M holds:

Theorem 4. If (2.14) is a telescopic vector field, as defined in [44], then β − x1α 6= 0 and

τ (k) = αDt + (β − αx1)X[λ,(k)], (2.18)
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where X = ∂x and λ ∈ C∞(M (2)) is given by

λ =
γ(1) − αx2

β − αx1
. (2.19)

If α = 0, then λ does not depend on x2, i.e., λ ∈ C∞(M (1)).

As a consequence, from (2.18) we deduce the existence of a C∞(M (2))-symmetry associated
to a telescopic vector field that leaves invariant the given equation:

Corollary 1. If an nth order ordinary differential equation (2.1) is invariant under a telescopic
vector field (2.14) then the equation admits the vector field X = ∂x as C∞(M (2))-symmetry for
the function λ given by (2.19).

For the particular case n = 2, the λ-symmetry associated to a telescopic vector field is
a C∞(M (1))-symmetry. The proof consists of the evaluation of (2.18) and (2.19) on the subma-
nifold defined by x2 = F (t, x, x1).

Corollary 2. If a second-order ordinary differential equation x2 = F (t, x, x1) is invariant under
a telescopic vector field (2.14) then the equation admits the vector field X = ∂x as C∞(M (1))-
symmetry for the function λ = λ(t, x, x1) given by

λ =
γ(1) − αF
β − αx1

. (2.20)

In Section 6 we prove that the order reduction procedures of second-order equations associated
to the telescopic vector field and to the λ-symmetry are equivalent (see Remark 5). In this sense,
the inclusion of first-order derivatives in the two first infinitesimals seems to be irrelevant in
order to get different order reductions of second-order equations.

3 Reductions derived from nonlocal symmetries

The following method has been used in [19, 20] (see also [11]) to obtain some nonlocal symmetries
of a given second-order ODE

x2 = F (t, x, x1) (3.1)

that lets reduce the order of the equation. That procedure introduces an auxiliary system of
the form

x2 = F (t, x, x1), w1 = H(t, x, x1), (3.2)

or its equivalent first-order system (obtained by setting v = x1)

x1 = v, v1 = F (t, x, v), w1 = H(t, x, v), (3.3)

where H is an unknown function to be determined in the procedure.
Let us denote by ∆ (resp. ∆1) the submanifold of the corresponding jet space defined by

system (3.2) (resp. (3.3)). Let us observe that, although there is an equivalence between sys-
tems (3.2) and (3.3), there is no complete equivalence between the Lie point symmetries of both
systems [39]. If

v = ξ(t, x, x1, w)∂t + η0(t, x, x1, w)∂x + ψ0(t, x, x1, w)∂w (3.4)
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is a generalized symmetry of (3.2) then

v1 = ξ(t, x, v, w)∂t + η0(t, x, v, w)∂x + ϕ0(t, x, v, w)∂v + ψ0(t, x, v, w)∂w, (3.5)

where ϕ0 = η1
∣∣
∆1

, is a Lie point symmetry of (3.3). Conversely, if the vector field v1 given

by (3.5) is a Lie point symmetry of (3.3) then necessarily ϕ0 = η1
∣∣
∆1

and the vector field v

given by (3.4) is a generalized symmetry of (3.2).
In the sequel, we will only consider generalized symmetries of the form (3.4) of system (3.2)

with the condition

(ξw)2 +
(
η0
w

)2 6= 0. (3.6)

The mentioned procedure consists in determining some function H = H(t, x, x1) and a vector
field v of the form (3.4) satisfying (3.6) with the following three properties:

a) The vector field (3.5), with ϕ0 = η1
∣∣
∆1

, is a Lie point symmetry of (3.3).

b) There exist two functionally independent functions z = z(t, x) and ζ = ζ(t, x, x1) such
that

v(z) = 0, v(1)(ζ)
∣∣∣
∆

= 0. (3.7)

c) Equation (3.1) can be written in terms of {z, ζ, ζz} as a first-order ODE.

Since strictly speaking ζ is not an invariant of v(1) and this reduction is not exactly the
classical one we prefer to call semi-classical to this reduction. In what follows, the term nonlocal
symmetry will refer to a vector field v of the form (3.4) with the above-described properties.

Several important aspects about the context of the procedure should be pointed out.

1. In order the procedure works, the pair (v, H) has to be such that there exist two functions
z = z(t, x) and ζ = ζ(t, x, x1) with the characteristics described above. This fact has not
been explicitly remarked in the examples presented in [11, 19, 20]. In these examples, for
the provided pairs (v, H), there exist two invariants of that form for v(1). However, in
principle, for any given generalized symmetry of system (3.2) the existence of two invariants
of the form z = z(t, x) and ζ = ζ(t, x, x1) is not warranted and therefore the procedure
can not be applied to reduce the original equation (3.1).

2. The main aim of the procedure is to obtain two functions z = z(t, x) and ζ = ζ(t, x, x1)
such that in terms of {z, ζ, ζz} equation (3.1) can be written as a first-order ODE. In [30] it
is proved that this reduction procedure is always the reduction procedure derived from the
existence of a λ-symmetry of the equation. An explicit construction of such λ-symmetry
is given in Theorem 2.

3. In [12], D. Catalano-Ferraioli considered systems of the form (3.2) in order to obtain
a nonlocal interpretation of λ-symmetries as standard (but generalized) symmetries of
a suitable system (λ-covering). For a system (3.2), symmetries of the form (3.4) are called
semi-classical nonlocal symmetries in [12].

