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Abstract. We consider conformally flat hypersurfaces in four dimensional space forms with
their associated Guichard nets and Lamé’s system of equations. We show that the symmetry
group of the Lamé’s system, satisfying Guichard condition, is given by translations and
dilations in the independent variables and dilations in the dependents variables. We obtain
the solutions which are invariant under the action of the 2-dimensional subgroups of the
symmetry group. For the solutions which are invariant under translations, we obtain the
corresponding conformally flat hypersurfaces and we describe the corresponding Guichard
nets. We show that the coordinate surfaces of the Guichard nets have constant Gaussian
curvature, and the sum of the three curvatures is equal to zero. Moreover, the Guichard nets
are foliated by flat surfaces with constant mean curvature. We prove that there are solutions
of the Lamé’s system, given in terms of Jacobi elliptic functions, which are invariant under
translations, that correspond to a new class of conformally flat hypersurfaces.
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1 Introduction

The investigation of conformally flat hypersurfaces has been of interest for quite some time. Any
surface in R3 is conformally flat, since it can be parametrized by isothermal coordinates. For
higher dimensional hypersurfaces, E. Cartan [2] gave a complete classification for the conformally
flat hypersurfaces of an (n + 1)-dimensional space form when n + 1 ≥ 5. He proved that such
hypersurfaces are quasi-umbilic, i.e., one of the principal curvatures has multiplicity at least n−1.
In the same paper, Cartan investigated the case n + 1 = 4 . He showed that the quasi-umbilic
surfaces are conformally flat, but the converse does not hold (for a proof see [13]). Moreover, he
gave a characterization of the conformally flat 3-dimensional hypersurfaces, with three distinct
principal curvatures, in terms of certain integrable distributions. Since then, there has been an
effort to obtain a classification of hypersurfaces satisfying Cartan’s characterization.

Lafontaine [13] considered hypersurfaces of type M3 = M2 × I ⊂ R4. He obtained the
following classes of conformally flat hypersurfaces: a) M3 is a cylinder over a surface, M2 ⊂ R3,
with constant curvature; b) M3 is a cone over a surface in the sphere, M2 ⊂ S3, with constant
curvature; c) M3 is obtained by rotating a constant curvature surface of the hyperbolic space,
M2 ⊂ H3 ⊂ R4, where H3 is the half space model.

Motivated by Cartan’s paper, Hertrich-Jeromin [8], established a correspondence between
conformally flat three-dimensional hypersurfaces, with three distinct principal curvatures, and
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Guichard nets. These are systems of triply orthogonal surfaces originally considered by C. Gui-
chard in [6], where he referred to those systems as the analogues of isothermal coordinates.

In view of Hertrich-Jeromin results, the problem of classifying conformally flat 3-dimensional
hypersurfaces was transferred to the problem of classifying Guichard nets in R3. These are

open sets of R3, with an orthogonal flat metric g =
3∑
i=1

l2i dx
2
i , where the functions li satisfy the

Guichard condition, namely,

l21 − l22 + l23 = 0,

and a system of second-order partial differential equations, which is called Lamé’s system
(see (2.2)).

Hertrich-Jeromin obtained an example of a Guichard net, starting from surfaces parallel to
Dini’s helix and he proved that the corresponding conformally flat hypersurface was a new
example, since it did not belong to the class described by Lafontaine.

In [20, 21, 22], Suyama extended the previous results by showing that the Guichard nets
described by Hertrich-Jeromin are characterized in terms of a differentiable function ϕ(x1, x2, x3)
that determines, up to conformal equivalence, the first and second fundamental forms of the
corresponding conformally flat hypersurfaces. Moreover, Suyama showed that if ϕ does not
depend on one of the variables, then the hypersurface is conformal to one of the classes described
by Lafontaine. He also showed that the function associated to the example given by Hertrich-
Jeromin satisfied ϕ,x1x2 = ϕ,x2x3 = 0. Starting with this condition on ϕ, Suyama obtained
a partial classification of such conformally flat hypersurfaces. The complete classification of
conformally flat hypersurfaces, satisfying the above condition on the partial derivatives of ϕ,
was obtained by Hertrich-Jeromin and Suyama in [10]. They showed that these hypersurfaces
correspond to a special type of Guichard nets. The authors called them cyclic Guichard nets,
due to the fact that one of the coordinates curves is contained in a circle.

In this paper, we obtain solutions li satisfying Lamé’s system and the Guichard condition,
which are invariant under the action of the 2-dimensional subgroups of the symmetry group of the
system. Moreover, we investigate the properties of the Guichard nets and of the conformally flat
hypersurfaces associated to the solutions li. We first determine the symmetry group of Lamé’s
system satisfying the Guichard condition. We prove that the group is given by translations and
dilations of the independent variables xi and dilations of the dependent variables li.

We obtain the solutions li, i = 1, 2, 3, which are invariant under the action of the 2-dimensional

translation subgroup, i.e., li(ξ), where ξ =
3∑
i=1

αixi. These solutions are given explicitly in

Theorem 3 by Jacobi elliptic functions, whenever all the functions li are not constant and in
Theorem 4 when one of the functions li is constant. Moreover, we consider the solutions li which
are invariant under the 2-dimensional subgroup involving translations and dilations, i.e., li(η),

where η =
3∑
j=1

ajxj/
3∑

k=1

bkxk. In this case, if we require the functions li(η) to depend on all

three variables, then li are constant functions. Otherwise, the solutions li(η) are given explicitly
in Theorem 5. The symmetry subgroup of dilations on the dependent variables is irrelevant for
the study of conformally flat hypersurfaces.

Considering the functions li which are invariant under the action of translations, we study the
corresponding Guichard nets. We show that their coordinate surfaces have constant Gaussian
curvature and the sum of the three curvatures is equal to zero. Moreover the Guichard nets are
foliated by flat surfaces, with constant mean curvature.

Finally, we investigate the conformally flat hypersurfaces associated to the functions li which
are invariant under the action of translations. We show that, whenever the basic invariant ξ
depends on two variables, the hypersurface is conformal to one of the products considered by
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Lafontaine. In this case, the three-dimensional conformally flat hypersurfaces are constructed
from flat surfaces contained in the hyperbolic 3-space H3 or in the sphere S3. Whenever the
basic invariant ξ depends on all three independent variables, then the functions li(ξ), which are
given in terms of Jacobi elliptic functions, produce a new class of conformally flat hypersurfaces.

In Section 2, we review the correspondence between conformally flat 3-dimensional hyper-
surfaces with Lamé’s system, and Guichard nets.

In Section 3, we obtain the symmetry group of Lamé’s system satisfying Guichard condition
and the solutions which are invariant under 2-dimensional subgroups of the symmetry group.
The motivation and the technique used in this section were inspired by the fact that our system of
differential equations is quite similar to the intrinsic generalized wave and sine-Gordon equations
and the generalized Laplace and sinh-Gordon equations. The symmetry groups of these systems
and the solutions invariant under subgroups were obtained by Tenenblat and Winternitz in [24]
and Ferreira [4]. The geometric properties of the submanifolds corresponding to the solutions
invariant under the subgroups of symmetries can be found in [1] and [19].

In Sections 4 and 5, we describe the geometric properties of the Guichard nets and of the
conformally flat hypersurfaces that are associated to the solutions of Lamé’s system which are
invariant under the action of the translation group.

The solutions li of Lamé’s system, satisfying Guichard condition, which are invariant under
the subgroup of dilations of the independent variables and the corresponding geometric theory,
will be considered in another paper. Such solutions are obtained by solving a (reduced) system
of partial differential equations, in contrast to what occurs in this paper, where the Lamé’s
system is reduced to a system of ordinary differential equations.

2 Lamé’s system and conformally flat hypersurfaces

Consider the Minkowski space R6
1 with coordinates (x0, . . . , x5) and the scalar product 〈 , 〉

given by

〈 , 〉 : R6 × R6 −→ R,

(v, w) 7→ −v0w0 +
5∑
i=1

viwi.

Let L5 =
{
y ∈ R6

1 | 〈y, y〉=0
}

, be the light cone in R6
1 and consider mK ∈ R6

1, with 〈mK ,mK〉=K.
Then, it is not difficult to see that, the sets

M4
K =

{
y ∈ L5 | 〈y,mK〉 = −1

}
,

with the metric induced from R6
1, are complete Riemannian manifolds with constant sectional

curvature K. If K < 0, then M4
K consists of two connected components which can be isometri-

cally identified (see [7, Lemma 1.4.1] for details).
With this approach, consider a Riemannian immersion f : M3 → M4

K ⊂ L5, with unit
normal n. Then 〈df, n〉 ≡ 0, and n also satisfies 〈n,mK〉 = 〈n, f〉 = 0. Let f̃ : M3 → L5 be
an immersion given by f̃ = euf , where u is a differentiable function on M . Observe that the
metric induced on f̃ is conformal to the metric induced on the immersion f , i.e.,

〈df̃ , df̃〉 = e2u〈df, df〉.

