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Abstract. We consider conformally flat hypersurfaces in four dimensional space forms with
their associated Guichard nets and Lamé’s system of equations. We show that the symmetry
group of the Lamé’s system, satisfying Guichard condition, is given by translations and
dilations in the independent variables and dilations in the dependents variables. We obtain
the solutions which are invariant under the action of the 2-dimensional subgroups of the
symmetry group. For the solutions which are invariant under translations, we obtain the
corresponding conformally flat hypersurfaces and we describe the corresponding Guichard
nets. We show that the coordinate surfaces of the Guichard nets have constant Gaussian
curvature, and the sum of the three curvatures is equal to zero. Moreover, the Guichard nets
are foliated by flat surfaces with constant mean curvature. We prove that there are solutions
of the Lamé’s system, given in terms of Jacobi elliptic functions, which are invariant under
translations, that correspond to a new class of conformally flat hypersurfaces.
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1 Introduction

The investigation of conformally flat hypersurfaces has been of interest for quite some time. Any
surface in R3 is conformally flat, since it can be parametrized by isothermal coordinates. For
higher dimensional hypersurfaces, E. Cartan [2] gave a complete classification for the conformally
flat hypersurfaces of an (n + 1)-dimensional space form when n + 1 > 5. He proved that such
hypersurfaces are quasi-umbilic, i.e., one of the principal curvatures has multiplicity at least n—1.
In the same paper, Cartan investigated the case n +1 = 4 . He showed that the quasi-umbilic
surfaces are conformally flat, but the converse does not hold (for a proof see [13]). Moreover, he
gave a characterization of the conformally flat 3-dimensional hypersurfaces, with three distinct
principal curvatures, in terms of certain integrable distributions. Since then, there has been an
effort to obtain a classification of hypersurfaces satisfying Cartan’s characterization.

Lafontaine [13] considered hypersurfaces of type M® = M? x I C R*. He obtained the
following classes of conformally flat hypersurfaces: a) M? is a cylinder over a surface, M? C R3,
with constant curvature; b) M? is a cone over a surface in the sphere, M? C S3, with constant
curvature; ¢) M3 is obtained by rotating a constant curvature surface of the hyperbolic space,
M? c H? ¢ R%, where H? is the half space model.

Motivated by Cartan’s paper, Hertrich-Jeromin [8], established a correspondence between
conformally flat three-dimensional hypersurfaces, with three distinct principal curvatures, and

*This paper is a contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants
and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA /SDE2012.html
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Guichard nets. These are systems of triply orthogonal surfaces originally considered by C. Gui-
chard in [6], where he referred to those systems as the analogues of isothermal coordinates.

In view of Hertrich-Jeromin results, the problem of classifying conformally flat 3-dimensional
hypersurfaces was transferred to the problem of classifying Guichard nets in R3. These are

2

7, where the functions [; satisfy the

3
open sets of R?, with an orthogonal flat metric g = > [?dx
i=1
Guichard condition, namely,

5 —-15+15=0,

and a system of second-order partial differential equations, which is called Lamé’s system
(see (2.2)).

Hertrich-Jeromin obtained an example of a Guichard net, starting from surfaces parallel to
Dini’s helix and he proved that the corresponding conformally flat hypersurface was a new
example, since it did not belong to the class described by Lafontaine.

In [20, 21, 22|, Suyama extended the previous results by showing that the Guichard nets
described by Hertrich-Jeromin are characterized in terms of a differentiable function ¢(z1, z2, x3)
that determines, up to conformal equivalence, the first and second fundamental forms of the
corresponding conformally flat hypersurfaces. Moreover, Suyama showed that if ¢ does not
depend on one of the variables, then the hypersurface is conformal to one of the classes described
by Lafontaine. He also showed that the function associated to the example given by Hertrich-
Jeromin satisfied ¢ 40 = @023 = 0. Starting with this condition on ¢, Suyama obtained
a partial classification of such conformally flat hypersurfaces. The complete classification of
conformally flat hypersurfaces, satisfying the above condition on the partial derivatives of ¢,
was obtained by Hertrich-Jeromin and Suyama in [10]. They showed that these hypersurfaces
correspond to a special type of Guichard nets. The authors called them cyclic Guichard nets,
due to the fact that one of the coordinates curves is contained in a circle.

In this paper, we obtain solutions [; satisfying Lamé’s system and the Guichard condition,
which are invariant under the action of the 2-dimensional subgroups of the symmetry group of the
system. Moreover, we investigate the properties of the Guichard nets and of the conformally flat
hypersurfaces associated to the solutions I;. We first determine the symmetry group of Lamé’s
system satisfying the Guichard condition. We prove that the group is given by translations and
dilations of the independent variables z; and dilations of the dependent variables ;.

We obtain the solutions l;, ¢ = 1,2, 3, which are invariant under the action of the 2-dimensional

3
translation subgroup, i.e., [;(§), where & = > a;z;. These solutions are given explicitly in
i=1
Theorem 3 by Jacobi elliptic functions, whenever all the functions /; are not constant and in
Theorem 4 when one of the functions [; is constant. Moreover, we consider the solutions /; which

are invariant under the 2-dimensional subgroup involving translations and dilations, i.e., [;(n),
3 3

where n = )~ ajxj/ Y brxy. In this case, if we require the functions /;(n) to depend on all
j=1 k=1

three variables, then [; are constant functions. Otherwise, the solutions /;(n) are given explicitly
in Theorem 5. The symmetry subgroup of dilations on the dependent variables is irrelevant for
the study of conformally flat hypersurfaces.

Considering the functions /; which are invariant under the action of translations, we study the
corresponding Guichard nets. We show that their coordinate surfaces have constant Gaussian
curvature and the sum of the three curvatures is equal to zero. Moreover the Guichard nets are
foliated by flat surfaces, with constant mean curvature.

Finally, we investigate the conformally flat hypersurfaces associated to the functions I; which
are invariant under the action of translations. We show that, whenever the basic invariant £
depends on two variables, the hypersurface is conformal to one of the products considered by
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Lafontaine. In this case, the three-dimensional conformally flat hypersurfaces are constructed
from flat surfaces contained in the hyperbolic 3-space H? or in the sphere S®. Whenever the
basic invariant £ depends on all three independent variables, then the functions l;(§), which are
given in terms of Jacobi elliptic functions, produce a new class of conformally flat hypersurfaces.

In Section 2, we review the correspondence between conformally flat 3-dimensional hyper-
surfaces with Lamé’s system, and Guichard nets.

In Section 3, we obtain the symmetry group of Lamé’s system satisfying Guichard condition
and the solutions which are invariant under 2-dimensional subgroups of the symmetry group.
The motivation and the technique used in this section were inspired by the fact that our system of
differential equations is quite similar to the intrinsic generalized wave and sine-Gordon equations
and the generalized Laplace and sinh-Gordon equations. The symmetry groups of these systems
and the solutions invariant under subgroups were obtained by Tenenblat and Winternitz in [24]
and Ferreira [4]. The geometric properties of the submanifolds corresponding to the solutions
invariant under the subgroups of symmetries can be found in [1] and [19].

In Sections 4 and 5, we describe the geometric properties of the Guichard nets and of the
conformally flat hypersurfaces that are associated to the solutions of Lamé’s system which are
invariant under the action of the translation group.

The solutions I; of Lamé’s system, satisfying Guichard condition, which are invariant under
the subgroup of dilations of the independent variables and the corresponding geometric theory,
will be considered in another paper. Such solutions are obtained by solving a (reduced) system
of partial differential equations, in contrast to what occurs in this paper, where the Lamé’s
system is reduced to a system of ordinary differential equations.

2 Lamé’s system and conformally flat hypersurfaces

Consider the Minkowski space RY with coordinates (wo,...,z5) and the scalar product { , )
given by
(,): RExRS — R,
5
(v,w) — —vowpy + Z V;W;.
i=1

Let L°>={y € R} | (y,y) =0}, be the light cone in R} and consider mx € RS, with (mg, mg)=K.
Then, it is not difficult to see that, the sets

Mg ={y € L?|(y,mg) = —1},

with the metric induced from RY, are complete Riemannian manifolds with constant sectional
curvature K. If K < 0, then M}l( consists of two connected components which can be isometri-
cally identified (see [7, Lemma 1.4.1] for details).

