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Abstract. The Fukaya category of a Weinstein manifold is an intricate symplectic inva-
riant of high interest in mirror symmetry and geometric representation theory. This paper
informally sketches how, in analogy with Morse homology, the Fukaya category might result
from gluing together Fukaya categories of Weinstein cells. This can be formalized by a re-
collement pattern for Lagrangian branes parallel to that for constructible sheaves. Assuming
this structure, we exhibit the Fukaya category as the global sections of a sheaf on the conic
topology of the Weinstein manifold. This can be viewed as a symplectic analogue of the
well-known algebraic and topological theories of (micro)localization.
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1 Introduction

To realize “compact, smooth” global objects as glued together from simpler local pieces, one often
pays the price that the local pieces are “noncompact” or “singular”. For several representative
examples, one could think about compact manifolds versus cells and simplices, smooth projective
varieties versus smooth affine varieties and singular hyperplane sections, vector bundles with flat
connection versus regular holonomic D-modules, or perhaps most universally of all, irreducible
modules versus induced modules.

In this paper, we informally sketch how a similar pattern might hold for exact Lagrangian
branes in Weinstein manifolds: it should be possible to systematically glue together (in the
homological sense) complicated branes from simple but noncompact branes. If the initial branes
are compact, then Seidel’s theory of iterated Lefschetz fibrations and their vanishing cycles
and thimbles [55] provides a complete solution, both theoretically and computationally. For
applications to some questions in geometric representation theory, it is useful to go further and
consider noncompact branes from the start. When the Weinstein manifold is a cotangent bundle,
constructible sheaves capture the structure of all branes, compact and noncompact alike, and in
particular, organize the gluing relations between local and global calculations [41, 42, 43]. We
turn here to a basic structure of a Weinstein manifold and discuss decomposing branes along its
unstable coisotropic Morse cells. One can interpret the resulting proposed presentation of the
Fukaya category as a categorical form of Morse homology.

As a consequence, assuming such a gluing pattern, we derive a canonical localization of branes:
we construct a sheaf of categories whose global sections recover the Fukaya category. This
provides a symplectic counterpart to the algebraic theory of Beilinson–Bernstein localization [8]
and the topological microlocalization of Kashiwara–Schapira [27]. Though we are exclusively
occupied here with general structure, we anticipate applications of potentially broad appeal. The
localization of branes should assist in the calculation of many Fukaya categories, in particular
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in terms of algebraic quantizations when the Weinstein manifold is the Hamiltonian reduction
of a cotangent bundle. For the simplest example, one could consider Slodowy slices and their
smoothings: on the one hand, their compact branes have been studied extensively in the context
of knot homologies [28, 37, 60]; on the other hand, their noncommutative modules globalize to
modules over Lie algebras and finite W -algebras (see [30, 32, 33, 48] for origins and up-to-date
lists of references). More broadly, one could also consider other symplectic settings for geometric
representation theory, for example for localizations of Cherednik-type algebras and hypertoric
enveloping algebras [16, 23, 24, 26, 40]. This paper suggests useful tools to see that such targets
admit a single categorical quantization which can be described in terms of localized branes or
alternatively noncommutative modules.

From a concrete geometric perspective, we have been particularly inspired by Seidel’s theory
of exact symplectic Dehn twists [51, 52, 53, 55]. For our understanding of the foundations of
the subject, we have turned to the work of Eliashberg, Gromov, and Weinstein [19, 20, 75],
Fukaya, Oh, Ohta, and Ono [22], Seidel [55], Fukaya and Oh [21], Wehrheim and Woodward [67,
68, 69, 70, 71, 72], Kashiwara and Schapira [27] and Lurie [34, 35, 36]. There is a wealth
of results in closely aligned directions, in particular in the analysis of the homology of closed
strings. We are familiar with only a small part of this growing literature, in particular, the
guiding advances of Seidel [54, 56], and the striking results of Bourgeois, Cieliebak, Eckholm,
and Eliashberg [14, 15, 17].

This paper outlines anticipated structure and does not provide comprehensive arguments.
Due to the high technical demands, our discussion of functors on noncompact branes is only
a sketch highlighting our main expectations within this rapidly developing subject. Assuming
these structural results, we provide complete arguments for the localization of the Fukaya cate-
gory.

In what follows, we first outline the specific setup adopted in this paper, then go on to
describe our main expectations, results and their immediate precursors.

1.1 Setup

Let (M, θ) be a Weinstein manifold, so a manifold M equipped with a one-form θ whose
differential ω = dθ is a symplectic form such that there exists a suitably compatible Morse
function h : M → R. (We refer the reader to Section 2 below for more details on the compatibil-
ity, but note here the potential point of confusion: we prefer the flexibility of not including the
choice of a particular Morse function in the data, though it is standard to do so in some other
contexts.) We will always assume that M is real analytic, and all subsets and functions are
subanalytic (or definable within some fixed o-minimal context). The basic source of examples
are Stein manifolds, or more specifically, smooth affine complex varieties.

Let Z be the Liouville vector field on M characterized by θ = iZω, and let c ⊂ M be the
finite subset of zeros of Z. For generic data, the flow of Z provides a stratification S = {Cp}p∈c
into coisotropic unstable cells Cp ⊂ M contracting to the zeros p ∈ c. Hamiltonian reduction
along each coisotropic unstable cell Cp ⊂M produces a contractible Weinstein manifold (Mp, θp)
which we refer to as a Weinstein cell.

Let F (M) denote the Fukaya category of not necessarily compact exact Lagrangian branes,
and let Perf F (M) denote the stable Fukaya category of perfect modules over F (M). Here
we fix a coefficient field k, and by perfect modules, mean summands of finite complexes of
representable modules with values in k-chain complexes. Let us briefly orient the reader as to
what version of the Fukaya category we work with. (See Section 3 below for a more detailed
discussion of all of the following notions.)

First, recall that any symplectic manifold M is canonically oriented, and one can unambigu-
ously speak about its Chern classes. To work with graded Lagrangian submanifolds, we will



Fukaya Categories as Categorical Morse Homology 3

make the standard assumption that the characteristic class 2c1(M) is trivialized. For simplicity,
we will also assume that M comes equipped with a spin structure. Then by Lagrangian brane,
we will mean a graded Lagrangian submanifold equipped with a finite-dimensional local system
and pin structure.