This shows that the procedure should be clarified from a theoretical point of view and it is
interesting to investigate more closely the relationship between the reduction procedure described
above and the reduction procedure derived from the existence of a λ-symmetry. It is also
interesting to compare the computational aspects of both procedures.

Let us suppose that (3.4) is a (generalized) symmetry of the system (3.2), for some function
H = H(t, x, x1), such that there exist two functionally independent functions z = z(t, x) and
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ζ = ζ(t, x, x1) verifying (3.7) and such that equation (3.1) can be written in terms of {z, ζ, ζz}
as a first-order ODE.

In order to deal with system (3.2), we denote by D̃t the total derivative vector field corre-
sponding to variables t, x, x1, w

D̃t = ∂t + x1∂x + x2∂x1 + w1∂w + · · · .

Condition (3.7) lets us determine some relationships among functions ξ, η0, η1, z and ζ. We
distinguish two cases: ξ 6= 0 and ξ = 0.

Case 1: ξ 6= 0. In this case the condition v(z) = 0 implies that

η0 = f0ξ, where f0 = − zt
zx

=
η0

ξ
. (3.8)

Although, in principle, ξ and η0 may depend on x1, w, the function f0 can not depend on these
variables; i.e. f0 = f0(t, x). By using (2.3), it can be checked that η1 = D̃t(η

0)− D̃t(ξx1) = f1ξ,
where

f1 = f1(t, x, x1, x2, w, w1) = D̃tf
0 +

(
f0 − x1

)D̃tξ

ξ
.

The condition v(1)(ζ)
∣∣
∆

= 0 can be written as (ξζt + ξf0ζx + ξf1ζx1)
∣∣
∆

= 0. Since ξ 6= 0, we

have (ζt + f0ζx + f1ζx1)
∣∣
∆

= 0 and, therefore, f1
∣∣
∆

can be written in terms of t, x, x1 as

f1
∣∣
∆

= −ζt + f0ζx
ζx1

. (3.9)

On the other hand, by Theorem 2, we know that X = −zx∂t + zt∂x is a λ-symmetry of (3.1)
for the function λ given by (2.10). We try to express X and λ in terms of ξ, η0. By using (3.8),
(3.9) and that zt = Dtz − x1zx, it can be checked that

λ = λ(t, x, x1) =
D̃tξ

ξ

∣∣∣∣∣
∆

− D̃tzx
zx

. (3.10)

Since X = −zx∂t+zt∂x is a λ-symmetry of equation (3.1) for λ given by (3.10), by Remark 1

X̃ = − 1

zx
X = ∂t + f0∂x

is a λ̃-symmetry of (3.1) for λ̃ given by λ̃ = λ −Dt(g)/g, where g = −1/zx. It can be checked
that

λ̃ = λ̃(t, x, x1) =
D̃tξ

ξ

∣∣∣∣∣
∆

=
ξt + x1ξx + Fξx1 +Hξw

ξ
. (3.11)

This shows that the functions λ̃, f0 can readily be obtained from ξ, η0 and H.

Case 2: ξ = 0. In this case η0 has to be non null, η1 = D̃tη
0 and the condition v(z) = 0

implies that zx = 0. The condition v(1)(ζ)
∣∣
∆

= 0 can be written as η0ζx + η1
∣∣
∆
ζx1 = 0. Hence

− ζx
ζx1

=
η1
∣∣
∆

η0
, (3.12)
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where both members depend only on t, x, x1. By Theorem 2, X = z′(t)∂x is a λ-symmetry for
λ = − ζx

ζx1
− z′′

z′ . By denoting h = 1/z′(t), Remark 1 implies that X̃ = hX = ∂x is a λ̃-symmetry

of equation (3.1) for λ̃ = λ−Dt(h)/h. By using (3.12), it can be checked that

λ̃ = λ̃(t, x, x1) =
D̃tη

0

η0

∣∣∣∣∣
∆

=
η0
t + x1η

0
x + Fη0

x1 +Hη0
w

η0
. (3.13)

This proves that X̃ = ∂x is a λ̃-symmetry of equation (3.1) for λ̃ given by (3.13).
Thus we have proven the following result:

Theorem 5. Let us assume that for a given second-order equation (3.1) there exists some
function H = H(t, x, x1) such that the corresponding system (3.2) admits a nonlocal symmet-
ry (3.4). We also assume that there exist two functionally independent functions z = z(t, x)
and ζ = ζ(t, x, x1) such that v(z) = 0, v(1)(ζ)

∣∣
∆

= 0 and that (3.1) can be written in terms of
{z, ζ, ζz} as a first-order ODE. Then

(i) If ξ 6= 0, the functions η0/ξ and λ̃, given by (3.8) and (3.11) respectively, do not depend
on w and the pair

X̃ = ∂t +
η0

ξ
∂x, λ̃ =

ξt + ξxx1 + ξx1F + ξwH

ξ

defines a λ-symmetry of the equation (3.1).

(ii) If ξ = 0, the function λ̃ given by (3.13) does not depend on w and the pair

X̃ = ∂x, λ̃ =
η0
t + η0

xx1 + η0
x1F + η0

wH

η0

defines a λ-symmetry of the equation (3.1).

In both cases, {z, ζ, ζz} is a complete system of invariants of X̃[λ̃,(1)].

Example 2. Two examples of reduction of nonlinear oscillators [8, 26] by using the procedure
described at the beginning of this section have been reported in [11]. Although in this paper the
authors use systems of the form (3.3), the comments we have provided at the beginning of this
section let us consider systems of the form (3.2) in its stead. The corresponding systems are of
the form

x2 = F i(t, x, x1), w1 = H i(t, x, x1), i = 1, 2,

where

F 1(t, x, x1) =
kxx2

1

1 + kx2
− α2x

1 + kx2
, F 2(t, x, x1) =

−kxx2
1

1 + kx2
− α2x

(1 + kx2)3
.