With this approach, consider a Riemannian immersion f : M3 — M?( C L°, with unit
normal n. Then (df,n) = 0, and n also satisfies (n,mg) = (n, f) = 0. Let f : M® — L5 be
an immersion given by f = e“f, where u is a differentiable function on M. Observe that the
metric induced on f is conformal to the metric induced on the immersion f, i.e.,

(df,df) = e*{df, df).
Definition 1. Let f : M3 — L° be an immersion such that the induced metric, (df,df), is

positive definite. Let n be a unit normal with (f,n) = 0 and consider differentiable functions u
and a on M3. Then the pair (f,n) is called a strip and the pair (f,7) given by

f=e"f, n=n+af

is called a conformal deformation of the strip (f,n).
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Therefore, we can deform a conformally flat immersion in a space form f : M3 — M;l( c L’
to a flat immersion in the light cone f:M? — L5 by considering a conformal deformation,
and vice-versa. Hence the problem of investigating conformally flat hypersurfaces in space
forms reduces to a problem of studying flat immersions in the light cone f : M3 — L?. We
say that a conformally flat hypersurface in a space form M ,? is generic if it has three distinct
principal curvatures. Hertrich-Jeromin in [8] established a relation between generic conformally
flat hypersurfaces in M ,;1 and Guichard nets [6]. Namely, let ey, ea, e3 be an orthonormal frame
tangent to M3 C M, such that e; are principal directions. Let wi, wa, w3 be the co-frame and
let k1, ko, k3 be the principal curvatures. Assume that locally ks > ko > k1, then the conformal
fundamental forms

ar = /(ks — k1) (k2 — kn)wi,  op = +/(ka — k1) (ks — k2)ws,
az = \/(ks — ko) (k3 — k1)ws

are closed, if and only if, the hypersurface M3 is conformally flat. Therefore, when o are closed
forms, locally there exist x1, x2, 3 such that a; = dx1, as = dxo and asz = dxs. By integration,
we obtain a special principal coordinate system x1, x2, x3 for a conformally flat hypersurface
in M.

K

Definition 2. A triply orthogonal coordinate system in a Riemannian 3-manifold (M, g)

z = (x1,29,23) : (M,g) — R3,
where the functions l; = \/g (0x,, Ox,) satisfy the Guichard condition

Z-13+12=0, (2.1)
is called a Guichard net.

Since we can deform a conformally flat immersion in a space form into a flat immersion in
the light cone, we can consider Guichard nets for flat immersions f : M3 — L5. For such a flat
immersion, we express the induced metric g = (df, df), in terms of the Guichard net, as

g = 13da? + 13dx3 + 13dx3.
Since the metric is flat, the functions /; must satisfy the Lamé’s system [14, pp. 73-78]:
Pl 10l 9y 1 3l Ay

0z j0xy, B lj Oz Oz i, Oxkaixj -
o (10l o (10l 1 0l; 0l
EARONTES
613 lj a:Ej 8:@ li 8131 lk al'k al'k
for i, j, k distinct. Moreover, if f : M3 — L is flat, we can consider M3 as a subset of the
Euclidean space R? and f as an isometric immersion. Then we have a Guichard net on an open
subset of R3, by considering as in Definition 2, z : U € R? — R?, where the functions [; satisfy
the Guichard condition (2.1) and the Lamé’s system (2.2). At this point, one can ask if such
a Guichard net determines a conformally flat hypersurface in a space form, or equivalently, a flat

immersion in L®. The answer to this question was given by the following fundamental result
due to Hertrich-Jeromin [8]:

Theorem 1. For any generic conformally flat hypersurface of a space form Mf(, there exists
a Guichard net x : U C R® — R3 on an open set U of the Euclidean space R? (uniquely
determined up to a Mdbius transformation of R3).
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Conversely, given a Guichard net v = (v1,z2,23) : U C R® — R3 for the Buclidean space,
with l; = /g(0x,;,0z,), where g is the canonical flat metric, there exists a generic conformally

flat hypersurface in a space form M}é (in this case, Mdobius equivalent Guichard nets are related
to conformally equivalent immersions), whose induced metric is given by

g= 62P(‘T){l%d:z% + 13dx3 + l%dﬂsg}, (2.3)
where P(x) is a function depending on M.

The converse is based on the fact that the functions [; determine the connection forms of
a flat immersion f : M3 — L5 In fact, these connection forms satisfy the Maurer-Cartan
equations if, and only if, the functions /; satisfy the Guichard condition and the Lamé’s system.

Therefore, one way of obtaining generic conformally flat hypersurfaces in space forms M} is
finding solutions of Lamé’s system, satisfying the Guichard condition. Then the hypersurfaces
are constructed by using Theorem 1. Our objective is to obtain a class of such solutions and to
investigate the associated Guichard nets as well as the conformally flat hypersurfaces. We will
use the theory of Lie point symmetry groups of differential equations, to obtain the symmetry
group of Lamé’s system and their solutions invariant under the action of subgroups of the
symmetry group. This is the content of the following sections.

3 The symmetry group of Lamé’s system

In this section, we obtain the Lie point symmetry group of Lamé’s system. We start with a brief
introduction of symmetry groups of differential equations. The reader who is familiar to the
theory may skip this introduction.

The theory of Lie point symmetry group is an important tool for the analysis of differential
equations developed by Lie at the end of the nineteen century [15]. Roughly speaking, Lie
point symmetries of a system of differential equations consist of a Lie group of transformations
acting on the dependent and independent variables, that transform solutions of the system into
solutions.

A standard reference for the theory of symmetry groups of differential equations is Olver’s
book [17], where a clear approach to the subject is given, with theoretical foundations and a large
number of examples and techniques. We will describe here some basic concepts that will be used
in this section.

A system S of n-th order differential equations in p independent and ¢ dependent variables
is given as a system of equations

Ap(z,u™)y =0,  v=1,...,1, (3.1)
involving x = (x1,...,xp), u = (u1,...,u,) and the derivatives u(™ of u with respect to z up to
order n.

A symmetry group of the system S is a local Lie group of transformations G acting on an
open subset M C X x U of the space of independent and dependent variables for the system,
with the property that whenever u = f(z) is a solution of S, and whenever gf is defined for
g € G, then u = gf(x) is also a solution of the system. A vector field v in the Lie algebra g of
the group G is called an infinitesimal generator.

Consider v as a vector field on M C X x U, with corresponding (local) one-parameter group
exp(ev), i.e.,

exp(ev) = VU(e, z),
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where W is the flow generated by v. In this case, v will be the infinitesimal generator of the
action.

The symmetry group of a given system of differential equation, is obtained by using the
prolongation formula and the infinitesimal criterion that are described as follows. Given a vector
fieldon M Cc X x U,

v-Zfzaz

the n-th prolongation of v is the vector field

V—V—i—ZZ(beu i

a=1 J

0

xuaa,

It is defined on the corresponding jet space M ¢ X x U™, whose coordinates represent the
independent variables, the dependent variables and the derivatives of the dependent variables up
to order n. The second summation is taken over all (unordered) multi-indices J = (j1, ..., Jk),
with 1 < ji < p, 1 < k < n. The coefficient functions ¢ of pr(®v are given by the following
formula:

p
¢l (z,ul™) =D, (% - Zsiu‘},z-) :

ouyg . . . .
where uf = %1;(:, ug; = 8%:;’ and Dy is given by the total derivatives

Dy =DjDj,---D

Jk
with

Dif(z ul” zp:Zua»ﬁ
ST 81‘2 J’Zﬁuf}'

ar  J

We say that the system (3.1) is a system of mazximal rank over M C X x U, if the Jacobian
matrix

OA, OA
J (n) _ T r
Az, ul™) (8% 9,

has rank I, whenever A, (m,u(”)) = 0, where J = (j1,..., k) is a multi-index that denotes the

partial derivatives of u®.
Suppose that (3.1) is a system of maximal rank. Then the set of all vectors fields v on M
such that

pr(")v[AT (m,u(”))] =0, r=1,...,1, whenever A, (:L',u(”)) =0, (3.2)

is a Lie algebra of infinitesimal generators of a symmetry group for the system. It is shown
in [17] that the infinitesimal criterion (3.2) is in fact both a necessary and sufficient condition
for a group G to be a symmetry group. Hence, all the connected symmetry groups can be
determined by considering this criterion.