Definition 1. Let f : M3 → L5 be an immersion such that the induced metric, 〈df, df〉, is
positive definite. Let n be a unit normal with 〈f, n〉 = 0 and consider differentiable functions u
and a on M3. Then the pair (f, n) is called a strip and the pair (f̃ , ñ) given by

f̃ = euf, ñ = n+ af

is called a conformal deformation of the strip (f, n).
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Therefore, we can deform a conformally flat immersion in a space form f : M3 →M4
K ⊂ L5

to a flat immersion in the light cone f̃ : M3 → L5, by considering a conformal deformation,
and vice-versa. Hence the problem of investigating conformally flat hypersurfaces in space
forms reduces to a problem of studying flat immersions in the light cone f : M3 → L5. We
say that a conformally flat hypersurface in a space form M4

k is generic if it has three distinct
principal curvatures. Hertrich-Jeromin in [8] established a relation between generic conformally
flat hypersurfaces in M4

k and Guichard nets [6]. Namely, let e1, e2, e3 be an orthonormal frame
tangent to M3 ⊂M4

k , such that ei are principal directions. Let ω1, ω2, ω3 be the co-frame and
let k1, k2, k3 be the principal curvatures. Assume that locally k3 > k2 > k1, then the conformal
fundamental forms

α1 =
√

(k3 − k1)(k2 − k1)ω1, α2 =
√

(k2 − k1)(k3 − k2)ω2,

α3 =
√

(k3 − k2)(k3 − k1)ω3

are closed, if and only if, the hypersurface M3 is conformally flat. Therefore, when αi are closed
forms, locally there exist x1, x2, x3 such that α1 = dx1, α2 = dx2 and α3 = dx3. By integration,
we obtain a special principal coordinate system x1, x2, x3 for a conformally flat hypersurface
in M4

K .

Definition 2. A triply orthogonal coordinate system in a Riemannian 3-manifold (M, g)

x = (x1, x2, x3) : (M, g)→ R3,

where the functions li =
√
g (∂xi , ∂xi) satisfy the Guichard condition

l21 − l22 + l23 = 0, (2.1)

is called a Guichard net.

Since we can deform a conformally flat immersion in a space form into a flat immersion in
the light cone, we can consider Guichard nets for flat immersions f : M3 → L5. For such a flat
immersion, we express the induced metric g = 〈df, df〉, in terms of the Guichard net, as

g = l21dx
2
1 + l22dx

2
2 + l23dx

2
3.

Since the metric is flat, the functions li must satisfy the Lamé’s system [14, pp. 73–78]:

∂2li
∂xj∂xk

− 1

lj

∂li
∂xj

∂lj
∂xk
− 1

lk

∂li
∂xk

∂lk
∂xj

= 0,

∂

∂xj

(
1

lj

∂li
∂xj

)
+

∂

∂xi

(
1

li

∂lj
∂xi

)
+

1

l2k

∂li
∂xk

∂lj
∂xk

= 0. (2.2)

for i, j, k distinct. Moreover, if f : M3 → L5 is flat, we can consider M3 as a subset of the
Euclidean space R3 and f as an isometric immersion. Then we have a Guichard net on an open
subset of R3, by considering as in Definition 2, x : U ⊂ R3 → R3, where the functions li satisfy
the Guichard condition (2.1) and the Lamé’s system (2.2). At this point, one can ask if such
a Guichard net determines a conformally flat hypersurface in a space form, or equivalently, a flat
immersion in L5. The answer to this question was given by the following fundamental result
due to Hertrich-Jeromin [8]:

Theorem 1. For any generic conformally flat hypersurface of a space form M4
K , there exists

a Guichard net x : U ⊂ R3 → R3 on an open set U of the Euclidean space R3 (uniquely
determined up to a Möbius transformation of R3).
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Conversely, given a Guichard net x = (x1, x2, x3) : U ⊂ R3 → R3 for the Euclidean space,

with li =
√
g(∂xi , ∂xj ), where g is the canonical flat metric, there exists a generic conformally

flat hypersurface in a space form M4
K (in this case, Möbius equivalent Guichard nets are related

to conformally equivalent immersions), whose induced metric is given by

g = e2P (x)
{
l21dx

2
1 + l22dx

2
2 + l23dx

2
3

}
, (2.3)

where P (x) is a function depending on M4
K .

The converse is based on the fact that the functions li determine the connection forms of
a flat immersion f : M3 → L5. In fact, these connection forms satisfy the Maurer–Cartan
equations if, and only if, the functions li satisfy the Guichard condition and the Lamé’s system.

Therefore, one way of obtaining generic conformally flat hypersurfaces in space forms M4
K is

finding solutions of Lamé’s system, satisfying the Guichard condition. Then the hypersurfaces
are constructed by using Theorem 1. Our objective is to obtain a class of such solutions and to
investigate the associated Guichard nets as well as the conformally flat hypersurfaces. We will
use the theory of Lie point symmetry groups of differential equations, to obtain the symmetry
group of Lamé’s system and their solutions invariant under the action of subgroups of the
symmetry group. This is the content of the following sections.

3 The symmetry group of Lamé’s system

In this section, we obtain the Lie point symmetry group of Lamé’s system. We start with a brief
introduction of symmetry groups of differential equations. The reader who is familiar to the
theory may skip this introduction.

The theory of Lie point symmetry group is an important tool for the analysis of differential
equations developed by Lie at the end of the nineteen century [15]. Roughly speaking, Lie
point symmetries of a system of differential equations consist of a Lie group of transformations
acting on the dependent and independent variables, that transform solutions of the system into
solutions.

A standard reference for the theory of symmetry groups of differential equations is Olver’s
book [17], where a clear approach to the subject is given, with theoretical foundations and a large
number of examples and techniques. We will describe here some basic concepts that will be used
in this section.

A system S of n-th order differential equations in p independent and q dependent variables
is given as a system of equations

∆r

(
x, u(n)

)
= 0, v = 1, . . . , l, (3.1)

involving x = (x1, . . . , xp), u = (u1, . . . , uq) and the derivatives u(n) of u with respect to x up to
order n.

A symmetry group of the system S is a local Lie group of transformations G acting on an
open subset M ⊂ X × U of the space of independent and dependent variables for the system,
with the property that whenever u = f(x) is a solution of S, and whenever gf is defined for
g ∈ G, then u = gf(x) is also a solution of the system. A vector field v in the Lie algebra g of
the group G is called an infinitesimal generator.

Consider v as a vector field on M ⊂ X ×U , with corresponding (local) one-parameter group
exp(εv), i.e.,

exp(εv) ≡ Ψ(ε, x),
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where Ψ is the flow generated by v. In this case, v will be the infinitesimal generator of the
action.

The symmetry group of a given system of differential equation, is obtained by using the
prolongation formula and the infinitesimal criterion that are described as follows. Given a vector
field on M ⊂ X × U ,

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
,

the n-th prolongation of v is the vector field

pr(n)v = v +

q∑
α=1

∑
J

φJα
(
x, u(n)

) ∂

∂uαJ
.

It is defined on the corresponding jet space M (n) ⊂ X × U (n), whose coordinates represent the
independent variables, the dependent variables and the derivatives of the dependent variables up
to order n. The second summation is taken over all (unordered) multi-indices J = (j1, . . . , jk),
with 1 ≤ jk ≤ p, 1 ≤ k ≤ n. The coefficient functions φJα of pr(n)v are given by the following
formula:

φJα
(
x, u(n)

)
= DJ

(
φα −

p∑
i=1

ξiuαJ,i,

)
,

where uαi = ∂uα

∂xi
, uαJ,i =

∂uαJ
∂xi

and DJ is given by the total derivatives

DJ = Dj1Dj2 · · ·Djk ,

with

Dif
(
x, u(n)

)
=

∂f

∂xi
+

p∑
α1

∑
J

uαJ,i
∂f

∂uαJ
.

We say that the system (3.1) is a system of maximal rank over M ⊂ X × U , if the Jacobian
matrix

J∆

(
x, u(n)

)
=

(
∂∆r

∂xi
,
∂∆r

∂uα,J

)

has rank l, whenever ∆r

(
x, u(n)

)
= 0, where J = (j1, . . . , jk) is a multi-index that denotes the

partial derivatives of uα.
Suppose that (3.1) is a system of maximal rank. Then the set of all vectors fields v on M

such that

pr(n)v
[
∆r

(
x, u(n)

)]
= 0, r = 1, . . . , l, whenever ∆r

(
x, u(n)

)
= 0, (3.2)

is a Lie algebra of infinitesimal generators of a symmetry group for the system. It is shown
in [17] that the infinitesimal criterion (3.2) is in fact both a necessary and sufficient condition
for a group G to be a symmetry group. Hence, all the connected symmetry groups can be
determined by considering this criterion.

Since the prolongation formula is given in terms of ξi and φα and the partial derivatives
with respect to both x and u, the infinitesimal criterion provides a system of partial differential
equations for the coefficients ξi and φα of v, called the determining equations. By solving these
equations, we obtain the vector field v that determines a Lie algebra g. The symmetry group G
is obtained by exponentiating the Lie algebra.
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3.1 Obtaining the symmetry group of Lamé’s system

From now on, we consider the following notation for derivatives of a function f = f(x1, . . . , xn)

f,xi :=
∂f

∂xi
and f,xixj :=

∂2f

∂xi∂xj
.

With this notation, Lamé’s system (2.2) is given by

li,xjxk −
li,xj lj,xk

lj
−
li,xk lk,xj

lk
= 0, (3.3)(

li,xj
lj

)
,xj

+

(
lj,xi
li

)
,xi

+
li,xk lj,xk

l2k
= 0, (3.4)

where i, j and k are distinct indices in the set {1, 2, 3}. We will also consider the following
notation,

εs =

{
1 if s = 1 or s = 3,
−1 if s = 2.