Second, by the Fukaya category F (M), we mean the infinitesimal (as describes the setting
of [41, 43, 52, 55]) rather than wrapped variant (as found in [4]; this is one extreme of the partially
wrapped paradigm [6, 7]). Our perturbation framework involves Hamiltonian isotopies (in the
direction of the rotated Liouville vector field) of constant size with respect to a radial coordinate
near infinity rather than of linear growth. If one specifies a conic Lagrangian support Λ ⊂ M
for branes, there is a resulting full subcategory PerfΛ F (M) ⊂ Perf F (M). The corresponding
partially wrapped category might be viewed as its “Verdier dual” (the relation appears analogous
to that of cohomology and homology, or more immediately, perfect and coherent O-modules).
In fact, one might expect the partially wrapped category to embed into the category of modules
over PerfΛ F (M). Thus by coupling results for the infinitesimal category with notions of support
and homological bounds, one might expect to obtain parallel results for the partially wrapped
category. We have included some further discussion of expectations in Remark 1.8 below.

1.2 Recollement for branes

Our first goal is to outline how the stable Fukaya category Perf F (M) might be recoverable from
the stable Fukaya categories Perf F (Mp) of its Weinstein cells together with gluing data in the
form of natural adjunctions.

Given a closed coisotropic submanifold i : C → M that is a union of unstable cells, we
will sketch an expected semiorthogonal decomposition of Perf F (M). On the one hand, the
formalism of Hamiltonian reduction provides a Lagrangian correspondence

N C
qoooo � � i //M,

where N is a Weinstein manifold, and q is the quotient along the integrable isotropic foliation
determined by i. On the other hand (as explained in Lemma 2.25 below), the open complement
j : M◦ = M \ C → M naturally inherits the structure of a Weinstein manifold. (Note that we
do not include a specific compatible Morse function in the data of a Weinstein manifold. The
compatible Morse function we construct for M◦ is not simply the restriction of a compatible
Morse function for M .)

We will outline how there might be a recollement pattern for Lagrangian branes analogous
to standard gluings for constructible sheaves (as recalled in Section 1.4.2 below): it is a natural
diagram of adjunctions

Perf F (N)
i!'i∗ // Perf F (M)

i!
dd

i∗

zz
j!'j∗ // Perf F (M◦)

j∗

dd

j!

zz
(1.1)

with i! ' i∗, j!, j∗ fully faithful embeddings, along with exact triangles of functors

i!i
! c // idPerf F (M)

u // j∗j
∗ [1] // , j!j

! c // idPerf F (M)
u // i∗i

∗ [1] // , (1.2)

where c denotes the counits of adjunctions and u the units.

From a symplectic perspective, the functors involved are “Dehn twists around cells”. Alter-
natively, one can also interpret them as resulting from Lagrangian surgery.
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Remark 1.1. If M admits an anti-symplectomorphism compatible with other structures, then
one can obtain an analogue of Verdier duality as well.

Remark 1.2. The exact triangles are categorical versions of the long exact sequences of coho-
mology of a pair. It is useful to observe that they are formally equivalent to exact triangles

idF (M)
// j∗j
∗ ⊕ i∗i

∗ // i∗i
∗j∗j
∗ [1] // , i!i

!j!j
! // j!j

! ⊕ i!i
! // idF (M)

[1] // ,

where the first and second maps are the units and counits of adjunctions. These are categorical
versions of the Mayer–Vietoris sequences of cohomology of a covering pair.

Remark 1.3. We mention here an attractive way to potentially repackage the recollement
pattern.

Consider the differential graded derived category ShS(M) of complexes of sheaves con-
structible along the stratification S = {Cp}p∈c by coisotropic unstable cells Cp ⊂ M . We
equip ShS(M) with its natural symmetric monoidal structure given by tensor product. The
monoidal unit is the constant sheaf kM ∈ ShS(M). More generally, given a union of unstable
coisotropic cells i : C →M , the extension by zero kC! = i!kC ∈ ShS(M) is an idempotent.

Now given the recollement functors, it seems likely one should be able to reorganize them
into a natural fully faithful monoidal embedding

ShS(M) // Endstk(Perf F (M))

characterized by the property that kC! 7−→ i!i
∗. This would allow one to analyze Perf F (M) as

a module over the “spectrum” of the commutative algebra ShS(M).

Such a recollement pattern would provide various frameworks for gluing together Perf F (M)
from the constituent pieces Perf F (N), Perf F (M◦). To pursue gluing, it is useful to regard
each of the above categories as a small stable idempotent-complete k-linear ∞-category. Then
we can adopt the foundations of [34, 35], and work within the ∞-category stk of small stable
idempotent-complete k-linear ∞-categories.

According to the reinterpretation of Remark 1.2, we can view Perf F (M) as classifying triples
of data L◦ ∈ Perf F (M◦), LN ∈ Perf F (N) together with a morphism

r ∈ HomPerf F (N)(i
!j!L
◦, LN ).

Let us recast this in monadic terms by considering the adjunction

L = j! ⊕ i! : Perf F (M◦)⊕ Perf F (N) // Perf F (M) : R = j! ⊕ i!oo .

We obtain a resulting monad, or in other words, algebra object in endomorphisms

T = RL ∈ End(Perf F (M◦)⊕ Perf F (N)).

The ∞-categorical Barr–Beck theorem provides a canonical equivalence

Perf F (M) ' ModT (Perf F (M◦)⊕ Perf F (N)),

where the right hand side denotes module objects over the monad T .
We can inductively apply the above considerations by successively taking the coisotropic

submanifold i : C → M to be a single closed unstable cell. Recall that c ⊂ M denotes the
finite subset of zeros of the Liouville vector field Z. For each p ∈ c, we have the Hamiltonian
reduction of the corresponding unstable cell

Mp Cp
qpoooo � � ip //M .
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By induction, the recollement pattern provides an adjunction

L = ⊕p∈cip! : ⊕p∈c Perf F (Mp)
// Perf F (M) : R = ⊕p∈ci!poo .

We obtain a resulting upper-triangular monad

T = RL ∈ End
(
⊕p∈c Perf F (Mp)

)
with matrix entries i!qip! for unstable cells Cq ⊂ Cp. Finally, the ∞-categorical Barr–Beck
theorem provides a canonical equivalence

Perf F (M) ' ModT (⊕p∈c Perf F (Mp)) .

One can view this presentation of Perf F (M) as a categorified version of the Morse homology
of M . First, to each critical point p ∈ c, we assign the stable Fukaya category Perf F (Mp) of
the Weinstein cell Mp. From the perspective of Morse homology, one can view F (Mp) as the
analogue of a scalar vector space k[deg p] shifted by the index of p. (Since the ∞-category stk
of small stable idempotent-complete k-linear ∞-categories is not itself stable, it is unsurprising
that “suspension” in the current setting is not invertible as it is in the traditional setting.)