Since the prolongation formula is given in terms of ¢ and ¢, and the partial derivatives
with respect to both x and u, the infinitesimal criterion provides a system of partial differential
equations for the coefficients ¢ and ¢, of v, called the determining equations. By solving these
equations, we obtain the vector field v that determines a Lie algebra g. The symmetry group G
is obtained by exponentiating the Lie algebra.
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3.1 Obtaining the symmetry group of Lamé’s system

From now on, we consider the following notation for derivatives of a function f = f(z1,...,xy)
af 0% f
= and . = .
fﬁcl axz f,x,azj (‘)xlamj

With this notation, Lamé’s system (2.2) is given by

liolioe  lisilia,
li,IEjIk B Zyx]l ‘J@% o Zwl}k - = 07 (33)
J

<’J> + <3) TR — ), (3.4)

where i, j and k are distinct indices in the set {1,2,3}. We will also consider the following
notation,

_ 1 if s=1o0rs=3,
ST 1-1 ifs=2.

(3.5)

We can now rewrite Guichard condition as
eil? + 5jlj2- + epl2 = 0.

Next, we introduce auxiliary functions in order to reduce the system of second-order diffe-
rential equations (3.3) and (3.4), into a first order one. Consider the functions h;;, with i # j,
given by

liw, — hijly = 0.
With these functions, we rewrite (3.3) and (3.4) as
hija, — hichi; =0, hija; + Njia; + hihje = 0.

for 4, j, k distinct. Since the functions l1, lo and I3 satisfy Guichard condition, there are other
relations involving the derivatives of I; and h;;. Taking the derivative of Guichard condition
with respect to x;, we have

€iliz; + Ejhjilj + erhgil = 0,
for 4, j, k distinct. The derivatives of the above equation with respect to z; leads to
5ihij,xi + 5jhji7xj + é‘khkihkj =0.

Therefore, we summarize the last six equations in the following system of first-order partial
differential equations, equivalent to Lamé’s system, that we call Lamé’s system of first order

eil? + 5jlj2- +erli =0, (3.6)
lia, — hijly =0, (3.7)
€iliz; +€jhjily + ephyly, = 0, (3.8)
hijz, — hikhi; =0, (3.9)
hija; + Njiw; + hihjr =0, (3.10)
€ihija; +€jhjix; + exhiihr; = 0. (3.11)

By considering z = (21,2, x3), | = (l1,12,(3) and h the off-diagonal 3 x 3 matrix given by h;; in
our next two results, we obtain the Lie algebra of the infinitesimal generators and the symmetry
group of Lamé’s system of first order.
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Theorem 2. Let V be the infinitesimal generator of the symmetry group of Lamé’s system of
first order (3.6)—(3.11), given by

3 3 3
A b . b y b
=) ¢ > Y ¢V : 12

i=1 ij=1,i%j

Then the functions £, n' and ¢¥ are given by
gi = axi + aj, 77Z = Cli7 ng = —(Lhij,

where a,c,a; € R.

The proof of Theorem 2 is very long and technical. It consists of obtaining the functions &?, 1’
and ¢ by solving the determining equations which are obtained as follows. We apply the first
prolongation of V' to each equation (3.6)—(3.11) and we eliminate the functional dependence of
the derivatives of h and [ caused by the system. Then we equate to zero the coefficients of the
remaining unconstrained partial derivatives. The complete proof with, all the details, is given
in Appendix A.

As a consequence of Theorem 2, by exponentiating V', we obtain the symmetry group of
Lamé’s system. Observe that the functions ¢ do not depend on x and [ (see [18] for symmetry
group of equivalent systems):

Corollary 1. The symmetry group of Lamé’s system (3.6)—(3.11) is given by the following
transformations:

1) translations in the independent variables: T; = x; + v;;
2) dilations in the independent variables: T; = \x;;

3) dilations in the dependent variables: l; = pli;

where v; € R and \,p € R\ {0}.

3.2 Group invariant solutions

The knowledge of all the infinitesimal generators v of the symmetry group of a system of
differential equations, allows one to reduce the system to another one with a reduced number of
variables. Specifically, if the system has p independent variables and an s-dimensional symmetry
subgroup is considered, then the reduced system for the solutions invariant under this subgroup
will depend on p — s variables (see Olver [17] for details). Finding all the s-dimensional sym-
metry subgroups is equivalent to finding all the s-dimensional subalgebras of the Lie algebra of
infinitesimal symmetries v. For the remainder of this paper, we will consider the 2-dimensional
subgroups of the symmetry group of Lamé’s system. The first one will be the translation sub-
group and the second one will be the subgroup involving translations and the dilations. The
1-dimensional subgroup given just by dilations and the solutions invariant under this subgroup
are being investigated. We will report on our investigation in another paper. We observe that
the symmetry subgroup of dilations in the dependent variables (Corollary 1(3)) is irrelevant for
the geometric study of conformally flat hypersurfaces due to (2.3).

We start with the 2-dimensional subgroup of translations. The basic invariant of this group
is given by

¢ =11 + asxo + asxs, (3.13)
where (aq, ag, ) is a non zero vector. We will consider solutions /; such that

li(x1, 22, 23) = 1;(§), 1<i<3,
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where ¢ is given by (3.13). For such solutions, Lamé’s system reduces to a system of ODEs. We
start with two lemmas:
3
Lemma 1. Let I5(§), s = 1,2,3, where £ = Y asxs, be a solution of Lamé’s system (3.6)-
s=1
(3.11). Let i,k € {1,2,3} be two fixred and distinct indices such that a; = o = 0. Then l; or Iy,
15 constant.

Proof. Since a; = a, = 0, it follows from (3.7) that equation (3.10) reduces to

L.
2 [ Mg | _
3] o
j ?g
which implies ;¢ = ¢;l;, where ¢; € R. Similarly, interchanging 7 with &k, we obtain [ ¢ = cil;.
Finally, interchanging k& with j, we get

l; ¢l
2Y4,6k,€
VA

fj

= a?cick = 0.
Therefore, we conclude that [; or I, is constant. |

3
Lemma 2. Letl5(£), s = 1,2,3, where { = Y asxs, be a solution of Lamé’s system (3.6)—(3.11).
s=1
If there exists a unique j € {1,2,3} such that lj is a non zero constant, then o = 0.

Proof. Interchanging the indices in (3.9), we obtain the following two equations

l; ¢l
Qg (li,éf - 51:5) =0, (3.14)
Ikglig ) _

and an identity.
Similarly, it follows from (3.10) that

Odjz-lifg = 0, (3.16)

g =0, (3.17)
l; l il

o} < ’5> +a? < ’“’5) +a2 RS (3.18)
lk £ lz £ lj

Suppose, by contradiction, that a; # 0. It follows from (3.16) and (3.17) that l;¢ = ¢; and
k¢ = ck, where ¢; # 0 and ¢, # 0, since by hypothesis, /; and [;, are non constants. Then, it
follows from (3.14) and (3.15) that ; = oy, = 0. From (3.18), we obtain afc;c, = 0, which is
a contradiction. |

The following theorem gives the solutions of Lamé’s system, satisfying Guichard condition,
which are invariant under the action of the translation group, whenever none of the functions [;
is constant.

3
Theorem 3. Let I5(§), s = 1,2,3, where £ = > asxs, be a solution of Lamé’s system (3.6)—

s=1

(3.11), such that ls is not constant for all s. Then there exist cs € R\ {0}, such that,

lig = cilily, 0,7,k distinct, (3.19)



10 J.P. dos Santos and K. Tenenblat

c1—co+c3 =0, (3.20)

adcges + aderes + adeieg = 0. (3.21)

Moreover, the functions l;(§) are given by

A A
lig = ca(ca — 1) <l% - 62> <l% - > , (3.22)

Cy — C1
A
2-2(p_2 2
3= 2 (2-2). (3.29
o2z (p A (3.24)
3 1 1 ey — c1 ) .
where X € R.