(3.5)

We can now rewrite Guichard condition as

εil
2
i + εjl

2
j + εkl

2
k = 0.

Next, we introduce auxiliary functions in order to reduce the system of second-order diffe-
rential equations (3.3) and (3.4), into a first order one. Consider the functions hij , with i 6= j,
given by

li,xj − hijlj = 0.

With these functions, we rewrite (3.3) and (3.4) as

hij,xk − hikhkj = 0, hij,xj + hji,xi + hikhjk = 0.

for i, j, k distinct. Since the functions l1, l2 and l3 satisfy Guichard condition, there are other
relations involving the derivatives of li and hij . Taking the derivative of Guichard condition
with respect to xi, we have

εili,xi + εjhjilj + εkhkilk = 0,

for i, j, k distinct. The derivatives of the above equation with respect to xj leads to

εihij,xi + εjhji,xj + εkhkihkj = 0.

Therefore, we summarize the last six equations in the following system of first-order partial
differential equations, equivalent to Lamé’s system, that we call Lamé’s system of first order

εil
2
i + εjl

2
j + εkl

2
k = 0, (3.6)

li,xj − hijlj = 0, (3.7)

εili,xi + εjhjilj + εkhkilk = 0, (3.8)

hij,xk − hikhkj = 0, (3.9)

hij,xj + hji,xi + hikhjk = 0, (3.10)

εihij,xi + εjhji,xj + εkhkihkj = 0. (3.11)

By considering x = (x1, x2, x3), l = (l1, l2, l3) and h the off-diagonal 3× 3 matrix given by hij in
our next two results, we obtain the Lie algebra of the infinitesimal generators and the symmetry
group of Lamé’s system of first order.
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Theorem 2. Let V be the infinitesimal generator of the symmetry group of Lamé’s system of
first order (3.6)–(3.11), given by

V =
3∑
i=1

ξi(x, l, h)
∂

∂xi
+

3∑
i=1

ηi(x, l, h)
∂

∂li
+

3∑
i,j=1, i 6=j

φij(x, l, h)
∂

∂hij
. (3.12)

Then the functions ξi, ηi and φij are given by

ξi = axi + ai, ηi = cli, φij = −ahij ,

where a, c, ai ∈ R.

The proof of Theorem 2 is very long and technical. It consists of obtaining the functions ξi, ηi

and φij by solving the determining equations which are obtained as follows. We apply the first
prolongation of V to each equation (3.6)–(3.11) and we eliminate the functional dependence of
the derivatives of h and l caused by the system. Then we equate to zero the coefficients of the
remaining unconstrained partial derivatives. The complete proof with, all the details, is given
in Appendix A.

As a consequence of Theorem 2, by exponentiating V , we obtain the symmetry group of
Lamé’s system. Observe that the functions φij do not depend on x and l (see [18] for symmetry
group of equivalent systems):

Corollary 1. The symmetry group of Lamé’s system (3.6)–(3.11) is given by the following
transformations:

1) translations in the independent variables: x̃i = xi + vi;

2) dilations in the independent variables: x̃i = λxi;

3) dilations in the dependent variables: l̃i = ρli;

where vi ∈ R and λ, ρ ∈ R \ {0}.

3.2 Group invariant solutions

The knowledge of all the infinitesimal generators v of the symmetry group of a system of
differential equations, allows one to reduce the system to another one with a reduced number of
variables. Specifically, if the system has p independent variables and an s-dimensional symmetry
subgroup is considered, then the reduced system for the solutions invariant under this subgroup
will depend on p − s variables (see Olver [17] for details). Finding all the s-dimensional sym-
metry subgroups is equivalent to finding all the s-dimensional subalgebras of the Lie algebra of
infinitesimal symmetries v. For the remainder of this paper, we will consider the 2-dimensional
subgroups of the symmetry group of Lamé’s system. The first one will be the translation sub-
group and the second one will be the subgroup involving translations and the dilations. The
1-dimensional subgroup given just by dilations and the solutions invariant under this subgroup
are being investigated. We will report on our investigation in another paper. We observe that
the symmetry subgroup of dilations in the dependent variables (Corollary 1(3)) is irrelevant for
the geometric study of conformally flat hypersurfaces due to (2.3).

We start with the 2-dimensional subgroup of translations. The basic invariant of this group
is given by

ξ = α1x1 + α2x2 + α3x3, (3.13)

where (α1, α2, α3) is a non zero vector. We will consider solutions li such that

li(x1, x2, x3) = li(ξ), 1 ≤ i ≤ 3,
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where ξ is given by (3.13). For such solutions, Lamé’s system reduces to a system of ODEs. We
start with two lemmas:

Lemma 1. Let ls(ξ), s = 1, 2, 3, where ξ =
3∑
s=1

αsxs, be a solution of Lamé’s system (3.6)–

(3.11). Let i, k ∈ {1, 2, 3} be two fixed and distinct indices such that αi = αk = 0. Then li or lk
is constant.

Proof. Since αi = αk = 0, it follows from (3.7) that equation (3.10) reduces to

α2
j

[
li,ξ
lj

]
,ξ

= 0,

which implies li,ξ = cilj , where ci ∈ R. Similarly, interchanging i with k, we obtain lk,ξ = cklj .
Finally, interchanging k with j, we get

α2
j

li,ξlk,ξ
l2j

= α2
jcick = 0.

Therefore, we conclude that li or lk is constant. �

Lemma 2. Let ls(ξ), s = 1, 2, 3, where ξ =
3∑
s=1

αsxs, be a solution of Lamé’s system (3.6)–(3.11).

If there exists a unique j ∈ {1, 2, 3} such that lj is a non zero constant, then αj = 0.

Proof. Interchanging the indices in (3.9), we obtain the following two equations

αjαk

(
li,ξξ −

li,ξlk,ξ
lk

)
= 0, (3.14)

αjαi

(
lk,ξξ −

lk,ξli,ξ
li

)
= 0, (3.15)

and an identity.
Similarly, it follows from (3.10) that

α2
j li,ξξ = 0, (3.16)

α2
j lk,ξξ = 0, (3.17)

α2
k

(
li,ξ
lk

)
,ξ

+ α2
i

(
lk,ξ
li

)
,ξ

+ α2
j

li,ξlk,ξ
lj

= 0. (3.18)

Suppose, by contradiction, that αj 6= 0. It follows from (3.16) and (3.17) that li,ξ = ci and
lk,ξ = ck, where ci 6= 0 and ck 6= 0, since by hypothesis, li and lk are non constants. Then, it
follows from (3.14) and (3.15) that αi = αk = 0. From (3.18), we obtain α2

jcick = 0, which is
a contradiction. �

The following theorem gives the solutions of Lamé’s system, satisfying Guichard condition,
which are invariant under the action of the translation group, whenever none of the functions li
is constant.

Theorem 3. Let ls(ξ), s = 1, 2, 3, where ξ =
3∑
s=1

αsxs, be a solution of Lamé’s system (3.6)–

(3.11), such that ls is not constant for all s. Then there exist cs ∈ R \ {0}, such that,

li,ξ = cilklj , i, j, k distinct, (3.19)
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c1 − c2 + c3 = 0, (3.20)

α2
1c2c3 + α2

2c1c3 + α2
3c1c2 = 0. (3.21)

Moreover, the functions li(ξ) are given by

l21,ξ = c2(c2 − c1)

(
l21 −

λ

c2

)(
l21 −

λ

c2 − c1

)
, (3.22)

l22 =
c2

c1

(
l21 −

λ

c2

)
, (3.23)

l23 =
c2 − c1

c1

(
l21 −

λ

c2 − c1

)
, (3.24)

where λ ∈ R.

Proof. By hypothesis, we are considering non constant solutions. Then, it follows from Lem-
ma 1, that αs 6= 0 for at least two distinct indices. Suppose that αj and αk non zero. From (3.7)
and (3.9) we obtain

αjαk

{[
li,ξ
lj

]
,ξ

−
li,ξ
lj

lk,ξ
lk

}
= 0,

which implies[
li,ξ
lj

]
,ξ

[
li,ξ
lj

]−1

=
lk,ξ
lk
.

Integrating this equation, we obtain li,ξ = cilklj , where ci 6= 0.

If αi 6= 0, analogously considering the non zero pairs (αi, αj) and (αi, αk), we conclude that
lk,ξ = cklilj and lj,ξ = cjlilk. If αi = 0, then from equation (3.10) we have[

li,xj
lj

]
,xj

+
li,xk
lk

lj,xk
lk

= α2
jcilk,ξ + α2

kcilj
lj,ξ
lk

= 0.

Since ci 6= 0, we integrate the above expression to obtain

α2
j l

2
k + α2

kl
2
j = λjk,

where λjk is a constant. This equation and Guichard condition (3.6) lead to

l2j =
α2
j

α2
k

(
λjk
α2
j

− l2k

)
, l2i =

εi
α2
k

[
l2k
(
εjα

2
j − εkα2

k

)
− εjλjk

]
. (3.25)

Taking the derivative of the last equation with respect to ξ, we have

li (cilklj) =
εi
α2
k

[
lklk,ξ

(
εjα

2
j − εkα2

k

)]
.