Second, to pairs of critical points p, q ∈ c, we assign the individual term i!qip! of the gluing
monad T . More generally, to collections of critical points, we assign the corresponding terms
of the gluing monad T together with the monadic structure maps among them. From the
perspective of Morse homology, one can view the individual terms and their monadic structure
as the analogue of boundary maps and their higher relations.

Part of the appeal of Morse homology is that the boundary maps and their higher relations
localize along the spaces of flow lines connecting the relevant critical points. Furthermore, the
boundary maps and their higher relations admit simple descriptions in terms of the spaces of
flow lines. For instance, the boundary maps themselves are given by counts of isolated flow
lines. We will develop an abstract analogue of this picture directly below.

1.3 Localization of branes

Now let us assume the above recollement pattern and see what it further implies. We will
deduce a localization of the stable Fukaya category Perf F (M) over the conic topology of M .
There are many inspiring precedents [1, 4, 57, 59, 62] and informed assertions [29] that suggest
such a construction should be possible. In our own thinking, we have often returned to the
setting of cotangent bundles as a guide: combining the equivalence of Lagrangian branes with
constructible sheaves [41, 42, 43] and the formalism of microlocalization [27] leads to a complete
solution in that case.

To describe the localization for a general Weinstein manifold (M, θ), let us return to the
geometry of the Liouville vector field Z. We say a subset of M is conic if it is invariant under
the flow of Z, and use the term core to refer to the compact conic isotropic subvariety K ⊂M of
points that do not escape to infinity under the flow. (Many authors prefer the term “skeleton”
for K ⊂ M , but we have opted for core so as not to confuse it with the characteristic cone
Λ ⊂ M introduced below. There is a growing number of authors who would refer to Λ ⊂ M
as a noncompact skeleton, and so we prefer to distinguish the compact skeleton K ⊂ M with
the name core.) We use the term ether to refer to the complement E = M \ K, and define
the projectivization M∞ = E/R+ to be the compact contact manifold obtained by quotienting
the ether by the flow. More generally, given any conic subset A ⊂ M , we can consider its
projectivization A∞ = (A ∩ E)/R+ ⊂M∞.

To any object L ∈ Perf F (M), we assign its singular support ss(L) ⊂ M which is a closed
conic isotropic subvariety depending only on the isomorphism class of the object (see Section 3.7
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below). The singular support records the coarse homological nontriviality of objects, and for
a Lagrangian brane is a subset of its limiting dilation to a conic Lagrangian subvariety. For
example, if L is a compact Lagrangian brane, then ss(L) ⊂ K.

Let us fix a (most likely singular and noncompact) conic Lagrangian subvariety Λ ⊂M which
we refer to as the characteristic cone. We will assume that Λ contains the core K ⊂ M , and
hence is completely determined by its projectivization Λ∞ ⊂ M∞. Note that the inclusions
K ⊂ Λ ⊂M are all homotopy equivalences, so what will interest us most is their local geometry.

Let us consider the full subcategory PerfΛ(M) ⊂ Perf F (M) of objects L ∈ Perf F (M) with
singular support satisfying ss(L) ⊂ Λ. So for example, if L is a compact Lagrangian brane, then
it provides an object of PerfΛ F (M) irrespective of the choice of Λ. Note that Λ1 ⊂ Λ2 implies
PerfΛ1 F (M) ⊂ PerfΛ2 F (M), and Perf F (M) = ∪Λ PerfΛ F (M).

Recall that c ⊂M denotes the finite subset of zeros of the Liouville vector field Z. For each
p ∈ c, we have the Hamiltonian reduction of the corresponding unstable cell

Mp Cp
qpoooo � � ip //M .

We obtain a conic Lagrangian subvariety Λp ⊂ Mp by setting Λp = qp(i
−1
p (Λ)), and similarly

a full subcategory PerfΛp F (Mp) ⊂ Perf F (Mp).
Now by localizing PerfΛ F (M) with respect to singular support, we obtain the following. Its

verification appeals to the recollement pattern outlined above.

Theorem 1.4. Assume the recollement pattern of diagrams (1.1) and (1.2).
There exists a stk-valued sheaf FΛ on the conic topology of M with the following properties:

(1) The support of FΛ is the characteristic cone Λ ⊂M .

(2) The global sections of FΛ are canonically equivalent to PerfΛ F (M).

(3) The restriction of FΛ to an open Weinstein submanifold M◦ ⊂M is canonically equivalent
to the sheaf FΛ◦ constructed with respect to Λ◦ = Λ ∩M◦.

(4) For each zero p ∈ c, the sections of FΛ lying strictly above the unstable cell Cp ⊂ M are
canonically equivalent to PerfΛp F (Mp).

Example 1.5. Here is a description of the sheaf FΛ in the simplest example.
Consider the two-dimensional Weinstein cell M = C with standard Liouville form θ and

projectivization M∞ ' S1. Its core is the single point K = {0} ⊂ C, and its ether is the
complement E = C∗ ⊂ C. Any characteristic cone Λ ⊂ C will be the union of K = {0} with
finitely many rays. For n = 0, 1, 2, . . ., let Λn ⊂ C denote the characteristic cone with n rays.

Then for n > 1, PerfΛn F (M) is equivalent to finite-dimensional modules over the An−1-
quiver 1 → 2 → · · · → n. For n = 0 or 1, it is the zero category. This is also the stalk of the
sheaf FΛn at the point 0 ∈ C. Its stalk at other points x ∈ C is (not necessarily canonically)
equivalent to Perf k when x ∈ Λn, and is the zero category otherwise.

Example 1.6. As a continuation of the previous example (or in fact a direct generalization),
we could take M to be an open Riemann surface of genus g with k > 0 punctures. Then its
projectivization M∞ is the disjoint union of k circles, and its core K ⊂M is a graph homotopy
equivalent to a bouquet of 2g+ (k− 1) circles. Any characteristic cone Λ ⊂M will be the union
of K with finitely many rays shooting from the nodes of K off to the boundary. So all together,
we can view Λ as a “ribbon graph”: an abstract graph with some noncompact edges embedded
in the Riemann surface M as a retract.

Now the sheaf FΛ is supported along Λ (so equivalently can be viewed as a sheaf on Λ). It
is locally constant along the edges of Λ with stalks (not necessarily canonically) equivalent to
Perf k. At the nodes of Λ, it is (not necessarily canonically) equivalent to finite-dimensional
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modules over the An-quiver where n + 2 is the valency of a node. (So if a node has valency 0
or 1, the stalk is the zero category.) The global sections PerfΛ(M) can be easily calculated as the
global sections of FΛ, with the combinatorial form of the answer dependent on the presentation of
the data of Λ and its embedding in M . (For example, this is compatible with the “constructible
plumbing model” for ribbon graphs with valency ≤4 developed in [62].)