For both systems the calculated infinitesimal generators are of the form

vi = ξi∂t + η0
i ∂x + ψ0

i ∂w = ew∂x +
H i

x1
ew∂w, i = 1, 2, (3.14)

where

H1(t, x, x1) = −x(α2 − kx2
1)

(kx2 + 1)x1
, H2(t, x, x1) =

−kx(1 + kx2)2x2
1 − α2x

(kx2 + 1)3x1
.

Since ξi = 0 and η0
i = ew, for i = 1, 2, the case (ii) of Theorem 5 let us conclude that the pairs

(Xi, λi) = (∂x, H
i(t, x, x1)), i = 1, 2, define, respectively, λ-symmetries of the corresponding

equations x2 = F i(t, x, x1), for i = 1, 2.
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4 Exponential vector fields and λ-symmetries

In this section we study the same problem we have considered in Section 3, but for the special
case where the function H that appears in (3.2) can be chosen in the form H = H(t, x) and the
infinitesimals of v do not depend on x1, i.e. v is a Lie point symmetry of system (3.2); this is the
case in most of the examples considered in [11, 19, 20]. Therefore, in this section the system is

x2 = F (t, x, x1), w1 = H(t, x), (4.1)

and a Lie point symmetry of (4.1) is

v = ξ(t, x, w)∂t + η0(t, x, w)∂x + ψ0(t, x, w)∂w. (4.2)

We will consider the same two cases as in Section 3: ξ 6= 0 and ξ = 0.
If ξ 6= 0 then, by Theorem 5, X̃ = ∂t + (η0/ξ)∂x is a λ̃-symmetry of (3.1) for

λ̃ = λ̃(t, x, x1) =
ξt + ξxx1 + ξwH

ξ
.

Since the function λ̃ does not depend on w(
ξt
ξ

)
w

+

(
ξx
ξ

)
w

x1 +

(
ξw
ξ

)
w

H = 0. (4.3)

Hence, the coefficient of x1 in (4.3) has to be null and thus(
ξx
ξ

)
w

=

(
ξw
ξ

)
x

= 0. (4.4)

By derivation of (4.3) with respect to x we deduce(
ξw
ξ

)
w

Hx = 0. (4.5)

We need to consider two subcases: Hx = 0 and Hx 6= 0.
If Hx = 0 the function H depends only on t. If h = h(t) is a primitive of H(t) and we denote

ξ̃(t, x) = ξ(t, x, h(t)), η̃0(t, x) = η0(t, x, h(t)), it is easy to prove that ṽ = ξ̃∂t + η̃0∂x becomes
a Lie point symmetry of equation (3.1). This case will not be considered here in the sequel: if
Hx = 0 then v projects on a Lie point symmetry of (3.1).

If Hx 6= 0, (4.5) implies that(
ξw
ξ

)
w

= 0 (4.6)

and, by (4.3),(
ξt
ξ

)
w

=

(
ξw
ξ

)
t

= 0. (4.7)

By (4.4), (4.6) and (4.7), ξw/ξ = C, for some C ∈ R, and therefore ξ = eCwρ(t, x) for some
function ρ. By (3.8), η0 = eCwφ0(t, x), where φ0 = f0ρ. The condition v(2)(w1 −H(t, x)) = 0
when w1 = H, implies that

ψ0
t + ψ0

xx1 + ψ0
wH = eCw

(
ρHt + φ0Hx

)
. (4.8)
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By derivation with respect to x1, we obtain ψ0
x = 0. By derivation of (4.8) with respect to x

we deduce that ψ0 has to be of the form ψ0 = eCwψ(t) +R(t), for some functions ψ = ψ(t) and
R = R(t). If we multiply both members of (4.8) by −eCw then we obtain

ψ′(t) + e−CwR′(t) + Cψ(t)H =
(
ρHt + φ0Hx

)
and we deduce that R(t) = C1 for some constant C1 ∈ R.

Previous discussion proves that (4.2) has to be of the form

v = eCw
(
ρ(t, x)∂t + φ0(t, x)∂x + ψ(t)∂w

)
+ C1∂w.

It should be noted that the vector field ∂w is always a Lie point symmetry of system (4.1). The
symmetries of system (4.1) that are proportional to ∂w are irrelevant for the reduction of the
original equation (3.1) because the projection to the space of the variables of the equation is
null.

Since ρ 6= 0, Theorem 5 proves that the pair

X = ∂t +
φ0

ρ
∂x, λ =

Dt(ρ)

ρ
+ CH

defines a λ-symmetry of equation (3.1) and that {z, ζ, ζz} are invariants of X[λ,(1)]. By Remark 1,

the pair X̃ = ρ∂t + φ0∂x, λ̃ = CH also defines a λ-symmetry of equation (3.1) and X̃[λ̃,(1)] has
the same invariants as v.

A similar argument for the case ξ = 0, proves that the pair

X = ∂x, λ =
Dt(φ

0)

φ0
+ CH

is a λ-symmetry of equation (3.1). By Remark 1, the pair X̃ = φ0∂x, λ̃ = CH also defines

a λ-symmetry of equation (3.1) and X̃[λ̃,(1)] has the same invariants as X[λ,(1)].
Thus we have proven the following result:

Theorem 6. Let us suppose that for a given second-order equation (3.1) there exists some func-
tion H = H(t, x) such that the system (4.1) admits a Lie point symmetry (4.2) satisfying (3.6).
We assume that z = z(t, x), ζ = ζ(t, x, x1) are two functionally independent functions that ve-
rify (3.7) and are such that equation (3.1) can be written in terms of {z, ζ, ζz} as a first-order
ODE. Then

1. The vector field v has to be of the form

v = eCw
(
ρ(t, x)∂t + φ0(t, x)∂x + ψ(t)∂w

)
+ C1∂w (4.9)

for some C,C1 ∈ R.