If εjα
2
j − εkα2

k 6= 0, we conclude that

lk,ξ =
ciα

2
k

εjα2
j − εkα2

k

lilj = cklilj .
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Applying this expression into the derivative of the first equation in (3.25) with respect to ξ we
obtain

ljlj,ξ = −
α2
j

α2
k

lklk,ξ = −
α2
j

α2
k

lk (cklilj) ,

consequently, lj,ξ = cjlilk.

Next, we will show that εjα
2
j − εkα

2
k 6= 0 to conclude the proof of (3.19). Suppose by

contradiction that εjα
2
j−εkα2

k = 0, then the first equation of (3.25) can be written as εjl
2
j+εkl

2
k =

εkλjk
α2
j

. Then Guichard condition now implies that li is constant, which is a contradiction. The

relations between the constants (3.20) and (3.21) follow from a straightforward computation
using equations (3.8) and (3.10), respectively.

In order to complete the proof of the theorem, we start with

l1,ξ = c1l2l3, (3.26)

l2,ξ = c2l1l3, (3.27)

l3,ξ = c3l1l2. (3.28)

Multiplying (3.27) by l2 and integrating we have

l22 =
c2

c1

(
l21 −

λ

c2

)
, (3.29)

where λ is a constant. Therefore, it follows from (3.29) and Guichard condition that

l23 =
c2 − c1

c1

(
l21 −

λ

c2 − c1

)
. (3.30)

Using (3.26), (3.29) and (3.30), we conclude that

l1,ξ
2 = c2

1

[
c2

c1

(
l21 −

λ

c2

)][
c2 − c1

c1

(
l21 −

λ

c2 − c1

)]
= c2 (c2 − c1)

(
l21 −

λ

c2

)(
l21 −

λ

c2 − c1

)
. �

In our next theorem, we consider the solutions li(ξ) when one of the functions li is constant.

Theorem 4. Let ls(ξ), s = 1, 2, 3, where ξ =
3∑
s=1

αsxs, be a solution of Lamé’s system (3.6)–

(3.11). Suppose that only one of the functions ls is constant. Then one of the following occur:

a) l1 = λ1, l2 = λ1 cosh(bξ + ξ0), l3 = λ1 sinh(bξ + ξ0), where ξ = α2x2 + α3x3, α2
2 + α2

3 6= 0
and b, ξ0 ∈ R ;

b) l2 = λ2, l1 = λ2 cosϕ(ξ), l3 = λ2 sinϕ(ξ), where ξ = α1x1 + α3x3, α2
1 + α2

3 6= 0 and ϕ is
one of the following:

b.1) ϕ(ξ) = bξ + ξ0, if α2
1 6= α2

3, where ξ0, b ∈ R;

b.2) ϕ is any function of ξ, if α2
1 = α2

3;

c) l3 = λ3, l2 = λ3 cosh(bξ + ξ0), l1 = λ3 sinh(bξ + ξ0), where ξ = α1x1 + α2x2, α2
1 + α2

2 6= 0
and b, ξ0 ∈ R.
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Proof. We will consider each case separately:
a) If l1 = λ1, then it follows from Lemma 2 that we must have ξ = α2x2 + α3x3. Now

Guichard condition implies that l2 = λ1 coshϕ(ξ) and l3 = λ1 sinhϕ(ξ). In order to determi-
ne ϕ, we use (3.10) with the following indices

h23,x3 + h32,x2 + h21h31 = 0,

to obtain

α2
3

(
λ1ϕ,ξ sinhϕ

λ1 sinhϕ

)
,ξ

+ α2
2

(
λ1ϕ,ξ coshϕ

λ1 coshϕ

)
,ξ

= 0.

Since l2 and l3 are not constant, we have α2
2 + α2

3 6= 0, which implies ϕ,ξξ = 0. Consequently,
ϕ(ξ) = bξ + ξ0.
b) If l2 = λ2, it follows from Lemma 2 that ξ = α1x1 + α3x3. Then Guichard condition

implies that l1 = λ2 cosϕ(ξ) and l3 = λ2 sinϕ(ξ). As in the case a), from equation (3.10) we get(
α2

1 − α2
3

)
ϕ,ξξ = 0. Since l1 and l3 are non constant, we have α2

1 + α2
3 6= 0. Then we have two

cases to consider:
b.1) If α2

1 6= α2
3, then ϕ(ξ) = bξ + ξ0;

b.2) If α2
1 = α2

3, then ϕ can be any function of ξ.
c) The proof is the same as in a). �

Next, we consider the solutions invariant under the 2-dimensional subgroup involving trans-
lations and dilations. In this case, the basic invariant is given by

η =
a1x1 + a2x2 + a3x3

b1x1 + b2x2 + b3x3
, (3.31)

where the vectors (a1, a2, a3) and (b1, b2, b3) are linearly independent. If f = f(η) is a function
depending on η, then

f,xi = f,ηηxi =
ai − biη

b1x1 + b2x2 + b3x3
f,η.

In order to simplify the computations, we will use the following notation:

Ni := ai − biη and β = b1x1 + b2x2 + b3x3. (3.32)

Then we have η,xi = Ni
β .

In order to obtain the solutions of Lamé’s system li(η), which depend on η, we will need some
lemmas.

Lemma 3. Let l1(η), l2(η), l3(η), where η is given by (3.31), be a solution of Lamé’s system
(3.6)–(3.11). Suppose that for a fixed pair j, k ∈ {1, 2, 3}, j 6= k, (aj , bj) 6= (0, 0) and (ak, bk) 6=
(0, 0). Then there exists ci ∈ R such that

li,η = ci
lklj
NkNj

, i 6= j, k, (3.33)

where Nk is given by (3.32).

Proof. From (3.7), we have that hij =
li,ηNj
ljβ

. Then, equation (3.9) can be written as[
li,ηNkNj

lj

]
η

− li,ηNkNj

lj

lk,η
lk

= 0,
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which implies(
li,ηNkNj

lklj

)
,η

= 0.

Since (aj , bj) 6= (0, 0) and (ak, bk) 6= (0, 0), we have that Nj 6= 0, Nk 6= 0 and the equation (3.33)
holds. �

Lemma 4. Let l1(η), l2(η), l3(η), where η is given by (3.31), be a solution of Lamé’s system
(3.6)–(3.11). If (ai, bi) = (0, 0), for some i ∈ {1, 2, 3}, then li is constant.

Proof. Since the vectors (a1, a2, a3) and (b1, b2, b3) are linearly independent, if (ai, bi) = (0, 0)
we must have (aj , bj) 6= (0, 0) and (ak, bk) 6= (0, 0) for i, j, k distinct and we can use Lemma 3.
By considering equation (3.10), we have(

cilk
βNk

)
,η

+

(
cilk
βNk

)
lj,ηNk
βlk

= 0,

which implies

ci

[
lk,ηNj

Nk
− lk
N2
k

(Nkβ),xj +
ljlj,ηNk

lkNj

]
= 0. (3.34)

By interchanging j with k, we have analogously

ci

[
lj,ηNk

Nj
− lj
N2
j

(Njβ),xk +
lklk,ηNj

ljNk

]
= 0. (3.35)

Suppose by contradiction that ci 6= 0. Then, it follows from (3.34) and (3.35) that

l2k
N2
k

(Nkβ)xj =
l2j
N2
j

(Njβ)xk .

If ai = bi = 0, we must have

(akbj − bkaj)

(
l2k
N2
k

+
l2j
N2
j

)
= 0,

which is a contradiction since (akbj − bkaj) 6= 0. Therefore ci = 0 and li is constant. �

Lemma 5. Let l1(η), l2(η), l3(η), with η given by (3.31), be a solution of Lamé’s system (3.6)–
(3.11). If there exists a unique function li which is a non zero constant, then (ai, bi) = (0, 0).

Proof. Suppose by contradiction that (ai, bi) 6= (0, 0). Since lj and lk are not constant, for i, j, k
distinct, it follows from Lemma 4, that we must have (aj , bj) 6= (0, 0) and (ak, bk) 6= (0, 0). Then,
Lemma 3 implies that there are constants ci, cj and ck such that

li,η = ci
ljlk
NjNk

, lj,η = cj
lkli
NkNi

and lk,η = ck
lkli
NkNi

.

Using equation (3.10) and interchanging the indices we have

ck
lilj
Nj
− (akbi − bkai)lk

Nk
= 0, (3.36)
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cjck
ljlk
NjNk

− li
N2
i

[cj(aibk − akbi) + ck(aibj − biaj)] = 0, (3.37)

cj
lilk
Nk
− (ajbi − bjai)lj

Nj
= 0. (3.38)

Multiplying equation (3.36) by cj
Nk
lk

, (3.37) by
N2
i
li

and (3.38) by ck
Nj
lj

, the sum will reduce to

cjck
[
(liljNk)

2 + (lilkNj)
2 + (ljlkNi)

2
]

= 0,

which is a contradiction. Then, we must have (ai, bi) = (0, 0) and the lemma is proved. �

Remark 1. We observe that when all pairs (as, bs) are different from zero, then the proof of
Lemma 5 shows that the solution li(η) of Lamé’s system is constant.

We will now obtain the solutions ls(η), when one pair (as, bs) = (0, 0).