Remark 1.7. It is possible to say much more about FΛ. Let us content ourselves here with men-
tioning that when M is a cotangent bundle, sections of FΛ are equivalent to (the sheafification
of) microlocal sheaves. In general, a similar description holds for the restriction of FΛ to the
complement M \ c of the zeros of the Liouville vector field Z. Namely, the quotient (M \ c)/R+

by the Liouville flow is naturally a (non-Hausdorff) contact manifold, and the restriction of FΛ

to the complement M \ c can be obtained by pulling back microlocal sheaves from (M \ c)/R+.

Remark 1.8. This remark is devoted to a conjectural parallel picture for the partially wrapped
Fukaya category. Let us continue with the setting of Theorem 1.4, and write WFΛ(M) for the
partially wrapped Fukaya category as developed in [6, 7]. It specializes to the fully wrapped
variant of [4] when the characteristic cone Λ ⊂M coincides with the compact core K ⊂M .

Let Perf WFΛ(M) denote the stable category of perfect modules over WFΛ(M), and let
ModWFΛ(M) denote the stable category of all modules. Note that the two stabilizations are for-
mally the same amount of information: ModWFΛ(M) is the ind-category Ind(Perf WFΛ(M)),
and Perf WFΛ(M) is the full subcategory of compact objects (ModWFΛ(M))c.

Given a conic open subset U ⊂M , let us imagine a “mirror” picture of the category FΛ(U) as
perfect quasicoherent sheaves over a scheme XU proper over Spec k. The statement that XU is
proper can be formalized by the expectation that FΛ(U) is hom-finite. Given conic open subsets
V ⊂ U ⊂ M , let us also imagine a “mirror” picture of the restriction map FΛ(U) → FΛ(V ) as
the pullback of perfect quasicoherent sheaves under a morphism XV → XU .

Now given a conic open subset U ⊂M , consider the category of finite functionals

CohFΛ(U) = Homstk

(
FΛ(U)op,Perf k

)
.

From the above “mirror” perspective, CohFΛ(U) corresponds to coherent sheaves over the
proper scheme XU . Given conic open subsets V ⊂ U ⊂M , the restriction map FΛ(U)→ FΛ(V )
induces a corestriction map

CohFΛ(V ) // CohFΛ(U) .

From the above “mirror” perspective, the corestriction map corresponds to the pushforward
(right adjoint to pullback) of coherent sheaves under the morphism XU → XV .

The above constructions equip CohFΛ with the structure of a pre-cosheaf. Let us write
Ind(CohFΛ) for the corresponding pre-cosheaf of ind-categories, and Ind(CohFΛ)+ for its
cosheafification. (If one prefers the intuitions of sheaves over cosheaves, one could pass to
the right adjoints of the corestriction maps of Ind(CohFΛ)+ and turn it into a sheaf.) We
expect that there is a natural equivalence

Γ(M, Ind(CohFΛ)+)
∼ //ModWFΛ(M) .

In other words, the stable partially wrapped Fukaya category Perf WFΛ(M) consists of the
compact objects of the global sections of the cosheaf Ind(CohFΛ)+.

Finally, let us mention some corroborating evidence for the above picture. First, using the
results of [2, 41, 43], one can check it for M a cotangent bundle and Λ the zero section. Second,
recent calculations of Fukaya categories of Riemann surfaces, pairs-of pants and their genera-
lizations [3, 58, 61] reveal a mirror symmetry with matrix factorizations. In the situations
considered, the wrapped Fukaya category corresponds to “coherent” matrix factorizations and
the full subcategory of compact branes corresponds to “perfect” matrix factorizations.
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We have briefly mentioned anticipated applications of the recollement pattern and Theo-
rem 1.4 earlier in the introduction. Let us conclude here with a useful technical application:
Theorem 1.4 allows us to define the stable Fukaya category of an “inexhaustible, singular We-
instein manifold” (for example, an “open Weinstein cobordism”). Namely, given a union of
coisotropic cells C ⊂ M , we can take the sections of the sheaf FΛ lying strictly above C for
increasing Λ. Rather than leaving it in such an abstract form, let us explain what results by
appealing directly to the concrete geometry of the recollement pattern.

To begin, let us rotate our viewpoint on the exact triangles appearing in diagram (1.2) and
switch the roles of the known and unknown categories in our discussion. Recall that we assumed
that the closed coisotropic subvariety i : C → M is both a smooth submanifold and a union of
unstable cells. Let us relax these two requirements in turn.

First, suppose the closed coisotropic subvariety i : C → M is no longer necessarily smooth,
but still a union of unstable cells. On the one hand, the formalism of Hamiltonian reduction
still provides a correspondence

N C
qoooo � � i //M

though N is now a “singular Weinstein manifold”, whatever that might mean. On the other
hand, the open complement j : M◦ = M \ C → M continues to inherit the structure of
a Weinstein manifold. With this setup, the constructions underlying diagram (1.1) should
provide adjunctions

j∗ : Perf F (M) // Perf F (M◦) : j∗,oo j! : Perf F (M◦) // Perf F (M) : j!oo

with j!, j∗ fully faithful, and j! ' j∗. We do not have an a priori definition of a Fukaya ca-
tegory Perf F (N), but the recollement pattern tells us what it should be. Namely, we should
define F (N) to classify triples of data L ∈ Perf F (M), L◦ ∈ Perf F (M◦), together with a mor-
phism u ∈ HomPerf F (M)(L, j∗L

◦). When N is smooth, the recollement pattern confirms that we
recover precisely Perf F (N) by taking the kernel of morphisms u appearing in such data.

Remark 1.9. One should view the preceding as more than a formal analogue of the situation
for D-modules on singular varieties. There Kashiwara’s theorem confirms that such an approach
provides an unambiguous notion of D-module.

Second, suppose the closed coisotropic subvariety i : C → M is a smooth submanifold
invariant under the Liouville flow, but not necessarily a union of unstable cells. Suppose as
well that its Hamiltonian reduction N is a smooth manifold, and hence a Weinstein manifold.
Observe that the open complement j : M◦ = M \ C → M may be viewed as an “inexhaustible
Weinstein manifold”, or informally speaking, a complete exact symplectic manifold such that
the Liouville vector field is gradient-like for a possibly inexhausting Morse function. With this
setup, the constructions underlying diagram (1.1) should provide adjunctions

i∗ : Perf F (N) // Perf F (M) : i∗,oo i! : Perf F (M) // Perf F (N) : i!oo

with i! ' i∗ fully faithful. We do not have an a priori definition of a Fukaya category Perf F (M◦),
but the recollement pattern tells us what it should be. Namely, we should define Perf F (M◦)
to classify triples of data LN ∈ Perf F (N), L ∈ Perf F (M), together with a morphism c ∈
HomPerf F (M)(i!LN , L). When C is a union of unstable cells, the the recollement pattern confirms
that we recover precisely Perf F (M◦) by taking the cokernel of morphisms c appearing in such
data.