Proof. By hypothesis, we are considering non constant solutions. Then, it follows from Lem-
ma 1, that as # 0 for at least two distinct indices. Suppose that a; and ag non zero. From (3.7)
and (3.9) we obtain

li} lie I e
Qo ’ — == 5 =0,
! {[lj e bl

which implies

-
l; P l; I
Integrating this equation, we obtain [; ¢ = ¢;lil;, where ¢; # 0.

If a; # 0, analogously considering the non zero pairs (a;, «j) and (o, o), we conclude that
e = cilily and 1 ¢ = c;lil. If oy = 0, then from equation (3.10) we have

Li . Lo L l;
1,Z 5 1,Tk V], %k 2 2 .775
4T 0200 4 adel2E = 0,
[ l; ] lg Ik YyCithe T UG Uk

»Tj
Since ¢; # 0, we integrate the above expression to obtain
il + ofl3 = Aji,

where \j;, is a constant. This equation and Guichard condition (3.6) lead to

Oé2~ A ik &j

Taking the derivative of the last equation with respect to &, we have
&i 2 2
li (Cilklj) = OT% [lklk;yg (EjOéj — ekak)] .

If qa? — 5;904% = 0, we conclude that

2
G,
lk,{ = —5 35 Lk 2 lilj = Cklilj.
EjOéj — EgQy
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Applying this expression into the derivative of the first equation in (3.25) with respect to £ we
obtain

2 2
J aj
l]'lj}f = _;ilklk,ﬁ = _;ilk (Cklil]’),

consequently, 1; ¢ = c;l;lj.
Next, we will show that 5ja]2- — era? # 0 to conclude the proof of (3.19). Suppose by
contradiction that 5ja?—5kaz = 0, then the first equation of (3.25) can be written as ejl?+skl2 =

@ Then Guichard condition now implies that [; is constant, which is a contradiction. The

J
relations between the constants (3.20) and (3.21) follow from a straightforward computation
using equations (3.8) and (3.10), respectively.

In order to complete the proof of the theorem, we start with

lie = ailals, (3.26)
lag = colils, (3.27)
1375 = Cglllg. (3.28)

Multiplying (3.27) by ly and integrating we have

2= <zf - A> , (3.29)

&1 C2

where ) is a constant. Therefore, it follows from (3.29) and Guichard condition that

=24 <z% _A ) . (3.30)

C1 Cy — C1

Using (3.26), (3.29) and (3.30), we conclude that

A Co — C1 A
L2222 12—
e = [01 ' e c1 ' a—a
A A
262(6201)(Z%C2> (l%62—61>' |

In our next theorem, we consider the solutions /;(£) when one of the functions /; is constant.

3

Theorem 4. Let I5(§), s = 1,2,3, where £ = > asxs, be a solution of Lamé’s system (3.6)-
s=1

(3.11). Suppose that only one of the functions ls is constant. Then one of the following occur:

a) I = A1, Iy = Ay cosh(b€ + &), I3 = Ay sinh(b€ + &), where § = apwy + azxs, a3 + af # 0
and b,& € R ;

b) lo = Ao, 1 = Aacosp(€), I3 = Aasing(€), where &€ = a1r1 + asws, o3 + a3 # 0 and ¢ is
one of the following:

b.1) (&) = b + &, if a2 # a3, where &y,b € R;
b.2) ¢ is any function of &, if af = a3;

c) I3 = A3, la = Az cosh(b€ + &), l1 = Agsinh(b€ + &), where & = 171 + agwa, o2 + a3 # 0
and b, & € R.
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Proof. We will consider each case separately:

a) If i = A1, then it follows from Lemma 2 that we must have £ = aswe + agxs. Now
Guichard condition implies that lo = Aj cosh(§) and I3 = A;sinh(€). In order to determi-
ne ¢, we use (3.10) with the following indices

h23.z5 + h32 2, + ha1hs1 = 0,

to obtain

2 A1p,¢sinh 4 a2 A1p,¢ cosh —0
3\ Alsinho ¢ 2\ Ajcosho e

Since Iy and I3 are not constant, we have a3 + 2 # 0, which implies @, = 0. Consequently,
©(§) = b€ + &o.

b) If Iy = Ao, it follows from Lemma 2 that £ = a1 + agzs. Then Guichard condition
implies that I3 = Ay cos (&) and I3 = Agsin p(§). As in the case a), from equation (3.10) we get
(02 — a3) pee = 0. Since l; and I3 are non constant, we have af + a3 # 0. Then we have two
cases to consider:

b.1) If o2 # o3, then (&) = b€ + &o;

b.2) If o} = a3, then ¢ can be any function of &.

¢) The proof is the same as in a). [

Next, we consider the solutions invariant under the 2-dimensional subgroup involving trans-
lations and dilations. In this case, the basic invariant is given by
171 + a2 + a3T3
7 biz1 + boxo + baxs’

(3.31)
where the vectors (a1, az,as) and (b1, b, b3) are linearly independent. If f = f(n) is a function
depending on 7, then

ai — bin
biz1 + baxa + bgws” "

f@i = fmnzi =
In order to simplify the computations, we will use the following notation:
N; :=a; — bn and B = bix1 + boxo + byrs. (3.32)

Then we have 7 ,, =
In order to obtain the solutions of Lamé’s system [;(n), which depend on 7, we will need some
lemmas.

w|Z

Lemma 3. Let l1(n), l2(n), l3(n), where n is given by (3.31), be a solution of Lamé’s system
(3.6)—(3.11). Suppose that for a fized pair j,k € {1,2,3}, j # k, (a;,b;) # (0,0) and (ay, by) #
(0,0). Then there exists ¢; € R such that

gl .
lig=ci NeN, # J: k, (3.33)

where Ny, is given by (3.32).

LinN;

Proof. From (3.7), we have that h;; = 73
J

. Then, equation (3.9) can be written as

[li,nNkNj} B li,nNkleki —0
n

l; T
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which implies

<zi,,7NkNj> 4
W ),

Since (aj,b;) # (0,0) and (ag, by) # (0,0), we have that N; # 0, Ni # 0 and the equation (3.33)
holds. [

Lemma 4. Let 11(n),l2(n),l3(n), where n is given by (3.31), be a solution of Lamé’s system
(3.6)—(3.11). If (a;, b;) = (0,0), for some i € {1,2,3}, then l; is constant.

Proof. Since the vectors (aj,as,az) and (b1, be, b3) are linearly independent, if (a;, b;) = (0,0)
we must have (aj,b;) # (0,0) and (ag, by) # (0,0) for ¢, 7,k distinct and we can use Lemma 3.
By considering equation (3.10), we have

cily, ) ( Cily, > Linng
n Nk _
<5Nk n \BNp/ Bl

which implies

lon N , ilinNe
i : . =0. 3.34
o[l (), + ] <o (3.3

By interchanging j with k, we have analogously

LnNe 1 Uil N
| g BN g, 3.35
¢ [ N; N2( NiB).z, 1jNi 0 (3:35)

Suppose by contradiction that ¢; # 0. Then, it follows from (3.34) and (3.35) that

E o,
N? (NiB)y, = N? (N;B),,

If a; = b; = 0, we must have

g
(arbj —braj) | =5 + 755 | =0,
NN
which is a contradiction since (a;yb; — bya;) # 0. Therefore ¢; = 0 and [; is constant. |

Lemma 5. Let 11(n), l2(n), l3(n), with n given by (3.31), be a solution of Lamé’s system (3.6)-
(3.11). If there exists a unique function l; which is a non zero constant, then (a;,b;) = (0,0).