Theorem 5. Let li(η), with η given by (3.31), be a solution of Lamé’s system invariant under
the 2-dimensional subgroup involving translation and dilations. Suppose that one of the pairs
(as, bs) = (0, 0). Then one of the following occur:

a) If (a1, b1) = (0, 0) then l1 = λ1, l2 = λ1 coshϕ(η), l3 = λ1 sinhϕ(η), where η = a2x2+a3x3
b2x2+b3x3

and ϕ is given by

ϕ(η) =
C0

a2b3 − a3b2
arctan

[
b22 + b23

a3b2 − a2b3

(
η − a2b2 + a3b3

b22 + b23

)]
+ C1, (3.39)

where C0, C1 ∈ R.

b) If (a2, b2) = (0, 0) then l2 = λ2, l1 = λ2 cosϕ(η), l3 = λ2 sinϕ(η), where η = a1x1+a3x3
b1x1+b3x3

and ϕ is given as follows:

b.1) if b1 = b3 = b, then

ϕ(η) =
D0

2b(a3 − a1)
log (2bη − a1 − a3) +D1, (3.40)

where D0, D1 ∈ R;

b.2) if b1 6= b3, then

ϕ(η) =
D2

2(a1b3 − a3b1)
log

[
(b3 + b1)η − (a3 + a1)

(b3 − b1)η − (a3 − a1)

]
+D3, (3.41)

where D2, D3 ∈ R.

c) If (a3, b3) = (0, 0), then l3 = λ3, l2 = λ3 coshϕ(η), l1 = λ3 sinhϕ(η), with η = a1x1+a2x2
b1x1+b2x2

and ϕ is given by

ϕ(η) =
E0

a2b1 − a1b2
arctan

[
b22 + b21

a2b1 − a1b2

(
η − a2b2 + a1b1

b22 + b21

)]
+ E1,

where E0, E1 ∈ R.

Proof. a) If (a1, b1) = (0, 0) then Lemma 4 implies that l1 = λ1 and Guichard condition implies
that l2 = λ1 coshϕ(η) and l3 = λ1 sinhϕ(η). In order to find ϕ, we use equation (3.10) with the
following indices

h32,x2 + h23,x3 + h31h21 = 0.
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Since h32 =
ϕ,ηN2

β , h23 =
ϕ,ηN3

β and h31 = h21 = 0, we rewrite the equation above as(
ϕ,ηN2

β

)
,x2

+

(
ϕ,ηN3

β

)
,x3

= 0.

By substituting the derivatives, we have the following ODE

ϕ,ηη
[
(N2)2 + (N3)2

]
− 2ϕ,η(b2N2 + b3N3) = 0,

whose solution is exactly (3.39).

b) If (a2, b2) = (0, 0), then l2 = λ2 and Guichard condition implies that l1 = λ2 cosϕ(η) and
l3 = λ2 sinϕ(η). In order to find ϕ, we use equation (3.10) with the following indices

h13,x3 + h31,x1 + h12h32 = 0.

By using the same arguments as in a), we have the following ODE

ϕ,ηη
[
(N1)2 − (N3)2

]
− 2ϕ,η(b1N1 − b3N3) = 0,

whose solution will depend on b1 and b3. If b1 = b3 we have ϕ given by (3.40) and if b1 6= b3,
the solution is given by (3.41).

c) The arguments when (a3, b3) = (0, 0) are the same as in a). �

Remark 2. Although our calculation of the symmetry group for the Lamé’s system has similar
techniques to those used by Tenenblat and Winternitz for the intrinsic generalized wave and
sine-Gordon equations in [24], we observe that the solutions invariant under the subgroups are
quite different. In fact, when we consider the solutions invariant under the translation subgroup
in Theorem 3, the solutions of (3.22) are given by Jacobi elliptic functions that cannot be reduced
to elementary functions. Moreover, the only solutions of the Lamé’s system, which are invariant
under the action of the subgroup involving translation and dilations, that depend on all three
variables are constant, in contrast to the solutions in [24]. The main reason is due to Guichard
condition.

In the next two sections, we will deal with the geometric properties of the Guichard nets
and of the conformally flat hypersurfaces associated to the solutions invariant under the 2-
dimensional translation subgroup. As we will see in Section 5, these are the solutions that will
provide a new class of conformally flat hypersurfaces.

4 Geometric properties of the Guichard nets

In this section, we will study the geometric properties of the Guichard nets associated to locally
conformally flat hypersurfaces corresponding to the solutions of the Lamé’s system li(ξ), which

are invariant under the translation subgroup. Let l1(ξ), l2(ξ), l3(ξ), with ξ =
3∑
s=1

αsxs be

a solution of Lamé’s system. Theorem 1 implies that there is a Guichard net x = (x1, x2, x3) :
U ⊂ R3 → R3, with a Riemannian metric

g = l21dx
2
1 + l22dx

2
2 + l23dx

2
3, (4.1)

where U is an open set, given by U =
{

(x1, x2, x3) ∈ R3 | ξ1 < ξ < ξ2

}
, where ξ1 and ξ2 are real

constants.
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4.1 Level surfaces

In this subsection, we will show that the Guichard nets are foliated by surfaces ξ = ξ0 which are
geodesically parallel. Moreover, we will prove that each such surface has flat Gaussian curvature
and constant mean curvature that depends on ξ0.

Definition 3. Let Mn be a Riemannian manifold and let f : M → R be a differentiable
function. The level submanifolds of f are said to be geodesically parallel if | grad f | is a non zero
constant, along each level submanifold.

We have the following theorem

Theorem 6. Let (U, g), U ⊂ R3, be a Riemannian manifold with coordinates (x1, x2, x3) and

metric g =
3∑
s=1

l2s(ξ)dx
2
i , where ξ =

3∑
s=1

αsxs. Then the level surfaces

Pξ0 =

{
(x1, x2, x3) ∈ U ;

3∑
s=1

αsxs = ξ0

}
, where ξ1 < ξ0 < ξ2,

endowed with the induced metric, are geodesically parallel. Moreover, each level surface has flat
Gaussian curvature and constant mean curvature (depending on ξ0).

Proof. Since at least one αi is non zero, we can suppose that α3 6= 0 and we parametrize Pξ0
as

X(x1, x2) =

(
x1, x2,

ξ0 − α1x1 − α2x2

α3

)
.

Then X,x1 = (1, 0,−α1/α3) and X,x2 = (0, 1,−α2/α3). Consequently, the coefficients of the
induced metric are constant, since ξ = ξ0 in this surface. Therefore the Gaussian curvature is
equal to zero.

Consider now the function h(x) =
3∑
i=1

αixi. Then Pξ0 = h−1(ξ0). Since h is constant along Pξ0 ,

it follows that gradh is normal to Pξ0 . Moreover,

g(gradh, gradh) =
3∑
j=1

α2
j

l2j
,

which implies that | gradh| is constant along Pξ0 . It follows from Definition 3 that the level
surfaces h−1(ξ0) are geodesically parallel.

Now we compute the mean curvatures of Pξ0 . Given p ∈ Pξ0 , let A : TpPξ0 → TpPξ0 be the

Weingarten operator, i.e., Av = −∇v

(
gradh
| gradh|

)
(p), where ∇ is the Riemannian connection on

(U, g). Since | gradh| is constant along Pξ0 , it follows that

Av = − 1

| gradh|
∇v gradh(p).

Then the mean curvature of Pξ0 is given by

H = − ∆h(p)

| gradh|
=

1

| gradh|
∑
i,k

Γkii(ξ0)αk
l2i (ξ0)

,

where Γkij are the Christoffel for the connection ∇. Therefore, the mean curvature of Pξ0 is
a constant depending on ξ0. �
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4.2 Coordinate surfaces

In this subsection, we will use the solutions invariant by the group of translations to show
that the coordinate surfaces of the corresponding Guichard net (U, g) have constant Gaussian
curvature. Moreover, the values of these curvatures satisfy an algebraic relation.

Theorem 7. Let (U, g), U ⊂ R3, be a Riemannian manifold, with coordinates (x1, x2, x3) and

metric g =
3∑
s=1

l2s(ξ)dx
2
i , with ξ =

3∑
s=1

αsxs. Then each coordinate surface of U ⊂ R3, xi = const,

endowed with the induced metric, has constant Gaussian curvature Ki. Moreover,

K1 +K2 +K3 = 0.

Proof. Since g is given by (4.1), it follows that the metric induced on each coordinate surface,
xi = const, is

gi = l2j (dxj)
2 + l2k(dxk)

2, i, j, k distinct,

and its Gaussian curvature, Ki, is given by

Ki =
1

ljlk

(
lk,xi lj,xi
l2i

)
. (4.2)

Assume that none of the functions li is constant and ξ = α1x1 + α2x2 + α3x3, with αi 6= 0,
for all i. In this case, we have li,ξ = ciljlk, where i, j and k are distinct indices in {1, 2, 3}.
Therefore, it follows from (4.2) that the Gaussian curvature of each coordinate surface is given
by Ki = cjckα

2
i . Moreover, it follows from (3.21) that

K1 +K2 +K3 = α2
1c2c3 + α2

2c3c1 + α3
1c1c2 = 0.

If only one of the functions li is constant, it follows from Lemma 2, that, if li is constant,
then αi = 0. Then it follows from (4.2) that all the curvatures are equal to zero. In fact, Ki = 0,
since the functions ls, for all s, do not depend on xi. Moreover, for j 6= i, Kj = 0, since li is

constant. Hence, the sum
3∑
j=1

Ki = 0 trivially. �

5 Conformally flat hypersurfaces

In this section, we describe the generic conformally flat hypersurfaces associated to the solutions
of the Lamé’s system invariant under the translation group.