Putting together the above generalizations, we obtain an unambigious infinitesimal Fukaya
category of an “inexhaustible, singular Weinstein manifold” so that it is compatible with familiar
notions whenever they apply.
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1.4 Influences

In the remainder of the introduction, we recount some influences on our thinking, in particular
the symplectic geometry of Dehn twists, the recollement pattern for constructible sheaves, and
the Morse theory of integral kernels.

1.4.1 Dehn twists

One can view our expectations as simple elaborations on the fundamental notion of exact sym-
plectic Dehn twists. In turn, the many incarnations of this notion (spherical twists, mutations,
braid actions, Hecke correspondences, . . . ) play a prominent role in mirror symmetry and geo-
metric representation theory.

We sketch here an informal picture of our expectations from the perspective of Dehn twists.
The basic mantra could be: Dehn twists around spheres provide mutations; Dehn twists around
cells provide semiorthogonal decompositions. (There are also extensive relations between muta-
tions and semiorthogonal decompositions, often arising from exceptional collections, thanks to
the fact that spheres themselves can be cut into cells.)

Let us recall Seidel’s long exact sequence in Floer cohomology [51, 52, 53]. There are also
highly relevant relative sequences found in the work of Perutz [45, 46, 47] and Wehrheim–
Woodward [67]. We will ignore technical issues and proceed as quickly as possible to the state-
ment.

Let S ⊂M be an exact Lagrangian sphere in an exact symplectic manifold. Let τS : M →M
be the associated exact symplectic Dehn twist around S. Then for any two exact Lagrangian
submanifolds L0, L1 ⊂ M , there is a long exact sequence of (Z/2Z-graded, Z/2Z-linear) Floer
cohomology groups

HF (τS(L0), L1) // HF (L0, L1) // HF (S,L1)⊗HF (L0, S)
[1] // .

The sequence admits a straightforward categorical interpretation. Assume M is equipped
with appropriate background structures, and the exact Lagrangian submanifolds S, L0, L1 are
all equipped with appropriate brane structures. Let ModF (M) denote the Z-graded, k-linear
stable Fukaya category of modules, and let S, L0, L1 denote the corresponding objects. Thanks
to the functoriality of the sequence in the variable L1, we can rewrite it as an exact triangle

S ⊗HomModF (M)(S,L0) // L0
// τS(L0)

[1] // .

Let us introduce the (presently elaborate but ultimately justified) notation

iS! : ModFS(M) //ModF (M) : i!Soo

for the fully faithful embedding iS! of the subcategory ModFS(M) generated by S, and its
right adjoint i!S = HomModF (M)(S,−). Then thanks to the functoriality of the sequence in the
variable L0, we can view it as an exact triangle of functors

iS!i
!
S

// idModF (M)
// τS

[1] // ,

where the first map is the counit of the adjunction.

Now suppose the exact Lagrangian sphere S ⊂ M were rather a closed but noncompact
exact Lagrangian cell C ⊂M . To place it in a categorical context, let us now allow the Fukaya
category F (M) to contain closed but noncompact Lagrangian branes. Because C ⊂ M is now
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a cell, we will be able to work with the Z-graded, k-linear stable category Perf F (M) of perfect
modules. Then one expects to have a similar exact triangle of functors

iC!i
!
C

// idPerf F (M)
// τC

[1] // ,

where τC denotes the “Dehn twist” around the cell C ⊂M . It takes compact Lagrangian branes
to noncompact Lagrangian branes which are asymptotically close to C near infinity.

Let us go one step further and consider the open exact symplectic submanifold jM◦ : M◦ =
M \ C → M . Assuming C is in good position with respect to the exact symplectic structure,
we should be able to realize τC as the monad of an adjunction

j∗M◦ : Perf F (M) // Perf F (M◦) : jM◦∗oo ,

where jM◦∗ is a fully faithful embedding. Here the functor jM◦∗ is geometric, built out of the
inclusion jM◦ and the Dehn twist τC near infinity. Its left adjoint j∗M◦ is of a categorical origin,
just as the left adjoint i!C is of a categorical origin.

Putting the above together, we obtain an exact triangle of functors

iC!i
!
C

// idPerf F (M)
// jM◦∗j

∗
M◦

[1] // ,

where the initial map is the counit of the adjunction, and the middle map is the unit of the
adjunction. Thus we have a semiorthogonal decomposition of Perf F (M) by the two full sub-
categories Perf FC(M), Perf F (M◦) with the semiorthogonality Perf FC(M)⊥ ' Perf F (M◦),
Perf FC(M) ' ⊥ Perf F (M◦).

We will suggest a generalization of the above picture where we allow the cell C ⊂ M to
be coisotropic rather than Lagrangian. The geometric constructions and formal consequences
should be similar, with the main new development that the full subcategory Perf FC(M) no
longer should be generated by a single object. In the section immediately following, we motivate
the general pattern with the formalism of recollement for constructible sheaves.

1.4.2 Recollement pattern

We recall here the recollement pattern for constructible sheaves.

In what follows, we will only consider subanalytic sets X and subanalytic maps f : X → Y .
We write Sh(X) for the differential graded category of constructible complexes of sheaves on X,
and have the standard adjunctions

f∗ : Sh(Y ) // Sh(X) : f∗,oo f! : Sh(X) // Sh(Y ) : f !oo .

Verdier duality provides an anti-involution

DX : Sh(X)
∼ // Sh(X)op

intertwining the preceding adjunctions

f ! ' DXf∗DY , f! = DY f∗DX .

Suppose we have a partition of X into an open subset and its closed complement

j : U �
� // X Y = X \ U : i? _oo .
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Then the standard functors provide a diagram

Sh(U)

j!

!!

j∗

==
Sh(X)

j!'j∗oo

i∗

!!

i!
==

Sh(Y )
i!'i∗oo

The fact that j is an open embedding (hence smooth of relative dimension zero) provides
a canonical identification j! ' j∗, and the fact that i is a closed embedding (hence proper)
provides a canonical identification i! ' i∗.

The fact that U and Y are disjoint provide canonical identifications j∗i! ' 0 ' j!i∗ and
i∗j! ' 0 ' i!j∗. The additional fact that U and Y cover X lead to dual exact triangles

i!i
! // idSh(X)

// j∗j
∗ [1] // , j!j

! // idSh(X)
// i∗i
∗ [1] // ,

where the first and middle morphisms are respectively counits and units of adjunctions. These
triangles are generalizations of the long exact sequences of pairs in cohomology.