2. The pair

X̃ = ρ(t, x)∂t + φ0(t, x)∂x, λ̃ = CH. (4.10)

defines a λ-symmetry of the equation (3.1) and the set {z, ζ, ζz} is a complete system of

invariants of X̃[λ̃,(1)].

Remark 2. It should be observed that the vector field (4.9) can be written in the variables
of the equation (3.1) in the form v∗ = eC

∫
H(t,x)dt

(
ρ(t, x)∂t + φ0(t, x)∂x

)
, where the integral∫

H(t, x)dt is, formally, the integral of the function H(t, x), once a function x = f(t) has been
chosen. These are the exponential vector fields that are considered in the book of P. Olver [41,
p. 181] in order to show that not every integration method comes from the classical method of
Lie. The relationship between these vector fields and λ-symmetries has been studied in [34]:
the λ-symmetry given in (4.10) can be obtained by using Theorem 5.1 in [34].
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5 The nonlocal symmetries associated to a λ-symmetry

A natural question is to investigate the converse of the the results provided in Theorems 5
and 6: given a λ-symmetry X = ρ(t, x)∂t + φ0(t, x)∂x, λ = λ(t, x, x1) of equation (3.1), is it
possible to construct some system (3.2) admitting nonlocal symmetries that let reduce the order
of the equation? Let us remember that if the answer is affirmative then, by (3.8), the function
f0 = η0/ξ does not depend on x1, w. Therefore, motivated by the result presented in Theorem 6,
we can try to give an explicit construction of v. We choose C = 1, H = λ(t, x, x1) and the
vector field

v = ew
(
ρ(t, x)∂t + φ0(t, x)∂x + ψ(t, x, x1)∂w

)
,

where ρ and φ0 are the infinitesimal coefficients of X and ψ = ψ(t, x, x1) satisfies the condition
v(2)(w1 − λ)

∣∣
∆

= 0. This equation provides a linear first-order partial differential equation to
determine such a function ψ

ψt + ψxx1 + ψx1F + ψλ = Dt(ρ)λ+ ρλ2 + X[λ,(1)](λ). (5.1)

Now, let us suppose that z = z(t, x) and ζ = ζ(t, x, x1) are two invariants of X[λ,(1)]. It
can be checked that v(1)(z) = ewX(z) = 0 and that v(1)(ζ) = ew(ρζt + φ0ζx + φ(1)ζx1), where

φ(1) = D̃t(e
wφ0) − D̃t(e

wρ)x1 = ew((Dt + w1)(φ0) − (Dt + w1)(ρ)x1). Therefore v(1)(ζ)
∣∣
∆

=

ew(X[λ,(1)](ζ)) = 0.
Hence, the following result holds:

Theorem 7. Let X = ρ(t, x)∂t + φ0(t, x)∂x be a λ-symmetry of equation (3.1) for some λ =
λ(t, x, x1) and let ψ = ψ(t, x, x1) be a particular solution of equation (5.1). Then

a) The vector field

v = ew
(
ρ(t, x)∂t + φ0(t, x)∂x + ψ(t, x, x1)∂w

)
(5.2)

is a nonlocal symmetry of equation (3.1) associated to system (3.2) for H = λ(t, x, x1).

b) If z = z(t, x) and ζ = ζ(t, x, x1) are two invariants of X[λ,(1)] then these functions satis-
fy (3.7) and equation (3.1) can be written in terms of {z, ζ, ζz} as a first-order ODE.

As a direct consequence of Theorem 7 and Corollary 2, a telescopic vector field that leaves
invariant the equation (3.1) has an associated nonlocal symmetry that can explicitly be cons-
tructed:

Corollary 3. Let

τ (2) = α(t, x, x1)∂t + β(t, x, x1)∂x + γ(1)(t, x, x1)∂x1 + γ(2)(t, x, x1, x2)∂x2

be a telescopic vector field that leaves invariant the equation (3.1). Let ψ = ψ(t, x, x1) be
a particular solution of the corresponding equation (5.1) where λ is given by (2.20). Then
the vector field v = ew (∂x + ψ(t, x, x1)∂w) is a nonlocal symmetry of equation (3.1) associated

to system (3.2) for H = γ(1)−αF
β−αx1 .

Remark 3. With the hypothesis of Theorem 7, Remark 1 let us ensure that, for any smooth
function f = f(t, x), X̃ = fX = fρ∂t + fφ0∂x is a λ̃-symmetry of the equation (3.1) for
λ̃ = λ−Dtf/f . Therefore ṽ = ew(fρ∂t+fφ

0∂x+ψ̃∂w) is a nonlocal symmetry of the system (3.2)
obtained by using H̃ = λ̃ instead of H; in this case, ψ̃ has to be a particular solution of the
linear equation

ψ̃t + ψ̃xx1 + ψ̃x1F + ψ̃λ̃ = Dt(fρ)λ̃+ fρλ̃2 + X̃[λ̃,(1)](λ̃). (5.3)
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Remark 4. The concept of semi-classical nonlocal symmetries was introduced in [12] to give
a nonlocal interpretation of λ-symmetries as standard (but generalized) symmetries of a suitable
system (λ-covering). The result presented in Theorem 7 corresponds to the particular case n = 2
of Proposition 1 in [12], but here the correspondence between λ-symmetries and semi-classical
nonlocal symmetries is explicitly established.