Proof. Suppose by contradiction that (a;, b;) # (0,0). Since l; and [, are not constant, for i, j, k
distinct, it follows from Lemma 4, that we must have (a;, b;) 75 (0,0) and (ag, b) # (0,0). Then,
Lemma 3 implies that there are constants c;, ¢; and ¢ such that

il Il

Il
lim = NN lm:%ﬁﬁ;

NpN;

and gy = ck

Using equation (3.10) and interchanging the indices we have

% _ (akbi — bkai)lk

=0 3.36
Ck N] Nk ) ( )
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15l l;
CjCkN]'i]]\g[k — W [cj(aibk — akbi) + ck(aibj - biaj)] = 0, (337)
J %
lzlk (ajbi — bjai)lj .
T, N, =0. (3.38)

Multiplying equation (3.36) by cj]lv—:, (3.37) by 7:2 and (3.38) by ck%, the sum will reduce to

cjen [l Ne)* + (leN;)? + (11 Ni)*] = 0,
which is a contradiction. Then, we must have (a;,b;) = (0,0) and the lemma is proved. [

Remark 1. We observe that when all pairs (as, bs) are different from zero, then the proof of
Lemma 5 shows that the solution /;(n) of Lamé’s system is constant.

We will now obtain the solutions I5(n), when one pair (as, bs) = (0,0).

Theorem 5. Let [;(n), with n given by (3.31), be a solution of Lamé’s system invariant under
the 2-dimensional subgroup involving translation and dilations. Suppose that one of the pairs

(as,bs) = (0,0). Then one of the following occur:

ar2+a3x3

a) If (a1,b1) = (0,0) then ly = A1, I = Ay coshp(n), I3 = A1 sinho(n), where n = P75
and @ is given by

Cy b% + b% asbs + asbs
= ———  arct — C 3.39
aobg — azbs arctat |:a3b2 — agbs " b% + b?)’ o ( )

where Cy, Cy € R.
b) If (a2,b2) = (0,0) then la = Ag, l1 = Aacosp(n), Iz = Aasinp(n), where n = %m

and ¢ is given as follows:

b.1) if by = by = b, then

Do
e(n) = W(as — ar) log (2bn — a1 — a3) + Dy, (3.40)
where Do, D1 € R;
b.2) Zf b1 75 b3, then
Do (b3+bl)ﬁ—(a3+a1)]
= lo + Ds, 3.41
(P(n) 2((11[)3 — a3b1) |:(b3 — bl)T] — (a3 — CLl) 3 ( )

where Dy, D3 € R.

aiz1+a2x2

¢) If (a3,b3) = (0,0), then I3 = A3, la = Azcoshp(n), l1 = Aszsinh¢(n), with n = TTER
and ¢ is given by

Ey bg + b% asby + a1bq
= ——— arct — E
(P(n) asb; — ai1by arctan I:agbl — a1bs n b% + b% T

where Ey, B € R.

Proof. a) If (a1,b1) = (0,0) then Lemma 4 implies that {; = A\; and Guichard condition implies
that lo = A1 cosh (1) and I3 = A1 sinh p(n). In order to find ¢, we use equation (3.10) with the
following indices

h32.zo + ho3 2 + hathor = 0.
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. N. N: . .
Since hgs = w‘"ﬁ 2 hos = ‘p”’ﬁ 2 and h3; = he; = 0, we rewrite the equation above as

(555), (), -
B ) B )

By substituting the derivatives, we have the following ODE

@ [(N2)? + (N3)?] — 2,5 (ba N2 + bsN3) = 0,

whose solution is exactly (3.39).
b) If (az,b2) = (0,0), then Iy = A2 and Guichard condition implies that I; = A2 cos p(n) and
I3 = Mg sin(n). In order to find ¢, we use equation (3.10) with the following indices

h13,z5 + h31,z, + hi2hsa = 0.
By using the same arguments as in a), we have the following ODE
P [(N1)? = (N3)?] = 20,5(b1 N1 — b3N3) = 0,

whose solution will depend on b; and bs. If b = by we have ¢ given by (3.40) and if by # b,
the solution is given by (3.41).
¢) The arguments when (a3, b3) = (0,0) are the same as in a). [

Remark 2. Although our calculation of the symmetry group for the Lamé’s system has similar
techniques to those used by Tenenblat and Winternitz for the intrinsic generalized wave and
sine-Gordon equations in [24], we observe that the solutions invariant under the subgroups are
quite different. In fact, when we consider the solutions invariant under the translation subgroup
in Theorem 3, the solutions of (3.22) are given by Jacobi elliptic functions that cannot be reduced
to elementary functions. Moreover, the only solutions of the Lamé’s system, which are invariant
under the action of the subgroup involving translation and dilations, that depend on all three
variables are constant, in contrast to the solutions in [24]. The main reason is due to Guichard
condition.

In the next two sections, we will deal with the geometric properties of the Guichard nets
and of the conformally flat hypersurfaces associated to the solutions invariant under the 2-
dimensional translation subgroup. As we will see in Section 5, these are the solutions that will
provide a new class of conformally flat hypersurfaces.

4 Geometric properties of the Guichard nets

In this section, we will study the geometric properties of the Guichard nets associated to locally
conformally flat hypersurfaces corresponding to the solutions of the Lamé’s system [;(§), which

[Mes

are invariant under the translation subgroup. Let 11(€), [2(§), [3(§), with £ = asts be
s=1

a solution of Lamé’s system. Theorem 1 implies that there is a Guichard net z = (x1, 2, z3) :
U C R? - R?, with a Riemannian metric

g = 13da? + 13dx3 + 13dx3, (4.1)

where U is an open set, given by U = {(z1,22,23) € R?|& < € < &}, where & and & are real
constants.
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4.1 Level surfaces

In this subsection, we will show that the Guichard nets are foliated by surfaces £ = &y which are
geodesically parallel. Moreover, we will prove that each such surface has flat Gaussian curvature
and constant mean curvature that depends on &.

Definition 3. Let M™ be a Riemannian manifold and let f : M — R be a differentiable
function. The level submanifolds of f are said to be geodesically parallel if | grad f| is a non zero
constant, along each level submanifold.

We have the following theorem
Theorem 6. Let (U,g), U C R?, be a Riemannian manifold with coordinates (x1,x2,x3) and

3
metric g = > 12(€)dx?, where £ = Z asTs. Then the level surfaces
s=1

3
P, = {(mmm) e U; Zasxszso}, where & < & < &,

s=1

endowed with the induced metric, are geodesically parallel. Moreover, each level surface has flat
Gaussian curvature and constant mean curvature (depending on & ).

Proof. Since at least one «; is non zero, we can suppose that ag # 0 and we parametrize P,
as

§o — iz — QT
X(x1,22) = (mhxm .

as

Then X, = (1,0, —ai/a3) and X 5, = (0,1, —ag/a3). Consequently, the coefficients of the
induced metric are constant, since £ = &y in this surface. Therefore the Gaussian curvature is
equal to zero.

Consider now the function h(x) = Z a;x;. Then Pe, = h™1(&). Since h is constant along P,

it follows that grad h is normal to PE() Moreover

2
%
g(grad h, grad h) = Z Z—QJ,
j=1 "7
which implies that |gradh| is constant along Pe,. It follows from Definition 3 that the level
surfaces h=1(&p) are geodesically parallel.
Now we compute the mean curvatures of P,. Given p € Py, let A : T,,Py, — T, P, be the

grad h
| grad h|

(U, g). Since |grad h| is constant along Pg,, it follows that

Weingarten operator, i.e., Av = =V ( > (p), where V is the Riemannian connection on

1
Av=———_V,grad h(p).
V= Taad h|V grad h(p)

Then the mean curvature of P, is given by
Ah
H:_ (p) Z “26-0 ak7
| grad h| | grad h| 12 (&)

where I‘fj are the Christoffel for the connection V. Therefore, the mean curvature of P, is
a constant depending on &g. |
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4.2 Coordinate surfaces

In this subsection, we will use the solutions invariant by the group of translations to show
that the coordinate surfaces of the corresponding Guichard net (U, g) have constant Gaussian
curvature. Moreover, the values of these curvatures satisfy an algebraic relation.

Theorem 7. Let (U, g), U C R3, be a Riemannian manifold, with coordinates (x1,x2,x3) and

3 3
metric g = Y 12(§)dz?, with € = Y asws. Then each coordinate surface of U C R3, x; = const,
s= s=1
endowed with the induced metric, has constant Gaussian curvature K;. Moreover,

K1+ Ko+ K3 =0.