It is known that, any locally generic conformally flat hypersurface, in a 4-dimensional space
form, has a metric induced by the Guichard net of the form (see [10, 21, 22])

g = e2P (x)
{

sin2 ϕ(x)dx2
1 + dx2

2 + cos2 ϕ(x)dx2
3

}
, (5.1)

where x = (x1, x2, x3), or

g = e2P̃ (x)
{

sinh2 ϕ̃(x)dx2
1 + cosh2 ϕ̃(x)dx2

2 + dx2
3

}
. (5.2)

Suyama classified in [22] the hypersurfaces conformal to the products M2× I ⊂ R4 given by
Lafontaine in [13], as the hypersurfaces where ϕ depends only on two variables. Hertrich-Jeromin
and Suyama classified in [10] the hypersurfaces where ϕ has two vanishing mixed derivatives.
These conformally flat hypersurfaces are associated to the so called cyclic Guichard nets, which
are characterized by ϕ,x1x2 = ϕ,x2x3 = 0, when g is of the form (5.1) and by ϕ,x1x3 = ϕ,x2x3 = 0,
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when g is given by (5.2). Moreover, the authors showed that all the known cases of conformally
flat hypersurfaces, up to now, are associated to cyclic Guichard nets.

We observe that Theorem 5 shows that each solution of the Lamé’s system, which is invariant
under the action of the 2-dimensional subgroup involving translations and dilations, depends
only on two variables. Therefore, the conformally flat hypersurfaces associated to these solutions
are conformal to the products M2 × I ⊂ R4.

We now consider the conformally flat hypersurfaces associated to the solutions invariant
under the translation subgroup. We analyse each case separately:
i) ξ = α1x1 +α2x2. In this case, we have the solutions l1 = λ3 sinh(ξ+ξ0), l2 = λ3 cosh(ξ+ξ0)

and l3 = λ3 6= 0 (see Theorem 4). Then the associated conformally flat hypersurface has a
Guichard net, where the induced metric is given by

g = e2P (x1,x2,x3)
{

sinh2(ξ + ξ0)dx2
1 + cosh2(ξ + ξ0)dx2

2 + dx2
3

}
. (5.3)

The hypersurface is conformal to one of the products considered by Lafontaine in [13] that we
describe as follows (see [21, 22] for details): Let H3 be the hyperbolic 3-space, considered as the
half space model and as a subset of R4, i.e.,

H3 =
{(
y1, y2, y3, 0

)
: y3 > 0

}
⊂ R4 =

{(
y1, y2, y3, y4

)
: yi ∈ R

}
,

with the metric gij =
δij
y23

. Consider the rotations of the y3-axis given by(
y1, y2, y3, 0

)
→
(
y1, y2, y3 cos t, y3 sin t

)
,

then the hypersurface M3 = M2 × I, obtained by the above rotation of a surface of constant
curvature M2 ⊂ H3 is a conformally flat hypersurface. One can show that for g given by (5.3),
the surface M2 ⊂ H3 is a flat surface, parametrized by lines of curvature whose first and second
fundamental forms are given by

I = sinh2(ξ + ξ0)dx2
1 + cosh2(ξ + ξ0)dx2

2,

II = sinh(ξ + ξ0) cosh(ξ + ξ0)
(
dx2

1 + dx2
2

)
. (5.4)

In order to describe the flat surfaces M2 ⊂ H3, we mention a classification result obtained
by the authors in collaboration with Mart́ınez [16]. It is well known that, on a neighbourhood
of a non-umbilical point, a flat surface in H3 can be parametrized by lines of curvature, so
that the first and second fundamental forms are given by (for details, see [23, Theorem 2.4,
Corollary 2.7])

I = sinh2 φ(u, v)(du)2 + cosh2 φ(u, v)(dv)2, (5.5)

II = sinhφ(u, v) coshφ(u, v)
(
(du)2 + (dv)2

)
, (5.6)

where φ is a harmonic function, i.e. φuu + φvv = 0. The classification result is given as follows:

Theorem 8 ([16]). Let Σ be a flat surface in H3 with a local parametrization, in a neighborhood
of a nonsingular and nonumbilic point, such that the first and second fundamental forms are
diagonal and given by (5.5) and (5.6), where φ is a (Euclidean) harmonic function. Then φ
is linear, i.e., φ = au + bv + c if, and only if, Σ is locally congruent to either a helicoidal flat
surface (when (a, b, c) 6= (0,±1, 0)) or to a “peach front” (when (a, b, c) = (0,±1, 0)).

Helicoidal surfaces arise as a natural generalization of rotational surfaces. They are invariant
by a helicoidal group of isometries, i.e., given an axis, we consider a translation along this axis
composed with a rotation around it. In the half space model of H3, up to isometries, we can
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consider the y3-axis, which enables us to write the helicoidal group, relative to this axis, as the
composition

ht =

eβt 0 0
0 eβt 0
0 0 eβt

cosαt − sinαt 0
sinαt cosαt 0

0 0 1

 ,

of a rotation around the y3-axis with angular pitch α with a hyperbolic translation of ratio β.
The “peach front” is a special case of flat surfaces that is not helicoidal. Details about this
surface can be found in [11].

The study of flat surfaces in hyperbolic 3-space has received a lot of attention in the last few
years, mainly because Galvéz, Mart́ınez and Milán have shown in [5] that flat surfaces in the
hyperbolic 3-space admit a Weierstrass representation formula in terms of meromorphic data as
in the theory of minimal surfaces in R3. Namely, if ψ : M2 → H3 is a surface in H3, for any
p ∈ M2, there exist G(p), G∗(p) ∈ C∞ distinct points in the ideal boundary of H3 such that
the oriented normal geodesic at ψ(p) is the geodesic in H3 starting from G∗(p) towards G(p).
The maps G,G∗ : Σ → C∞ are called the hyperbolic Gauss maps of ψ. It is proved in [5]
that, for flat surfaces, they are holomorphic when one considers C∞ as the Riemann sphere
and M2 has a complex structure induced by the second fundamental form. Conversely, given
two holomorphic functions G and G∗, with G 6= G∗, one can recover a flat immersion of a surface
in H3 (for more details see also [3, 11, 12]). This representation formula was the main tool to
obtain Theorem 8.

With the previous results we conclude that

Theorem 9. Let li(ξ) be solutions of the Lamé’s system, where ξ = α1x1 + α2x2. Then the
associated conformally flat hypersurfaces are conformal to the product, M2 × I, where M2 is
locally congruent to either a helicoidal flat surface in H3 or the “peach front”.

Proof. When ξ = α1x1 + α2x2, it follows from Theorem 4 that the solution of Lamé’s system
is l1 = λ3 sinh(ξ + ξ0), l2 = λ3 cosh(ξ + ξ0) and l3 = λ3 6= 0 and the corresponding conformally
flat hypersurface M3 has a metric g given by (5.3). Then M3 is conformal to the product
M2× I, where M2 is a flat surface in H3 with fundamental forms given by (5.4). It follows from
Theorem 8 that M2 is locally congruent to either a helicoidal flat surface in H3 or to the “peach
front”. �

ii) ξ = α1x1 +α3x3. In this case, we have the solution of Lamé’s system , l1 = λ2 sin(ξ+ ξ0),
l2 = λ2 6= 0 and l3 = λ2 cos(ξ + ξ0) (see Theorem 4 b)). Then the associated conformally flat
hypersurface M3 has a Guichard net, whose induced metric is given by

g = e2P (x1,x2,x3)
{

sin2(ξ + ξ0)dx2
1 + dx2

2 + cos2(ξ + ξ0)dx2
3

}
.

The hypersurface M3 is conformal to another class of products M2×I (see [21, 22]). Namely, let
S3 ⊂ R4 be the canonical 3-sphere, then M2 × I =

{
tp : 0 < t <∞, p ∈M2 ⊂ S3

}
, is a confor-

mally flat hypersurface, where M2 is a surface with constant curvature in S3. In our case, M3

is conformal to the product M2 × I, where the surface M2 ⊂ S3 is a flat surface, parametrized
by lines of curvature, whose first and second fundamental forms are given by

I = sin2(ξ + ξ0)dx2
1 + cos2(ξ + ξ0)dx2

3,

II = sin(ξ + ξ0) cos(ξ + ξ0)
(
dx2

1 − dx2
3

)
. (5.7)

The geometry of these surfaces in S3 is being studied and it will appear in another paper.
iii) ξ = α1x1 +α2x2 +α3x3, αi 6= 0, for all i. In this case, we will show that the solutions li(ξ)

of the Lamé’s system give rise to a new class of conformally flat hypersurfaces, according to the
following theorem:
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Theorem 10. Let M3 be a conformally flat hypersurface in a space form M4
K , associated to

a solution of Lamé’s system li(x1, x2, x3) = li(ξ), with ξ =
3∑
s=1

αsxs and αs 6= 0, for all s, given

in terms of elliptic functions by (3.22)–(3.24). Then its first fundamental form g is given by

g = e2P (x)
{

cos2 ϕ(ξ)(dx1)2 + (dx2)2 + sin2 ϕ(ξ)(dx3)2
}
, (5.8)

where ϕ satisfies,

ϕ2
,ξ = c(a cos2 ϕ− b), (5.9)

or g is given by

g = e2P̃ (x)
{

sinh2 ϕ̃(ξ)(dx1)2 + cosh2 ϕ̃(ξ)(dx2)2 + (dx3)2
}

(5.10)

where ϕ̃ satisfies

ϕ̃2
,ξ = c

(
b cosh2 ϕ̃− b

)
. (5.11)

where a, b, c ∈ R \ {0}, P (x) and P̃ (x) are differentiable functions that depend on ls and M4
K .