As a consequence of Theorems 5 and 7, the nonlocal symmetries of the form (5.2) could be
thought as a prototype of the nonlocal symmetries of the equation that are useful to reduce the
order of the equation:

Corollary 4. Let us suppose that for a given second-order equation (3.1) there exists some func-
tion H = H(t, x, x1) such that the corresponding system (3.2) admits a (generalized) symmetry v
of the form (3.4) satisfying (3.6). We also assume that there exist two functionally independent
functions z, ζ of the form (2.4) satisfying (3.7) and such that equation (3.1) can be written in
terms of {z, ζ, ζz} as a first-order ODE. Then there exists a function H̃ = H̃(t, x, x1) such that
the corresponding system (3.2) admits a Lie point symmetry ṽ of the form (5.2) satisfying (3.6)
and z, ζ are invariants of ṽ(1).

This corollary may be very helpful from a computational point of view, because the form (5.2)
provides an ansatz to search nonlocal symmetries useful to reduce the order. In fact, this is the
form of all nonlocal symmetries reported in the literature (of the class we are considering in
this paper); the ansatz that is used in [11] to solve the determining equations and obtain the
infinitesimals generators (3.14) has the form (5.2).

Although the function ψ is necessary to define the nonlocal symmetry (5.2), its determination
requires to obtain a particular solution of the corresponding equation (5.1). However, this
function is not necessary either to define the associated λ-symmetry or to reduce the order of
the original equation.

6 Equivalent order reductions

A natural question is to know when two reductions associated to two different nonlocal sym-
metries are equivalent. This problem is apparently new in the literature and it is difficult to
establish in terms of the nonlocal symmetries, because we are comparing reduction procedures
associated to different symmetries, vi = ξi∂t + η0

i ∂x + ψ0
i ∂w, of different systems

x2 = F (t, x, x1), w1 = Hi(t, x, x1), i = 1, 2. (6.1)

This open problem can be solved if we consider the associated λ-symmetries, because we
have a criterion to know when the first integrals associated to different λ-symmetries of the
same ODE are functionally dependent [33, 32]. This is used here to know when the reductions
procedures associated to different λ-symmetries are equivalent. For the sake of simplicity we
consider the case n = 2, what is sufficient to deal with the examples presented in this paper.

Let us assume that (Xi, λi) = (ρi∂t + φ0
i ∂x, λi) define the λ-symmetry associated to vi

according to Theorem 5, for i = 1, 2.

It can be checked that the vector fields
{
A,X

[λ1,(1)]
1 ,X

[λ2,(1)]
2

}
are linearly dependent if and

only if

λ1 +
A(Q1)

Q1
= λ2 +

A(Q2)

Q2
, (6.2)

where Qi = φ0
i − ρix1 is the characteristic of Xi for i = 1, 2. In this case,

Q2X
[λ1,(1)]
1 =

∣∣∣∣ρ1 φ0
1

ρ2 φ0
2

∣∣∣∣A+Q1X
[λ2,(1)]
2 . (6.3)
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This is a motivation to define an equivalence relationship between pairs of the form (X, λ).

Definition 1. We say that two pairs (X1, λ1) and (X2, λ2) are A-equivalent and we write

(X1, λ1)
A∼ (X2, λ2) if and only if (6.2) is satisfied [32, 33].

By using this definition, we can compare the reduced equations associated to two A-equivalent
λ-symmetries (X1, λ1) and (X2, λ2). We calculate two invariants z1 = z1(t, x) and ζ1 =

ζ1(t, x, x1) of X
[λ1,(1)]
1 and write the equation in terms of {z1, ζ1, ζ1

z1}. Let I1 = I1(z1, ζ1) denote
a first integral of the reduced equation. Therefore such reduced equation can be expressed as
Dz1(I1(z1, ζ1)) = 0.

We repeat the procedure with (X2, λ2) and express the reduced equation associated to
(X2, λ2) as Dz2(I2(z2, ζ2)) = 0. By (2.8), it is clear that I1 (resp. I2) is a basis of the first

integrals common to X
[λ1,(1)]
1 and A (resp. to X

[λ2,(1)]
2 and A). Since (X1, λ1)

A∼ (X2, λ2) then,

by (6.3), I1 is a first integral of X
[λ2,(1)]
2 . In consequence, I1 = G(I2) for some non null function

G and Dz1(I1) = Dz1(G(I2)) = G′(I2)
Dz2 (z1)

Dz2(I2).

Previous discussion proves that the order reductions associated toA-equivalent pairs are es-
sentially the same: the reduced equations associated to two A-equivalent λ-symmetries (X1, λ1)
and (X2, λ2) are functionally dependent.

Remark 5. Let us assume that the equation (3.1) is invariant under a telescopic vector
field (2.14) and (X, λ) is the corresponding λ-symmetry constructed in Corollary 2. By
using (2.16) and (2.18), a similar discussion also proves that the reduced equations associated
to the telescopic vector field and to that λ-symmetry are functionally dependent.

We can now give a criterion to know when the reductions procedures associated to different
nonlocal symmetries are equivalent:

Theorem 8. Let v1, v2 be two nonlocal symmetries associated to two systems of the form (6.1)
that satisfy the same condition as v in Theorem 5. Let (Xi, λi) be the λ-symmetry associated
to vi according to Theorem 5, for i = 1, 2. The reduced equations associated to vi are functionally

dependent if and only if (X1, λ1)
A∼ (X2, λ2). In this case, we shall say that the pairs (v1, H1)

and (v2, H2) are A-equivalent.