Proof. Since g is given by (4.1), it follows that the metric induced on each coordinate surface,
x; = const, is

gi = 3 (dx;)* + I} (dxy)?, i, j, k distinct,

and its Gaussian curvature, K;, is given by

1 (gl

Assume that none of the functions I; is constant and & = 121 + aswe + agxs, with «a; # 0,
for all 4. In this case, we have l;¢ = c¢;ljli, where i, j and k are distinct indices in {1,2,3}.
Therefore, it follows from (4.2) that the Gaussian curvature of each coordinate surface is given
by K; = cjcpa?. Moreover, it follows from (3.21) that

Ki+Ky+ K3= 01%0203 -+ CK%CgCl + a?clcQ =0.

If only one of the functions [; is constant, it follows from Lemma 2, that, if [; is constant,
then a;; = 0. Then it follows from (4.2) that all the curvatures are equal to zero. In fact, K; = 0,

since the functions [,, for all s, do not depend on z;. Moreover, for j # i, K; = 0, since [; is
3
constant. Hence, the sum ) K; = 0 trivially. [
j=1

5 Conformally flat hypersurfaces

In this section, we describe the generic conformally flat hypersurfaces associated to the solutions
of the Lamé’s system invariant under the translation group.

It is known that, any locally generic conformally flat hypersurface, in a 4-dimensional space
form, has a metric induced by the Guichard net of the form (see [10, 21, 22])

g= eQP(x){ sin® op(z)dx? 4 da3 + cos? gp(az)d:c%}, (5.1)
where x = (21, z2, x3), or
g= 6215(’”){ sinh? 3(z)dai + cosh® ¢(z)dw3 + daj}. (5.2)

Suyama classified in [22] the hypersurfaces conformal to the products M? x I C R* given by
Lafontaine in [13], as the hypersurfaces where ¢ depends only on two variables. Hertrich-Jeromin
and Suyama classified in [10] the hypersurfaces where ¢ has two vanishing mixed derivatives.
These conformally flat hypersurfaces are associated to the so called cyclic Guichard nets, which
are characterized by ¢ ;20 = ¥ zo2; = 0, when g is of the form (5.1) and by ¢ 4,05 = © 2025 = 0,
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when g is given by (5.2). Moreover, the authors showed that all the known cases of conformally
flat hypersurfaces, up to now, are associated to cyclic Guichard nets.

We observe that Theorem 5 shows that each solution of the Lamé’s system, which is invariant
under the action of the 2-dimensional subgroup involving translations and dilations, depends
only on two variables. Therefore, the conformally flat hypersurfaces associated to these solutions
are conformal to the products M? x I C R%.

We now consider the conformally flat hypersurfaces associated to the solutions invariant
under the translation subgroup. We analyse each case separately:

i) £ = a1x1 +agwe. In this case, we have the solutions [ = Agsinh(§+¢&p), lo = A3 cosh(£+&p)
and [3 = A3 # 0 (see Theorem 4). Then the associated conformally flat hypersurface has a
Guichard net, where the induced metric is given by

g = 2P@e223) Lginh2(¢ + &9)da? + cosh? (€ + &)dx + dxf ). (5.3)

The hypersurface is conformal to one of the products considered by Lafontaine in [13] that we
describe as follows (see [21, 22] for details): Let H? be the hyperbolic 3-space, considered as the
half space model and as a subset of R%, i.e.,

B = {(v'0%,9%.0) - ¢* > 0} R = {(y"070°.0") - o' € R},

with the metric g;; = (;% Consider the rotations of the y3-axis given by
3

(v',4%,4°,0) = (v, 42, 4° cost,y’ sint),

then the hypersurface M3 = M? x I, obtained by the above rotation of a surface of constant
curvature M? C H? is a conformally flat hypersurface. One can show that for g given by (5.3),
the surface M? C H? is a flat surface, parametrized by lines of curvature whose first and second
fundamental forms are given by

I = sinh?(€ + &)dx? + cosh?(& + &)da3,
IT = sinh(& + &) cosh(& + &) (daf + da3). (5.4)

In order to describe the flat surfaces M? C H3, we mention a classification result obtained
by the authors in collaboration with Martinez [16]. It is well known that, on a neighbourhood
of a non-umbilical point, a flat surface in H? can be parametrized by lines of curvature, so
that the first and second fundamental forms are given by (for details, see [23, Theorem 2.4,
Corollary 2.7])

I = sinh? ¢(u, v)(du)? + cosh? ¢(u, v)(dv)?, (5.5)
11 = sinh ¢(u, v) cosh ¢(u, v) ((du)2 + (dU)Q),

where ¢ is a harmonic function, i.e. ¢y, + ¢y = 0. The classification result is given as follows:

Theorem 8 ([16]). Let X be a flat surface in H® with a local parametrization, in a neighborhood
of a nonsingular and nonumbilic point, such that the first and second fundamental forms are
diagonal and given by (5.5) and (5.6), where ¢ is a (Fuclidean) harmonic function. Then ¢
s linear, i.e., ¢ = au + bv + c if, and only if, ¥ is locally congruent to either a helicoidal flat
surface (when (a,b,c) # (0,£1,0)) or to a “peach front” (when (a,b,c) = (0,%£1,0)).

Helicoidal surfaces arise as a natural generalization of rotational surfaces. They are invariant
by a helicoidal group of isometries, i.e., given an axis, we consider a translation along this axis
composed with a rotation around it. In the half space model of H?, up to isometries, we can
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consider the y3-axis, which enables us to write the helicoidal group, relative to this axis, as the
composition

et 0 0 cosat —sinat 0
he= 0 €% 0 sinat cosat 0],
0 0 €7 0 0 1

of a rotation around the ys-axis with angular pitch o with a hyperbolic translation of ratio (.
The “peach front” is a special case of flat surfaces that is not helicoidal. Details about this
surface can be found in [11].

The study of flat surfaces in hyperbolic 3-space has received a lot of attention in the last few
years, mainly because Galvéz, Martinez and Mildn have shown in [5] that flat surfaces in the
hyperbolic 3-space admit a Weierstrass representation formula in terms of meromorphic data as
in the theory of minimal surfaces in R3. Namely, if ¢ : M? — H? is a surface in H?, for any
p € M?, there exist G(p), G*(p) € Cy distinct points in the ideal boundary of H? such that
the oriented normal geodesic at ¥(p) is the geodesic in H? starting from G*(p) towards G(p).
The maps G,G* : ¥ — C4 are called the hyperbolic Gauss maps of 1. It is proved in [5]
that, for flat surfaces, they are holomorphic when one considers C,, as the Riemann sphere
and M? has a complex structure induced by the second fundamental form. Conversely, given
two holomorphic functions G and G*, with G # G*, one can recover a flat immersion of a surface
in H? (for more details see also [3, 11, 12]). This representation formula was the main tool to
obtain Theorem 8.

With the previous results we conclude that

Theorem 9. Let [;(§) be solutions of the Lamé’s system, where & = ay1x1 + asxy. Then the
associated conformally flat hypersurfaces are conformal to the product, M? x I, where M? is
locally congruent to either a helicoidal flat surface in H? or the “peach front”.

Proof. When £ = ajx1 + asxs, it follows from Theorem 4 that the solution of Lamé’s system
is I3 = Agsinh(€ 4 &), la = Az cosh(§ + &) and I3 = A3 # 0 and the corresponding conformally
flat hypersurface M3 has a metric g given by (5.3). Then M?3 is conformal to the product
M? x I, where M? is a flat surface in H? with fundamental forms given by (5.4). It follows from
Theorem 8 that M? is locally congruent to either a helicoidal flat surface in H? or to the “peach
front”. |

i1) £ = a1x1 + asrs. In this case, we have the solution of Lamé’s system , [ = Agsin(€ + &),
lo =Xy # 0 and I3 = Mg cos(§ 4+ &) (see Theorem 4 b)). Then the associated conformally flat
hypersurface M3 has a Guichard net, whose induced metric is given by

g = e*Pore2ea) Lgin (¢ 4 g0)da? + dxd + cos?(€ + &o)dad ).