In both cases, ξ ∈ I ⊂ R, where I is an open interval such that g is positive definite.

Proof. Guichard condition (2.1) implies that we may consider

l1 = l2 cosϕ, (5.12)

l3 = l2 sinϕ. (5.13)

It follows from Theorem 1 that the metric is given by (5.8). In order to obtain the expression
for the derivative of ϕ with respect to ξ, we consider

l1,ξ = l2,ξ cosϕ− l2ϕ,ξ sinϕ.

Since αs 6= 0 for all s, the functions li are given as in Theorem 3, by (3.22)–(3.24). Hence,
using (3.19), we have that

c1l2l3 = c2l1l3 cosϕ− ϕ,ξl3,

for c1, c2 ∈ R \ {0}, which implies

ϕ,ξ = l2
(
c2 cos2 ϕ− c1

)
. (5.14)

By taking the derivative again, it follows from (5.12)–(5.14) and (3.19) that

ϕ,ξξ = l2,ξ
(
c2 cos2 ϕ− 1

)
− 2c2l2 cosϕ sinϕϕ,ξ =

1

l2

[
l2,ξϕ,ξ − 2c2(l2 cosϕ)(l2 sinϕ)ϕ,ξ

]
=

1

l2

[
l2,ξϕ,ξ − 2c2l1l3ϕ,ξ

]
=

1

l2

[
l2,ξϕ,ξ − 2l2,ξϕ,ξ

]
= −

l2,ξϕ,ξ
l2

.

Therefore,

ϕ,ξl2 = c, (5.15)

where c ∈ R \ {0}, since ϕ,ξ 6= 0. Then, multiplying (5.14) by ϕ,ξ and using (5.15) we have
that ϕ2

,ξ = c
(
c2 cos2 ϕ − c1

)
, i.e., (5.9) holds. The proof of the second part of the theorem is

analogous, when we consider l2 = l3 coshϕ and l1 = l3 sinhϕ. �
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Corollary 2. Let M3 ⊂ M4 be a conformally flat hypersurface associated to the solutions of

Lamé’s system li(ξ) with ξ =
3∑
s=1

αsxs and αs 6= 0 for all s, given in terms of elliptic functions

by (3.22)–(3.24). Then the Guichard net of M3 is not cyclic.

Proof. It follows from Theorem 10 that the first fundamental form of M3 is given by (5.8),
where ϕ(ξ) satisfies (5.9) or by (5.10) where ϕ̃(ξ) satisfies (5.11), ξ ∈ I ⊂ R. In the first
case, (5.9) implies that ϕ,ξξ = λ sin 2ϕ, λ 6= 0 and in the second case, (5.11) implies that
ϕ̃,ξξ = λ sin 2ϕ̃, λ 6= 0. In either case, ϕ,xixj = αiαjϕ,ξξ 6= 0, i 6= j and ξ ∈ I. Therefore, the
Guichard net of M3 is not cyclic. �

We observe that, as a consequence of the results of Hertrich-Jeromin and Suyama, the sur-
faces M3 of Corollary 2 provide a new class of conformally flat hypersurfaces.

It is important to observe that Hertrich-Jeromin and Suyama in [9] have independently
considered Guichard nets with the ansatz on the function ϕ such that ϕ(x1, x2, x3) = ϕ(ax1 +
bx2 + cx3). They investigated the geometric properties of these Guichard nets, that they called
Bianchi-type Guichard nets, as well as the new class of associated conformally flat hypersurfaces.

A Appendix

Proof of Theorem 2. The infinitesimal generator associated to the symmetry group is written
as in (3.12). The functions ξi, ηi, φij will be obtained by solving the determining equations that
arise when we apply the first prolongation formula

pr(1)V = V +
∑
i,k

Dk

(
ηi
) ∂

∂li,xk
+

∑
i,j,k i 6=j

Dk

(
φij
) ∂

∂hij,xk

−
∑
i,k,r

Dk(ξ
r)li,xr

∂

∂li,xk
−
∑
i,j,k,r

Dk(ξ
r)hij,xr

∂

∂hij,xk
,

with

Di =
∂

∂xi
+
∑
j

lj,xi
∂

∂li
+
∑
j,l

hjl,xi
∂

∂hjl
,

on each equation of the system, i.e., when we consider the infinitesimal criterion (3.2). In order
to avoid any functional dependence, the following substitutions will be considered

li,xj = hijlj , i 6= j, (A.1)

li,xi = −εiεjhjilj − εiεkhkilk (A.2)

hij,xk = hikhkj , (A.3)

hij,xj = −hji,xi − hikhjk, i < j, (A.4)

hij,xi = −εiεjhji,xj − εiεkhkihkj , i < j. (A.5)

Fixing i, j and k, distinct indices, we start applying pr(1)V to equation (3.9). Then the
infinitesimal criterion (3.2), gives φij(k)−φ

ikhkj −hikφkj = 0, using the prolongation formula, we
get

φij,xk +
∑
r

φij,lr lr,xk +
∑
r,s

φij,hrshrs,xk −
∑
t

(
ξt,xk +

∑
r

ξt,lr lr,xk +
∑
r,s

ξt,hrshrs,xk

)
hij,xt

− φikhkj − hikφkj = 0. (A.6)
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For i < j, we apply the substitutions (A.1)–(A.5) and we analyse each term of (A.6) as follows∑
r

φij,lr lr,xk =
∑
r 6=k

φij,lrhrklk − φ
ij
,lk

(εkεjhjklj + εkεihikli) , (A.7)

∑
r,s

φij,hrshrs,xk =
∑

r 6=k, s6=k
φij,hrshrkhks +

∑
s<k

φij,hkshks,xk −
∑
s>k

φij,hks

(
εkεshsk,xs + εkεmhmkhms

)
−
∑
r<k

φij,hrk (hkr,xr + hrnhkn) +
∑
r>k

φij,hrkhrk,xk , (A.8)

∑
t

(
ξt,xk +

∑
r

ξt,lr lr,xk +
∑
r,s

ξt,hrshrs,xk

)
hij,xt

= Ckkhikhkj − C
j
k

(
hji,xi + hikhjk

)
− Cik

(
εiεjhji,xj + εiεkhkihkj

)
, (A.9)

where the coefficients Ctk are given by

Ctk = ξt,xk +
∑
r 6=k

ξt,lrhrklk − ξ
t
,lk

(
εkεjhjklj + εkεihikli

)
+

∑
r 6=k, s6=k

ξt,hrshrkhks

+
∑
s<k

ξt,hkshks,xk −
∑
s>k

ξt,hks
(
εkεshsk,xs + εkεmhmkhms

)
−
∑
r<k

ξt,hrk
(
hkr,xr + hrnhkn

)
+
∑
r>k

ξt,hrkhrk,xk , (A.10)

and the indices m and n are such that {k, s,m}, s > k and {k, r, n}, r < k are two sets of three
distinct numbers.

Now we analyse the coefficients of equation (A.6), considering (A.7)–(A.9). By equating to
zero the coefficients of the products hji,xjhks,xk , with k > s, we obtain ξi,hks = 0. Analogously,

for the coefficients of hji,xjhsk,xs , with k < s, we obtain ξi,hks = 0. This implies that

ξi,hks = 0, ∀ s, s 6= k, i.e. ξi,hkj = ξi,hki = 0.

Similarly, from the coefficients of hji,xjhkr,xk , r < k and hji,xjhrk,xk , with r > k, we obtain

ξi,hrk = 0, ∀ r, r 6= k, i.e. ξi,hjk = ξi,hik = 0,

where i, j, k ∈ {1, 2, 3} are distinct and i < j. By analysing the coefficients of hji,xihks,xk with
k > s and hji,xihsk,xs with k < s, we obtain

ξj,hks = 0, ∀ s, s 6= k, i.e. ξj,hki = ξj,hkj = 0.

Similarly, the coefficients of hji,xihkr,xr , with k > r, and hji,xihrk,xk , with k < r, lead to

ξj,hrk = 0, ∀ r, r 6= k, i.e. ξj,hik = ξj,hjk = 0.

Since i, j, k ∈ {1, 2, 3} are distinct and arbitrary indices, with i < j, we conclude that ξm,hst = 0
for any indices m, s and t, s 6= t, i.e., ξm depends only on x and l. Therefore, the expression
of Ctk given in (A.10) reduces to

Ctk = ξt,xk +
∑
r 6=k

ξt,lrhrklk − ξ
t
,lk

(εkεjhjklj + εkεihikli),

that can be rewritten as

Ctk = ξt,xk +
∑
r 6=k

(
ξt,lr lk − ξ

t
,lk
εrεklr

)
hrk. (A.11)



The Symmetry Group of Lamé’s System and Conformally Flat Hypersurfaces 23

From (A.8), we have that the coefficients of hks,xk , with s < k, and the coefficients of hsk,xs ,

with s > k, lead to φij,hks = 0, ∀ s 6= k, i.e. φij,hki = φij,hkj = 0.