By using (6.3), it can be checked that for any pair (X, λ) we have

(X, λ)
A∼
(
∂x, λ+

A(Q)

Q

)
. (6.4)

The right member in (6.4) will be called the canonical pair of the equivalence class [(X, λ)].
For n = 2, the functions λ of the canonical representatives arise as particular solutions of the
first-order quasi-linear PDE [31, 33]

λt + x1λx + Fλx1 + λ2 = Fx + λFx1 . (6.5)

Since two pairs of the form (∂x, λ1) and (∂x, λ2) are A-equivalent if and only if λ1 = λ2, two
different particular solutions of (6.5) generate two different A-equivalence classes.

7 Some examples

Let us recall that, by Theorem 5, the construction of a λ-symmetry associated to a known
nonlocal symmetry is straightforward.
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Conversely, if X = ρ∂t+φ0∂x is a known λ-symmetry of (3.1) then, by Theorem 7, the vector
field (5.2) is a nonlocal symmetry of equation (3.1) associated to system (3.2) for H = λ(t, x, x1).
The determination of ψ requires the calculation of a particular solution of the corresponding
PDE (5.1). Nevertheless, this function does not take part in the search of invariants of the
form (2.4). Most of the examples of nonlocal symmetries reported in [19, 20] correspond to
equations with λ-symmetries that had been previously calculated. We show, in an explicit way,
the correspondence between these nonlocal symmetries and λ-symmetries and apply the results
in Section 3 to deduce the equivalence of the reduction procedures.

Example 3. The equation

x2 =
x2

1

x
+ nc(t)xnx1 + c′(t)xn+1 (7.1)

had been proposed as an example of an equation integrable by quadratures that lacks Lie point
symmetries except for particular choices of function c(t) [22]. In [34] a λ-symmetry of (7.1) was
calculated and the integrability of the equation was derived by the reduction process associated
to the λ-symmetry.

A slight modification of equation (7.1) has been considered in [19]

x2 =
x2

1

x
+ (c(t)xn + b(t))x1 + (c′(t)− c(t)b(t))x

n+1

n
+ d(t)x. (7.2)

Both equations (7.1) and (7.2) are in the class A (see [35, 37]) of the second-order equation
that admit first integrals of the form A(t, x)x1 + B(t, x). Several characterizations of these
equations have been derived. In particular, it has been proven that such equations admit λ-
symmetries whose canonical representative is of the form (∂x, α(t, x)x1+β(t, x)) and α and β can
be calculated directly from the coefficients of the equation. For equation (7.2) such λ-symmetry
is given by the pair

X1 = ∂x, λ1 =
x1

x
+ c(t)xn. (7.3)

By using Theorem 7 we have that the corresponding function H is H = λ1 = x1
x + c(t)xn and

the nonlocal symmetry is given by

v1 = ew(∂x + ψ∂w), (7.4)

where ψ is a particular solution of the corresponding equation (5.1). It may be checked that
ψ(t, x) = (n+ 1)/x is a particular solution of this PDE.

On the other hand, the nonlocal symmetry calculated in [19] is given by the vector field

v = ewa(t)x∂x + ewkna(t)∂w (7.5)

and corresponds to the function H = c(t)xn− a′(t)/a(t). However, it seems that there has been
a mistake in the calculations, because (7.5) is not a Lie point symmetry of the system (16)
in [19], unless k = 1. A correct expression for (7.5) could be obtained directly from (7.3) by
using Remark 3. If we consider f(t, x) = a(t)x, the vector field ṽ = ew(a(t)x∂x + ψ̃(t, x, x1)∂w)
is a nonlocal symmetry associated to H̃ = λ1 − Dt(f)/f = c(t)xn − a′(t)/a(t). A particular
solution of PDE (5.3) is given by ψ̃(t, x, x1) = a(t)n.

It is clear, by Theorem 8, that the reduced equations associated to the nonlocal symmetries

(v, H) and (ṽ, H̃) are functionally dependent, because (X1, λ1)
A∼ (fX1, λ1 −Dt(f)/f), where

A is the vector field associated to equation (7.2).
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Example 4. The equation

x2 + x+
1

2x
+

t2

4x3
= 0 (7.6)

was proposed in [34] as an example of an equation with trivial Lie point symmetries that can
be integrated via the λ-symmetry

X = x∂x, λ =
t

x2
.

Equation (7.6) is a particular case of the family of equations we later considered in Example 2.1
of [33]

x2 − d(t)x+
b′(t)

2x
+
b(t)2

4x3
= 0. (7.7)

These equations admit the λ-symmetry

X1 = ∂x, λ1 =
x1

x
+
b(t)

x2
. (7.8)

Such λ-symmetry was used to construct first integrals of any of the equations in family (7.7).
When b′(t) = 0, equation (7.7) is the Ermakov–Pinney equation, for which two nonequivalent
λ-symmetries and their associated independent first integrals were reported in [31].

The same family (7.7) was considered in [19]. A nonlocal symmetry is given by the vector
field

v = eCwa(t)x∂x − eCw
2a(t)

k
∂w, (7.9)

that is associated to the function H = 1/C(b(t)/x2−a′(t)/a(t)), for C ∈ R\{0}. By Theorem 5,
the pair

X2 = a(t)x∂x, λ2 =
b(t)

x2
− a′(t)

a(t)
(7.10)

defines a λ-symmetry of equation (7.7). The pairs (7.8) and (7.10) are equivalent because (6.2)
is satisfied and the associated order reductions are equivalent. Therefore, by Theorem 8, the
reduced equation associated to the nonlocal symmetry (7.9) is equivalent to the reduction pre-
viously obtained by using the λ-symmetry (7.8).