The hypersurface M3 is conformal to another class of products M? x I (see [21, 22]). Namely, let
S? ¢ R* be the canonical 3-sphere, then M2 x I = {tp :0<t<oo,pe M?C 83}, is a confor-
mally flat hypersurface, where M? is a surface with constant curvature in S2. In our case, M3
is conformal to the product M? x I, where the surface M? C S? is a flat surface, parametrized
by lines of curvature, whose first and second fundamental forms are given by

I = sin®(& + &)dai + cos® (€ + &o)da3,

IT = sin(€ + &) cos(€ + &) (dz — dz3). (5.7)
The geometry of these surfaces in S? is being studied and it will appear in another paper.
1i1) £ = 11 +agre +azxs, o # 0, for all 7. In this case, we will show that the solutions /;(§)

of the Lamé’s system give rise to a new class of conformally flat hypersurfaces, according to the
following theorem:
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Theorem 10. Let M3 be a conformally flat hypersurface in a space form M}L(, associated to
3
a solution of Lamé’s system l;(x1, o, x3) = 1;(§), with § = > asxs and ags # 0, for all s, given

in terms of elliptic functions by (3.22)—(3.24). Then its ﬁr;t:}undamental form g is given by

g =€ { cos® (&) (d1)? + (du2)? + sin® p(€) (da3)*}, (5.8)
where ¢ satisfies,

go?g = c(acos® ¢ — b), (5.9)
or g 1s given by

g= 6215(36){ sinh? (&) (dx1)? + cosh? ¢(€)(dx2)? + (dxs)?} (5.10)
where @ satisfies

gé,zg = c(b cosh? p — b). (5.11)

where a,b,c € R\ {0}, P(z) and P(z) are differentiable functions that depend on ls and Mp.
In both cases, £ € I C R, where I is an open interval such that g is positive definite.

Proof. Guichard condition (2.1) implies that we may consider

Iy =15 cos p, (5.12)
I3 = lasing. (5.13)

It follows from Theorem 1 that the metric is given by (5.8). In order to obtain the expression
for the derivative of ¢ with respect to £, we consider

l1,6 = la¢cosp —lap ¢ sin .

Since ag # 0 for all s, the functions [; are given as in Theorem 3, by (3.22)—(3.24). Hence,
using (3.19), we have that

c1lalz = calilz cos p — p ¢l3,
for ¢1, co € R\ {0}, which implies
pe=Ils (02 cos? ¢ — 01). (5.14)

By taking the derivative again, it follows from (5.12)—(5.14) and (3.19) that

. 1 .
pee =lag (62 cos? ¢ — 1) — 2c3la cos psinpp ¢ = b [[2,5%5 — 26y (I cos ¢)(Ia sin @)@75]
1 1 Iy
= —llgpe —20llspe] = —[logpe —2aepe] = - 2EPE
Iy Iy L
Therefore,
Pl e (5.15)

where ¢ € R\ {0}, since ¢ ¢ # 0. Then, multiplying (5.14) by ¢ ¢ and using (5.15) we have
that go?g = 0(02 cos? p — cl), i.e., (5.9) holds. The proof of the second part of the theorem is
analogous, when we consider ls = I3 cosh ¢ and I} = [3sinh ¢. |
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Corollary 2. Let M3 C M* be a conformally flat hypersurface associated to the solutions of
3
Lamé’s system 1;(§) with & = Y asxs and as # 0 for all s, given in terms of elliptic functions

s=1
by (3.22)—(3.24). Then the Guichard net of M3 is not cyclic.

Proof. It follows from Theorem 10 that the first fundamental form of M?3 is given by (5.8),
where (&) satisfies (5.9) or by (5.10) where ¢(§) satisfies (5.11), £ € I C R. In the first
case, (5.9) implies that ¢ ¢ = Asin2¢p, A # 0 and in the second case, (5.11) implies that
Pee = Asin2p, A # 0. In either case, p 4,2, = qiajpee # 0,1 # j and § € I. Therefore, the
Guichard net of M3 is not cyclic. |

We observe that, as a consequence of the results of Hertrich-Jeromin and Suyama, the sur-
faces M3 of Corollary 2 provide a new class of conformally flat hypersurfaces.

It is important to observe that Hertrich-Jeromin and Suyama in [9] have independently
considered Guichard nets with the ansatz on the function ¢ such that ¢(z1,z2,23) = @(az; +
bxy + cx3). They investigated the geometric properties of these Guichard nets, that they called
Bianchi-type Guichard nets, as well as the new class of associated conformally flat hypersurfaces.

A Appendix

Proof of Theorem 2. The infinitesimal generator associated to the symmetry group is written
as in (3.12). The functions &, n°, ¢/ will be obtained by solving the determining equations that
arise when we apply the first prolongation formula

N y 0
pr(l)V =V + ZDk(UZ) L, + Z Dk((b”) T
ik YTk g ki) 1Tk

T 9 " 0
"o DM 2 D

i,k,r i,5,k,r

with

0 0 0

on each equation of the system, i.e., when we consider the infinitesimal criterion (3.2). In order
to avoid any functional dependence, the following substitutions will be considered

liw; = higly, 177, (A.1)
liw; = —€igjhjil; — eicphply (A.2)
hijz, = hikhig, (A.3)
hija; = —hjia, — hikhje, 1<, (A.4)
hijw, = —€i€jhjiw; — cickhrihig, @ <. (A.5)

Fixing 4, j and k, distinct indices, we start applying pri)V to equation (3.9). Then the
infinitesimal criterion (3.2), gives qbz(i) — ¢ hy; — hir,¢™ = 0, using the prolongation formula, we
get

i ij ij t t t
T%k + Z ¢7lrlr’xk + Z ¢7hrs hrs,xk o Z ( Lk + Z gvlTlT’xk + Z gyh’l‘s hrs,azk> hij’xt
r .8 r .S

t
— ¢*hyj — hiro™ = 0. (A.6)
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For ¢ < j, we apply the substitutions (A.1)-(A.5) and we analyse each term of (A.6) as follows

Z ‘blljrlr Ty = Z ¢f[{hrklk - ¢lljk (ewejhjrl; + ereihirli) (A7)
s r#k
Do hrsa = Y O, hekhks + D 0%, hksa, = Y 0%, (er€shaka, T ExEmhimihims)
r,8 r#k, s#k s<k s>k
_Z ¢7;i7k (hkr,z,- + hrnhkn) + Z ¢fi7,khrk,mka (AS)
7"<k 7->k
> (fka + Zéfrzr,xk + ng h$k> hija
t
= Cihahij = Cj (hﬂ o+ hichje) = Ci(eigjhjia; + cickhnihig), (A9)

where the coefficients C}, are given by

Ch =& + Zgl heily, — €5, (exeshjly + exeihirli) Z Pk his
r#k r#k, sk
+ Z éfhks hks,xk - Z éfhks (5k53h5k,x3 + 6Ic51nhmlchr)15)
s<k s>k
_ Z ffm (hkr,:pr + hmhim) + Z {thrk Pk ), (A.10)
r<k r>k

and the indices m and n are such that {k,s,m}, s > k and {k,r,n}, r < k are two sets of three
distinct numbers.