Alternatively, we also have the dual exact triangles

idSh(X)
// j∗j

∗ ⊕ i∗i∗ // i∗i
∗j∗j

∗ [1] // , i!i
!j!j

! // j!j
! ⊕ i!i

! // idSh(X)
[1] // ,

where the first and middle morphisms result from units and counits of adjunctions respectively.
These triangles are generalizations of the Mayer–Vietoris long exact sequences of cohomology.

Now let us find the above formalism as a special case of the recollement pattern of di-
agrams (1.1) and (1.2). By inductive considerations, one can see that the above formalism
devolves from the case when X is a manifold and Y ⊂ X is a submanifold. Let us focus on this
case and consider the Weinstein manifolds M = T ∗X and N = T ∗Y . Recall from [41, 42, 43]
the microlocalization equivalence

µX : Sh(X)
∼ // Perf F (T ∗X) .

Then by an inductive sequence of applications of the recollement pattern of of diagrams (1.1)
and (1.2), we obtain commutative diagrams with horizontal maps fully faithful embeddings and
vertical maps equivalences

Sh(Y )

µY
��

� � i! // Sh(X)

µX
��

Sh(U)

µU
��

� � j∗ // Sh(X)

µX
��

Perf F (T ∗Y ) �
� i! // Perf F (T ∗X) Perf F (T ∗U) �

� j∗ // Perf F (T ∗X)

Using the natural involutive anti-symplectomorphism on a cotangent bundle, one can con-
struct Verdier duality on its Fukaya category as well [41].

1.4.3 Morse theory of integral kernels

Our expectations are guided by the well-known strategy: to prove universal statements about
objects of a category, one should realize endofunctors of the category as integral transforms and
establish canonical identities among them.

We will illustrate this with the toy case of Morse theory since our later discussion is a direct
analogue of it. For simplicity, let us work with a compact oriented manifold M . Consider
a generic pair consisting of a Morse function f : M → R and Riemannian metric g on M . Let
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c ⊂ M denote the critical locus of f , and Φt : M → M the flow along the gradient ∇gf . To
each critical point p ∈ c, associate the stable and unstable cells

Sp =
{
x ∈M | lim

t→∞
Φt(x) = p

}
, Up =

{
x ∈M | lim

t→−∞
Φt(x) = p

}
.

Finally, orient Sp and Up so that the orientation of Up × Sp agrees with that of X at p.
One formulation of Morse theory is that every cohomology class c ∈ H∗(M ;R) can be ex-

pressed in the form

c =
∑
p∈c
〈c, Up〉Sp, (1.3)

where 〈cp, Up〉 denotes the natural pairing, and we regard Sp as a cohomology class via Poincaré
duality. In other words, the stable and unstable cells form dual bases in cohomology.

To establish equation (1.3), it is useful to recast it as an equation in the cohomology of the
product X × X. Namely, each cohomology class k ∈ H∗(X × X;R) can be regarded as an
integral kernel providing an endomorphism

Φk : H∗(X;R) // H∗(X;R), Φk(c) = p2!(p
∗
1(c) ∩ k) ,

where we use Poincaré duality to integrate. Then equation (1.3) follows from the identity of
cohomology classes

∆X =
∑
p∈c

Up × Sp, (1.4)

where ∆X ⊂ X ×X is the diagonal, and hence provides the identity endomorphism. Finally, to
establish equation (1.4), one observes that the gradient flow of the Morse function

f ◦ p1 − f ◦ p2 : X ×X // R

provides a homotopy between the diagonal ∆X and the sum of external products
∑
p∈c

Up × Sp.

All in all, a pleasant aspect of the above argument is that it makes no reference to an arbitrary
cohomology class c ∈ H∗(X;R), but only involves highly structured cohomology classes such
as the diagonal ∆X and the sum of external products

∑
p∈c

Up × Sp. Furthermore, we do not

need to know a precise relation between cohomology classes k ∈ H∗(X × X;R) and arbitrary
endomorphisms Φ : H∗(X;R)→ H∗(X;R), only that there is a linear map

H∗(X ×X;R) // EndH∗(X;R), k � // Φk .

Turning from vector spaces to the setting of linear categories, one finds many examples of
the above argument. Most prominently, there is Beilinson’s universal resolution [9] of coherent
sheaves on projective space Pn by vector bundles. It suffices once and for all to introduce the
Koszul resolution of the structure sheaf O∆Pn of the diagonal ∆Pn ⊂ Pn × Pn. Then for any
coherent sheaf on Pn, convolution with the Koszul resolution produces the desired resolution by
vector bundles. What results is a concrete description of all coherent sheaves in terms of the
quiver of constituent vector bundles in the Koszul resolution.

Our sketched evidence for the recollement pattern of diagrams (1.1) and (1.2) applies the
above version of Morse theory in the setting of linear categories. We consider the product
Weinstein manifold Mop ×M where we write Mop to denote the opposite symplectic structure.
The formalism of bimodules should allow us to view Lagrangian branes L ⊂ Mop × M as
endofunctors. In particular, the diagonal brane ∆M ⊂ Mop ×M should represent the identity
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functor. The endofunctors of adjunctions appearing in the exact triangles of (1.2) should also
be represented by natural correspondences.

A familiar but key observation is that the geometry of a neighborhood of the diagonal ∆M

looks like the geometry of the cotangent bundle T ∗M . We highlight a useful elaboration: the
geometry of natural correspondences should match the geometry of the conormal bundles to the
coisotropic unstable cells.

2 Weinstein manifolds

Most of the material of this section is well-known and available in many beautiful sources [18,
19, 20, 75]. Unless otherwise stated, we will assume that all manifolds are real analytic, and all
subsets and maps are subanalytic [11, 66].

2.1 Basic notions

Definition 2.1. An exact symplectic manifold (M, θ) is a manifold M with a one-form θ such
that ω = dθ is a symplectic form. We use the term Liouville form to refer to θ.

One defines the Liouville vector field Z by the formula iZω = θ. The symplectic form ω is
an eigenvector for the Lie derivative LZω = iZdω + diZω = 0 + dθ = ω. An exact symplectic
manifold is equivalently a triple (M,ω,Z) consisting of a manifold M with symplectic form ω
and fixed vector field Z such that LZω = ω.

We will always assume that M is complete with respect to Z in the sense that Z integrates
for all time to provide an expanding action

Φt : R+ ×M //M .

Definition 2.2. A subset A ⊂M is said to be conic if it is invariant under the expanding action
in the sense that Φt(A) = A, for all t ∈ R+.