Example 5. The well-known Painlevé XIV equation

x2 −
x2

1

x
+ x1

(
−xq(t)− s(t)

x

)
+ s′(t)− q′(t)x2 = 0 (7.11)

has been studied in [31], where it is shown that a λ-symmetry of (7.11) is defined by

X = ∂x, λ =
x1

x
+ xq(t) +

s(t)

x
. (7.12)

Equation (7.11) has also been considered in [20] where it has been checked that for H(t, x) =
q(t)x+ s(t)/x the corresponding system (4.1) admits the generalized symmetry

v = xew∂x + β(t, x, x1)ew∂w, (7.13)

where β is an undetermined functions that satisfies a PDE.
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By using Theorem 5, the pair

X2 = x∂x, λ2 = xq(t) +
s(t)

x

defines a new λ-symmetry of equation (7.11). However, such λ-symmetry is equivalent to (7.12).
Therefore the reduction process associated to the nonlocal symmetry (7.13) can be deduced from
the reduction previously obtained by using the λ-symmetry (7.12).

It should be observed that function β is necessary to define the nonlocal symmetry (7.13)
and requires a particular solution of the corresponding equation (5.1) for λ = λ2. Nevertheless,
this function is not necessary either to define the associated λ-symmetries or to reduce the order
of the original equation.

Example 6. Let us consider the family of equations

x2 +
(
xf ′(x) + 2f(x) + c1

)
x1 +

(
f2(x) + c1f(x) + c2

)
x = 0, (7.14)

where f(x) is an arbitrary differentiable function and c1 and c2 are arbitrary constants. Several
well-known equations representing physically important oscillator systems are particular cases
of (7.14):

• For f(x) = kx and c1 = 0 equation (7.14) is the modified Emden type equation with
additional linear forcing

x2 + 3kxx1 + k2x3 + c2x = 0.

• For f(x) = kx we obtain the generalized modified Emden type equation

x2 + (3kx+ c1)x1 + k2x3 + c1kx
2 + c2x = 0.

• For f(x) = kx2 equation (7.14) becomes the generalized force-free Duffing–van der Pol
oscillator

x2 +
(
4kx2 + c1

)
x1 + k2x5 + kc1x

3 + c2x = 0.

Different choices of f(x), c1 and c2 generate a wide class of nonlinear ODEs.
Since λ = x1

x − xf
′(x) is a particular solution of the corresponding equation (6.5), the pair

(X, λ) =
(
∂x,

x1

x
− xf ′(x)

)
(7.15)

defines a λ-symmetry of the equations in (7.14). Two invariants of X[λ,(1)] are z = t and
ζ = x1

x − xf
′(x). The equations in (7.14) can be written in terms of {z, ζ, ζz} as the first-order

ODEs

ζz + ζ2 + c1ζ + c2 = 0. (7.16)

By Theorem 7 the order reduction (7.16) can also be obtained by using the nonlocal symmetry
approach. For example, we can construct the λ-covering

x2 +
(
xf ′(x) + 2f(x) + c1

)
x1 +

(
f2(x) + c1f(x) + c2

)
x = 0,

w1 = x1/x− xf ′(x)

and the associated nonlocal symmetry v = ew(∂x + ψ(t, x, x1)∂w), where ψ is a particular
solution of the corresponding PDE (5.1). The infinitesimal ψ is not necessary to obtain the
order reduction (7.16).
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It should be noted that we can construct infinitely many λ-coverings and nonlocal symmetries
associated to the λ-symmetry (7.15). For any functions ρ = ρ(t, x) and φ0 = φ0(t, x) let
g = g(t, x, x1) denote the function A(φ0 − ρx1)/(φ0 − ρx1), where A is the vector field associated
to (7.14). The λ-covering

x2 +
(
xf ′(x) + 2f(x) + c1

)
x1 +

(
f2(x) + c1f(x) + c2

)
x = 0,

w1 = x1/x− xf ′(x)− g(t, x, x1)

admits a nonlocal symmetry of the form v = ew(ρ(t, x)∂t + φ0(t, x)∂x + ψ(t, x, x1)∂w) (see
Theorem 7). The results presented in Section 6 show that the order reductions derived from
these nonlocal symmetries are all equivalent and lead to equation (7.16).

8 Conclusions

In this paper, for second-order ODEs, we study the relationships between the reduction method
based on generalized symmetries of a covering system and the reduction methods for equations
that are invariant under a λ-prolongation or a telescopic vector field. We also discuss the
relationships between these two last classes of vector fields.

We first analyze the strong relationships between λ-prolongations and telescopic vector fields.
A telescopic vector field can be considered as a λ-prolongation where the two first infinitesimals
can depend on the first derivative of the dependent variable. The corresponding reductions
methods are also similar: the only difference between the methods is on the dependencies of the
two first-order invariants.

It is also proven that the generalized symmetries of a possible covering system that can be
used to reduce the order of the given second-order ODE determine nonlocal symmetries of the
exponential type; these nonlocal symmetries are associated to λ-symmetries and therefore to
telescopic vector fields.

From a computational point of view, the construction of generalized symmetries of a covering
system that lets reduce the order of the given equation requires the solution of a nonlinear system
of PDEs, whose four unknown functions are the three infinitesimals and the corresponding
function H. Nevertheless, by searching a λ-symmetry in a canonical form, only a quasilinear
first-order PDE must be solved. Therefore the advantages of using λ-symmetries seems obvious.