Considering (A.9), the coefficients of hji,xi and hji,xj imply that Cjk = 0 and Cik = 0,
respectively. Since i < j and i, j, k ∈ {1, 2, 3} are arbitrary and distinct, we conclude that
Cik = Cjk = 0, for all i, j, k distinct indices.

Since ξm does not depend on hst, the analysis of (A.11) gives us the following system

ξm,xk = 0, ∀m 6= k,

ξm,lr lk − εrεkξ
m
,lk
lr = 0, ∀ r 6= k.

The first equation of this system says that ξm depends only on xm and l. By solving the
characteristic system for the second equation, we have that ξm depends on xm and a variable
ζ = εil

2
i + εjl

2
j + εkl

2
k. However, Guichard condition implies that ζ ≡ 0, hence ξm does not

depend on ls, for all s.
Summarising the conclusions of this first part of the proof, we have that

φst = φst(hst, hts, x, l), and ξm = ξm(xm).

We now consider equation (3.7). By applying the prolongation pr(1)V to (3.7), we have that
ηi(j) − φ

ijlj − hijηj = 0, which implies,

ηi,xj +
∑
r

ηi,lr lr,xj +
∑
r,s

ηi,hrshrs,xj − ξ
j
,xj li,xj − φ

ijlj − hijηj = 0. (A.12)

Observe that by applying the substitution (A.1), we have∑
r

ηi,lr lr,xj =
∑
r 6=j

ηi,lrhrjlj − η
i
,lj

(εjεihijli + εjεkhkjlk).

Moreover, by applying the substitutions (A.3), (A.4) and (A.5) we have∑
r, s

ηi,hrshrs,xj =
∑

r 6=j, s6=j
ηi,hrshrjhjs +

∑
s<j

ηi,hjshjs,xj −
∑
s>j

(εjεshsj,xs + εjεmhmjhms)

−
∑
r<j

ηi,hrj (hjr,xr + hrnhjn) +
∑
r>j

ηi,hrjhrj,xj .

Therefore, by considering in (A.12), the coefficients of hjs,xj , with s < j, and hsj,xs , with s > j,
we conclude that ηi,hjs = 0. Similarly, the analysis of the coefficients of hjr,xr , with r < j,

and hrj,xj , with r > j, imply that ηi,hrj = 0. Hence, we conclude that

ηi,hjt = ηi,htj = 0, ∀ t 6= j.

Since i and t 6= j are arbitrary, we conclude that ηm does not depend on hst, for any indices, m, s
and t with s 6= t. Consequently, (A.12) reduces to

ηi,xj +
(
ηi,li lj − εiεjη

i
,lj
li − ξj,xj lj − η

j
)
hij +

(
ηi,lk lj − εjεkη

i
,lj
lk
)
hkj − φijlj = 0. (A.13)

Since φij depends only on x, l, hij and hji, we obtain from (A.13) the following system

ηi,lk lj − εjεkη
i
,lj
lk = 0, (A.14)

ηi,xj +
(
ηi,li lj − εiεjη

i
,lj
li − ξj,xj lj − η

j
)
hij − φijlj = 0. (A.15)
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By solving the characteristic system for (A.14), we have that ni = ni(x, li). By taking derivatives
of (A.15) with respect to hji we get

φij,hji = 0. (A.16)

On the other hand, by taking the derivatives of (A.15) twice with respect to hij , we obtain

φij,hijhij = 0. (A.17)

Consequently, it follows from (A.16) and (A.17) that φij is given by

φij = Aij(x, l)hij +Bij(x, l). (A.18)

Therefore, (A.6) reduces to

φij,xk +
∑
r

φij,lr lr,xk +Aijhij,xk − ξ
k
,xk
hij,xk −

(
Aikhik +Bik

)
hkj −

(
Akjhkj +Bkj

)
hik = 0.

By considering the substitutions (A.1)–(A.5), this equation reduces to

φij,xk + φij,lihiklk + φij,ljhjklk − φ
ij
,lk

(εkεjhjklj + εkεihikli)

+Aijhikhkj − ξk,xkhikhkj −A
ikhikhkj −Bikhkj −Akjhikhkj −Bkjhik = 0,

which can be rewritten as

Bij
,xk

+Aij,xkhij +
(
Bij
,li
lk − εkεiBij

,lk
li −Bkj

)
hik +

(
Bij
,lj
lk − εkεjBij

,lk
lj
)
hjk

−Bikhkj +
(
Aij,li lk − εkεiA

ij
,lk
li
)
hikhij +

(
Aij,lj lk − εkεjA

ij
,lk
lj
)
hijhjk

+
(
Aij − ξk,xk −A

ik −Akj
)
hikhkj = 0.

It follows from the coefficients of hkj that Bik = 0. The permutation of the indices i, j and k
leads to

Bst = 0, ∀ s, t, s 6= t. (A.19)

By equating to zero the coefficients of hikhkj and hijhjk, the following system is obtained

Aij,li lk − εkεiA
ij
,lk
li = 0, Aij,lj lk − εkεjA

ij
,lk
lj = 0,

where we solve the characteristic system to conclude that Aij depends only on x. On the other
hand, the coefficient of hij implies that Aij does not depend on xk, therefore Aij = Aij(xi, xj).
Considering the coefficient of hikhkj , we obtain the following equation

Aij − ξk,xk −A
ik −Akj = 0. (A.20)

Therefore, equation (A.13) reduces to

ηi,xj +
(
ηi,li lj − ξ

j
,xj lj − η

j −Aijlj
)
hij = 0.

Since ηi does not depend on hij , we must have

ηi,xj = 0,

ηi,li lj − ξ
j
,xj lj − η

j −Aijlj = 0, (A.21)
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By applying pr(1)V to equation (3.10), we have φij(j) +φji(i) +φikhkj+hikφ
kj = 0, which implies

that

φij,xj + φij,hijhij,xj − ξ
j
,xjhij,xj + φji,xi + φji,hjihji,xi − ξ

i
,xihji,xi + +φikhkj + hikφ

kj = 0.

Considering the substitution (A.4), for i < j, we obtain

φij,xj + φji,xi +
(
ξj,xj −A

ij +Aji − ξi,xi
)
hji,xi +

(
ξj,xj −A

ij +Aik +Akj
)
hikhjk = 0.

Then, the coefficient of hji,xi leads to

ξj,xj −A
ij +Aji − ξi,xi = 0. (A.22)

By applying the prolongation pr(1)V to (3.11) we have εiφ
ij
(i)+εjφ

ji
(j)+εkφ

kihkj+εkφ
kjhki = 0,

which implies

εi
(
φij,xi + φij,hijhij,xi − ξ

i
,xihij,xi

)
+ εj

(
φji,xj + φji,hjihji,xj − ξ

j
,xjhji,xj

)
+ εk

(
φkihkj + φkjhki

)
= 0.

Considering the substitution (A.5) with i < j, we obtain

εiφ
ij
,xj + εjφ

ji
,xj + εj

(
ξi,xi −A

ij +Aji − ξj,xj
)
hji,xj + εk

(
ξi,xi −A

ij +Aki +Akj
)
hkihkj = 0.

From the coefficient of hji,xj , we get

Aij − ξi,xi −A
ji + ξj,xj = 0. (A.23)

Therefore, it follows from (A.22) and (A.23) that

Aji = Aij . (A.24)

Consequently, both equations imply that ξi,xi = ξj,xj , which enables us to conclude that

ξm = axm + am, ∀ 1 ≤ m ≤ 3, (A.25)

where a and am are real constants. Moreover, from (A.25) and (A.20), we have that

Aij − a−Aik −Akj = 0 and Aik − a−Aij −Ajk = 0.

By taking the sum of these equations and using (A.24), we obtain Akj = −a. Therefore, it
follows from (A.18) and (A.19), that

φst = −ahst, ∀ s 6= t. (A.26)

Moreover, from (A.25) and (A.21), we get

ηi,li lj = ηj . (A.27)

Since the function ηm depends only on xm and lm, we conclude that, ηi,lili = 0, i.e.,

ηi = N i(xi)li +M i(xi). (A.28)

Hence, it follows from (A.27) and (A.28) that ηi,li = ηj,lj = N(xi). Therefore, N ′(xi) = ηj,ljxi = 0,
which implies that,

ηi = cli +M i(xi). (A.29)
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Finally, we apply the prolongation pr(1)V to equation (3.8) to obtain

εiη
i
(i) + εjφ

jilj + εjhjiη
j + εkφ

kilk + εkhkiη
k = 0,

which implies that

εiη
i
,xi + εiη

i
,li
li,xi − εiξi,xi li,xi + εjφ

jilj + εjhjiη
j + εkφ

kilk + εkhkiη
k = 0.

When we substitute (A.2) for li,xi and we consider equations (A.25), (A.26) and (A.29), we
obtain

εiM
i
,xi + εjhjiM

i + εkhkiM
k = 0.

The analysis of the coefficients of hji and hki enables us to conclude that M i = Mk = 0,
consequently, ηm = clm, ∀ 1 ≤ m ≤ 3. This concludes the proof of Theorem 2. �
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[2] Cartan E., La déformation des hypersurfaces dans l’espace conforme réel à n ≥ 5 dimensions, Bull. Soc.
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