Now we analyse the coefficients of equation (A.6), considering (A.7)—-(A.9). By equating to
zero the coefficients of the products hj; z; hgs ), With k > s, we obtain {fhks = 0. Analogously,
for the coefficients of hj; o, hsk e, , With k < s, we obtain §fhks = 0. This implies that

g?h‘ks = 07 vs? S # k, i'e. f?hk] = é-j'hkz = O‘
Similarly, from the coefficients of hj; v hgr ey, 7 < k and hj; o hrg 2, , with 7 > k, we obtain
é.?th = 07 VT, r # k, i.e. g?hjk = é.?hzk = O,

where 7, j,k € {1,2,3} are distinct and ¢ < j. By analysing the coefficients of hj; »,hrs o, With
k> s and hj; z;hsk o, With k < s, we obtain

f,jhks =0, Vs, s#k, ie. ,jhm = §th

Similarly, the coefficients of hj; o, hirz,., with k > r, and hj; o, heg o, , with k& <7, lead to
J : J o _
57,% =0, Vr, r#k, ie. £’hik = g’hjk =0

Since i, j, k € {1,2,3} are distinct and arbitrary indices, with i < j, we conclude that ') =0
for any indices m, s and t, s # t, i.e., " depends only on x and [. Therefore, the expression
of C} given in (A.10) reduces to

Ch=& +> &) harly — &, (exsihiuly + exeihirli),
r#£k
that can be rewritten as

Ch=¢&0 + > (&0 Ik — & erenle) b (A.11)
r#£k
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From (A.8), we have that the coefficients of hys 5, , with s < k, and the coefficients of hgy, 4,
with s > k, lead to qb?iks =0,Vs#k,ie. qﬁlf”m = qﬁfflkj =

Considering (A.9), the coefficients of hj; ., and hj; ., imply that C,z = 0 and C} = 0,
respectively. Since i < j and 4,7,k € {1,2,3} are arbitrary and distinct, we conclude that
C,i = C’l,]g = 0, for all 4, j, k distinct indices.

Since ™ does not depend on hg, the analysis of (A.11) gives us the following system

m =0, Vm # k,

LTk

fflrilk - 5r5k€jl1,i r = 0, Vr 75 k.

The first equation of this system says that £™ depends only on z,, and [. By solving the
characteristic system for the second equation, we have that £™ depends on x,,, and a variable
¢ = 5ili2 + 5jl]2- + 5k:l;%~ However, Guichard condition implies that ( = 0, hence £™ does not
depend on [, for all s.

Summarising the conclusions of this first part of the proof, we have that

¢St = ¢St(h3ta his, x, l)v and gm = fm(l'm)

We now consider equation (3.7). By applying the prolongation pr™")V to (3.7), we have that
77%;‘) — @Y l; — hijnj = 0, which implies,

77?%‘ + anlrlmj + Z Ufhrshrs,:vj - f,jmj lig;, — ¢91; — hijn’ =0, (A.12)
' r,s

Observe that by applying the substitution (A.1), we have

anhlr@j = Z nflTthlj — 7]’ilj (e’ijihijli + Ejz’fkhkjlk).
T T#]

Moreover, by applying the substitutions (A.3), (A.4) and (A.5) we have

Dot hsa; = D W eihys + Y s = Y (Eshsje, + €jEmbmihms)
T, S

r#j, 57 5<j 5>j
i )
- Z nvh”'j (hjr,xr + thh]n) + Z 777h7'j th’xj :
r<j r>j

Therefore, by considering in (A.12), the coefficients of hjs ,;, with s < j, and hgj ., with s > 7,
we conclude that n’hjs = 0. Similarly, the analysis of the coefficients of hj, .., with r < j,

and hyj ., with r > j, imply that 77,ith = 0. Hence, we conclude that

Since i and t # j are arbitrary, we conclude that " does not depend on hg, for any indices, m, s
and ¢t with s # t. Consequently, (A.12) reduces to

M, + (Wl — eiggniy,li = € Ly — 07 )i + (0, 1y — ejeny, ) hig — 6715 = 0. (A.13)
Since ¢ depends only on z, [, h;; and hj;, we obtain from (A.13) the following system

M lj = ejern’, b = 0, (A.14)
77,2:]- + (n',l — 5i5j77fzjli — §,jmjlj — 1) hij — ¢1; = 0. (A.15)
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By solving the characteristic system for (A.14), we have that n* = n’(z,[;). By taking derivatives
of (A.15) with respect to hj; we get

bl = (A.16)
On the other hand, by taking the derivatives of (A.15) twice with respect to h;j, we obtain
d)%]h” 0. (A.17)
Consequently, it follows from (A.16) and (A.17) that ¢ is given by
¢" = AY(z,1)h;j + B (x,1). (A.18)
Therefore, (A.6) reduces to

T 0 by + ARy — 5 hijay, — (A% i + B*) gy — (A¥ i + BY )by, = 0.

By considering the substitutions (A.1)—(A.5), this equation reduces to

. T ¢Zf hirli, + <Z5Zf hjgly, — <Z5f (exejhjrly + eneihirly)
+ A highg — €5, hirhig — A% highyg — B hy — A hihy; — B¥ by, = 0,

which can be rewritten as
BY, + A hij + (B 1k — exei B 1l — B¥ )by + (B 1), — akng"j 1)k
— B*hy; + (A J zk - skelA z ) hikhij + (A zk 5ksjA 1) hijhik
+ (AZ] — fwk — — Ak])hikhkj =0.

It follows from the coefficients of hy; that B = 0. The permutation of the indices 4, j and k
leads to

B =0, Vs, t, s#t. (A.19)
By equating to zero the coefficients of h;;hy; and h;jhjy, the following system is obtained

Ajlk—ekz—:zA lZ—O Ajlk—€k€JA lJ—O

where we solve the characteristic system to conclude that A% depends only on . On the other
hand, the coefficient of h;; implies that A" does not depend on zy, therefore AV = A" (x;, x;).
Considering the coefficient of h;;hyj, we obtain the following equation

AT — gk — A% — AN = (A.20)
Therefore, equation (A.13) reduces to

Moy + (00,4 — €y ly —0' — A1) by = 0.
Since n* does not depend on hij, we must have

My, =0,
Myl — &l — ' — AVl =0, (A.21)
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By applying pri)V to equation (3.10), we have gzﬁg.) +¢){f) —i—gbikhkj +hir®* = 0, which implies
that

v+ ¢Zi” hija; = & hija; + &%, + ¢{]ijihji,aci — & i, + +6" hig + hirg™ = 0.
Considering the substitution (A.4), for i < j, we obtain
Do+l 4 (= AT+ AV =& Vhjig, + (€, — AT + A + AY) hiphy = 0.
Then, the coefficient of hj; ;, leads to
¢, — AT+ AT gl =0, (A.22)

By applying the prolongation pr(MV to (3.11) we have eiqﬁ% +6j¢€§.) +exd* hi;+epdt by = 0,
which implies

ei(90, + 85, hija — € higa,) + 5(Sh, + Sh, iiay — € hjia;)
+ e (" hy; + ¢ hyy) = 0.

Considering the substitution (A.5) with i < j, we obtain

eid’s, + ity +ej (€ — AV + A — &, Vhji, + e (€, — AT + AF 4+ AM) By = 0.
From the coefficient of hji,xj, we get

AV g - A4 =0, (A.23)
Therefore, it follows from (A.22) and (A.23) that

ATt = A, (A.24)
Consequently, both equations imply that §sz = fvjxj, which enables us to conclude that

&M = axy + am, vV1<m<3, (A.25)
where a and a,, are real constants. Moreover, from (A.25) and (A.20), we have that

AT —q—A* AN =0  and A% —q- AT - AF =0

By taking the sum of these equations and using (A.24), we obtain A¥ = —a. Therefore, it
follows from (A.18) and (A.19), that

¢*' = —ahy,  Vs#t (A.26)
Moreover, from (A.25) and (A.21), we get

no,l =1 (A.27)
Since the function 7" depends only on z,, and l,,, we conclude that, nflili =0, i.e.,

n' = N'(x:)li + M (). (A.28)

Hence, it follows from (A.27) and (A.28) that nfli = njlj = N(x;). Therefore, N'(z;) = njéjxi =0,
which implies that,

ni = Cli + MZ($Z) (A29)



26 J.P. dos Santos and K. Tenenblat

Finally, we apply the prolongation pri)V to equation (3.8) to obtain
smfi) + &7l + ejhym’ + erd™ 'l + exhyin®™ =0,
which implies that
ey, + ey liw, — €€y liw; + €587 + €jhjin’ + exd® U, + ephim™ = 0.

When we substitute (A.2) for [; ,, and we consider equations (A.25), (A.26) and (A.29), we
obtain

€Z‘M7ixi + EjhjiMi + é‘khkiMk =0.

The analysis of the coefficients of hj; and hy; enables us to conclude that M = MF =0,
consequently, " = cly,, V1 < m < 3. This concludes the proof of Theorem 2. |
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