Example 2.3. Any manifold X provides an exact symplectic manifold (T ∗X, θX) given by the
cotangent bundle πX : T ∗X → X equipped with its canonical exact structure θX . The Liouville
vector field ZX generates the standard linear scaling ΦX,t along the fibers of πX .

More generally, any conic open subset A ⊂ T ∗X in particular the complement of the zero
section T ∗X \X, provides an exact symplectic manifold (A, θX |A).

By a Morse function h : M → R, we will always mean an exhausting (proper and bounded
below) function whose critical points are nondegenerate and finite in number. A vector field V
is gradient-like with respect to h if away from the critical points of h, we have dh(V ) > 0, and in
some neighborhood of the critical points, V is the gradient of h with respect to some Riemannian
metric.

Definition 2.4. By a Weinstein manifold, we will mean an exact symplectic manifold (M, θ)
that admits a Morse function h : M → R such that the Liouville vector field Z is gradient-like
with respect to h.

Example 2.5. A Weinstein cell is a Weinstein manifold (M, θ) such that θ has a single zero. It
follows that any Morse function h : M → R such that the Liouville vector field Z is gradient-like
with respect to h will have a single critical point which is a minimum.

Example 2.6. Suppose X is a compact manifold. Choose a generic Morse function fX : X → R
and Riemannian metric g, and let ∇gfX denote the resulting gradient of fX . We obtain
a fiberwise linear function FX : T ∗X → R by setting FX(x, ξ) = ξ(∇gfX |x).

Then for ε > 0 sufficiently small, the pair (T ∗X, θX + εdFX) forms a Weinstein manifold,
exhibited by the Morse function h = g + π∗XfX : T ∗X → R given by h(x, ξ) = |ξ|2g + fX(x).
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2.2 Cell decompositions

For the statements of this section, in addition to the previously mentioned works, we recommend
the excellent sources [12, 13].

Let (M, θ) be a complete exact symplectic manifold with Liouville vector field Z and expan-
ding action

Φt : R+ ×M //M .

Definition 2.7. The critical locus c ⊂M is the zero-locus of the exact structure

c = {x ∈M | θ|TxM = 0}.

The core K ⊂M is the subset

K =
{
x ∈M | lim

t→∞
Φt(x) ∈ c

}
.

The ether E ⊂M is the complement

E = M \K.

Remark 2.8. All three of the above subsets are evidently conic, and the expanding action on
the complement M \ c, and in particular the ether E, is free.

The critical locus c ⊂M is equivalently the zero-locus of the Liouville vector field Z, or the
fixed points of the expanding action Φt.

Example 2.9. For the exact symplectic manifold (T ∗B, θB), the core and critical locus are the
zero section cB = KB = B, and the ether is its complement EB = T ∗B \B.

More generally, for any conic open subset A ⊂ T ∗B and resulting exact symplectic manifold
(A, θB|A), its critical locus and core are the intersection c = K = A ∩ B, and its ether is the
complement E = A ∩ (T ∗B \B).

Now suppose (M, θ) is a Weinstein manifold. Then the critical locus c ⊂ M consists of the
finitely many critical points of a Morse function h : M → R for which Z is gradient-like.

Definition 2.10. Given a Weinstein manifold (M, θ), to each critical point p ∈ c, we associate
the stable and unstable manifolds

cp =
{
x ∈M | lim

t→∞
Φt(x) = p

}
, Cp =

{
x ∈M | lim

t→−∞
Φt(x) = p

}
,

Lemma 2.11. Given a Weinstein manifold (M, θ), for each critical point p ∈ c, the stable
manifold cp is an isotropic cell and the unstable manifold Cp is a coisotropic cell.

The coisotropic cells provide a partition

M =
∐
p∈c

Cp

while the isotropic cells partition the core

K =
∐
p∈c

cp ⊂M.

We will always perturb our Liouville form θ to be generic. Then it follows that the partition
by coisotropic cells is a Whitney stratification.
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Lemma 2.12. Given a Weinstein manifold (M, θ), the core K ⊂M is compact and its inclusion
is a homotopy-equivalence.

We will use the coisotropic cells to view the finite critical locus c ⊂ M as a poset: we say
critical points p, q ∈ c satisfy p ≤ q if and only if

Cp ∩ Cq 6= ∅.

In particular, maxima p ∈ c correspond to closed coisotropic cells Cp ⊂ M . Subsets s ⊂ c such
that p ∈ s and q ∈ c, with q ≤ p, implies q ∈ s correspond to open unions

Ms =
∐
p∈s

Cp ⊂M.

2.3 Markings

Let us first list some useful notions about conic sets in a complete exact symplectic manifold
(M, θ).

Note that the Liouville flow Φt : R+ ×M → M is free on the ether E ⊂ M and so the
quotient E/R+ is a manifold. Furthermore, since θ vanishes on the Liouville vector field Z, and
the Lie derivative satisfies LZθ = θ, it makes sense to ask whether θ is positive, zero or negative
on a tangent vector to E/R+. It is easily checked that ker(θ) ⊂ T (E/R+) provides a canonical
co-oriented contact structure.

Definition 2.13. Let (M, θ) be a complete exact symplectic manifold.
(1) The projectivization of M is the contact manifold

M∞ = E/R+

equipped with its canonical contact structure ξ = ker(θ).
More generally, the projectivization of a conic subset A ⊂M is the subset

A∞ = (A ∩ E)/R+ ⊂M∞.

(2) The cone over a subset A∞ ⊂M∞ is the conic subset

cA∞ =
{
x ∈ E | lim

t→∞
Φt(x) ∈ A∞

}
⊂M.

Remark 2.14. When (M, θ) is a Weinstein manifold, its projectivization M∞ is compact and
contactomorphic to any level set h−1(r) ⊂M of a compatible Morse function h : M → R, for r
greater than all critical values.

Next let us list some useful notions about closed sets.

Definition 2.15. Let (M, θ) be a complete exact symplectic manifold.
(1) The compactification at infinity of M is the manifold with boundary

M = ((M × (0,∞]) \ (K × {∞})) /R+ 'M ∪M∞.

More generally, the compactification at infinity of a closed subset A ⊂M is the closure

A ⊂M.

(2) The boundary at infinity of a closed subset A ⊂M is the frontier

∂∞A = A \A ⊂M∞ = M \M.
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Remark 2.16. If A ⊂ M is closed and conic, then our notation agrees in that A∞ = ∂∞A as
subsets of M∞.

Finally, we introduce the notion of a characteristic cone Λ ⊂M , which could alternatively be
called a “noncompact skeleton”. Along with satisfying natural properties stated in the definition
below, it will be a not necessarily smooth subvariety. By a subvariety Y ⊂M , we mean nothing
more than a subanalytic subset of M (or if more generality is desired, a definable subset within
some o-minimal context). We will only be interested in Y as a topological subspace of M , rather
than with any of its potential algebraic aspects. In particular, Y admits a Whitney stratification
by submanifolds of M , and following standard convention, we say Y is isotropic if the symplectic
form vanishes when restricted to each stratum.