As an important consequence of the λ-symmetry approach we have provided a criterion to
decide whether or not reductions associated to two nonlocal symmetries are strictly different.
This problem is difficult to establish in the context of nonlocal symmetries and had not been
considered before.

Acknowledgments

The authors would like to thank the anonymous referees for their useful comments and sugges-
tions to improve the paper. The support of DGICYT project MTM2009-11875 and Junta de
Andalućıa group FQM-201 are gratefully acknowledged. C. Muriel also acknowledges the partial
support from the University of Cádiz to participate in the conference “Symmetries of Differential
Equations: Frames, Invariants and Applications” in honor of the 60th birthday of Peter Olver.

References

[1] Abraham-Shrauner B., Hidden symmetries and nonlocal group generators for ordinary differential equations,
IMA J. Appl. Math. 56 (1996), 235–252.

[2] Abraham-Shrauner B., Hidden symmetries, first integrals and reduction of order of nonlinear ordinary
differential equations, J. Nonlinear Math. Phys. 9 (2002), suppl. 2, 1–9.

http://dx.doi.org/10.1093/imamat/56.3.235
http://dx.doi.org/10.2991/jnmp.2002.9.s2.1


20 C. Muriel and J.L. Romero

[3] Abraham-Shrauner B., Govinder K.S., Leach P.G.L., Integration of second order ordinary differential equa-
tions not possessing Lie point symmetries, Phys. Lett. A 203 (1995), 169–174.

[4] Abraham-Shrauner B., Guo A., Hidden and nonlocal symmetries of nonlinear differential equations, in Mo-
dern Group Analysis: Advanced Analytical and computational Methods in Mathematical Physics (Acireale,
1992), Kluwer Acad. Publ., Dordrecht, 1993, 1–5.

[5] Abraham-Shrauner B., Leach P.G.L., Hidden symmetries of nonlinear ordinary differential equations, in
Exploiting Symmetry in Applied and Numerical Analysis (Fort Collins, CO, 1992), Lectures in Appl. Math.,
Vol. 29, Amer. Math. Soc., Providence, RI, 1993, 1–10.

[6] Abraham-Shrauner B., Leach P.G.L., Govinder K.S., Ratcliff G., Hidden and contact symmetries of ordinary
differential equations, J. Phys. A: Math. Gen. 28 (1995), 6707–6716.

[7] Adam A.A., Mahomed F.M., Integration of ordinary differential equations via nonlocal symmetries, Non-
linear Dynam. 30 (2002), 267–275.

[8] Ballesteros Á., Enciso A., Herranz F.J., Ragnisco O., A maximally superintegrable system on an n-
dimensional space of nonconstant curvature, Phys. D 237 (2008), 505–509, math-ph/0612080.

[9] Bhuvaneswari A., Kraenkel R.A., Senthilvelan M., Application of the λ-symmetries approach and time
independent integral of the modified Emden equation, Nonlinear Anal. Real World Appl. 13 (2012), 1102–
1114.

[10] Bhuvaneswari A., Kraenkel R.A., Senthilvelan M., Lie point symmetries and the time-independent integral
of the damped harmonic oscillator, Phys. Scr. 83 (2011), 055005, 5 pages.

[11] Bruzon M.S., Gandarias M.L., Senthilvelan M., On the nonlocal symmetries of certain nonlinear oscillators
and their general solution, Phys. Lett. A 375 (2011), 2985–2987.

[12] Catalano Ferraioli D., Nonlocal aspects of λ-symmetries and ODEs reduction, J. Phys. A: Math. Theor. 40
(2007), 5479–5489, math-ph/0702039.

[13] Catalano-Ferraioli D., Nonlocal interpretation of λ-symmetries, in Proceedings of the International Confe-
rence “Symmetry and Perturbation Theory” (Otranto, Italy, 2007), Editors G. Gaeta, S. Walcher, R. Vitolo,
World Scientific, Singapore, 2008, 241–242.

[14] Catalano Ferraioli D., Morando P., Local and nonlocal solvable structures in the reduction of ODEs,
J. Phys. A: Math. Theor. 42 (2009), 035210, 15 pages, arXiv:0807.3276.

[15] Cicogna G., Reduction of systems of first-order differential equations via Λ-symmetries, Phys. Lett. A 372
(2008), 3672–3677, arXiv:0802.3581.

[16] Cicogna G., Gaeta G., Noether theorem for µ-symmetries, J. Phys. A: Math. Theor. 40 (2007), 11899–11921,
arXiv:0708.3144.

[17] Eisenhart L.P., Continuous groups of transformations, Dover Publications Inc., New York, 1961.

[18] Gaeta G., Morando P., On the geometry of lambda-symmetries and PDE reduction, J. Phys. A: Math. Gen.
37 (2004), 6955–6975, math-ph/0406051.

[19] Gandarias M.L., Nonlocal symmetries and reductions for some ordinary differential equations, Theoret.
Math. Phys. 159 (2009), 779–786.

[20] Gandarias M.L., Bruzón M.S., Reductions for some ordinary differential equations through nonlocal sym-
metries, J. Nonlinear Math. Phys. 18 (2011), suppl. 1, 123–133.
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B(t, x), J. Nonlinear Math. Phys. 16 (2009), suppl. 1, 209–222.

[38] Muriel C., Romero J.L., Olver P.J., Variational C∞-symmetries and Euler–Lagrange equations, J. Differen-
tial Equations 222 (2006), 164–184.
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