Definition 2.17. By a marked exact symplectic manifold (M, θ,Λ), we will mean an exact
symplectic manifold (M, θ) together with a closed conic isotropic subvariety Λ ⊂M containing
the core K ⊂ Λ. We use the term characteristic cone to refer to Λ.

By a marked Weinstein manifold (M, θ,Λ), we will mean a marked exact symplectic manifold
such that the underlying exact symplectic manifold (M, θ) is a Weinstein manifold.

Remark 2.18. Given a marked exact symplectic manifold (M, θ,Λ), we can alternatively encode
the characteristic cone Λ ⊂ M by taking its projectivization Λ∞ ⊂ M∞. We recover the
characteristic cone Λ ⊂M by taking the union of the core and the cone over the projectivization

Λ = K ∪ cΛ∞ ⊂M.

2.4 Coisotropic cells

Suppose (M, θ,Λ) is a marked Weinstein manifold. Fix a critical point p ∈ c, and consider the
inclusion of the coisotropic cell ip : Cp →M .

The linear geometry of the inclusion of the coisotropic cell ip : Cp → M provides a useful
guide to keep in mind.

First, we have the normal bundle Nip → Cp appearing in the exact sequence

0 // TCp // i∗pTM // Nip // 0 .

Dually, we have the conormal bundle N∗ip = T ∗CpM → Cp appearing in the exact sequence

0 T ∗Cpoo i∗pT
∗Moo N∗ipoo 0oo .

The symplectic form ω = dθ provides an integrable isotropic foliation fp ⊂ TCp by either
taking the symplectic orthogonal fp = (TCp)

⊥ or equivalently, the symplectic partner ifpω =
N∗ip. Thus the symplectic form identifies the partial flags

fp
� � // TCp

� � // i∗pTM, N∗ip
� � // T ∗fpM

� � // i∗pT
∗M ,

where T ∗fpM ⊂ i∗pT
∗M denotes the subbundle annihilating fp ⊂ TCp ⊂ i∗pTM . Dually, it

identifies the quotient sequences

f∗p T ∗Cpoooo i∗pT
∗M,oooo Nip i∗pTM/fpoooo i∗pTMoooo .

Now consider the Hamiltonian reduction diagram

Mp Cp
qpoooo � � ip //M ,
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where ip is the inclusion of the coisotropic cell, and qp is the quotient by the integrable isotropic
foliation fp ⊂ TCp determined by ip. We use the term Hamiltonian reduction diagram with the
following constructions in mind.

To fix notation, suppose dimCp = n + k where dimM = 2n. Then we can choose (n − k)
local coordinates in a neighborhood of p such that the intersection of Cp with the neighborhood
is their zero-locus. Using the Liouville flow Φt we can extend the local coordinates to (n − k)
functions in a neighborhood of Cp such that Cp is their zero-locus. These (n − k) functions
provide a moment map for an action of Rk such that Mp is the quotient symplectic manifold.
To confirm that the leaf space is indeed a manifold, and hence a symplectic manifold, it suffices
to check that the foliation is fibered (or admits local slices). Observe that this is true locally
in Cp, in particular in a neighborhood of p. Then observe that the leaves of the foliation are
preserved by the Liouville flow Φt, and the flow of any neighborhood of p exhausts all of Cp.

With the preceding in hand, the rest of the following assertion is evident by construction.

Lemma 2.19. We have a natural marked Weinstein cell (Mp, θp,Λp) characterized by

q∗pθp = θ|Cp , Λp = qp(Λ ∩ Cp).

Remark 2.20. In the case when Λ∞ = ∅ so that Λ = K, we have Λp = qp(K ∩ Cp). If
in addition p ∈ c is maximal, so that Cp ⊂ M is closed, we have K ∩ Cp = {p}, and hence
Λp = {qp(p)}, and so Λ∞p = ∅.

2.5 Recollement cone

We continue with (M, θ,Λ) a marked Weinstein manifold.
Fix a critical point p ∈ c, and return to the Hamiltonian reduction diagram

Mp Cp
qpoooo � � ip //M ,

where ip is the inclusion of the coisotropic cell, and qp is the quotient by the integrable isotropic
foliation fp ⊂ TCp determined by ip.

Recall the natural marked Weinstein cell (Mp, θp,Λp) characterized by

q∗pθp = θ|Cp , Λp = qp(Λ ∩ Cp).

Let us observe that the inverse-image

Λp̃ = q−1
p (Λp) ⊂ Cp

is a conic isotropic subvariety such that

Λ ∩ Cp ⊂ Λp̃.

Definition 2.21. The local recollement cone Λp+ ⊂M is the conic isotropic subvariety

Λp+ = Λ ∪ Λp̃ ⊂M.

The global recollement cone Λ+ ⊂M is the conic isotropic subvariety

Λ+ = Λ ∪
∐
p∈c

Λp+ ⊂M.

Remark 2.22. In the spirit of the adjunctions to come, one could note that we can rewrite the
definition of Λp̃ ⊂ Cp in the evidently equivalent forms

Λp̃ = q−1
p qp(Λ ∩ Cp) = ipq

−1
p qpi

−1
p (Λ) ⊂ Cp.
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2.6 Open submanifolds

We continue with (M, θ,Λ) a marked Weinstein manifold.
Suppose that p ∈ c is maximal, so that the coisotropic cell ip : Cp → M is closed. It will be

useful to introduce some further structure on its normal geometry.

Definition 2.23. Given a marked Weinstein manifold (M, θ,Λ∞), and a maximal critical point
p ∈ c, a defining function mp : M → [0, 1] for the corresponding closed coisotropic cell Cp ⊂M ,
is a subanalytic function such that:

1) m−1
p (0) = Cp,

2) dmp(Z) ≤ 0,

3) 0, 1 ∈ [0, 1] are the only critical values of mp,

4) there is an open subset U ⊂M containing c \ {p} ⊂M such that U ⊂ m−1
p (1),

5) there is a compact subset W ⊂M such that dmp(Z) = 0 over the complement M \W .

Lemma 2.24. Defining functions always exist.

Proof. This is easily obtained from the basic properties of subanalytic functions [11, 66]. �

We will say that a subset s ⊂ c is open if p ∈ s and q ∈ c with q ≤ p implies q ∈ s. Open
subsets s ⊂ c correspond to open unions of coisotropic cells

Ms =
∐
p∈s

Cp.

Lemma 2.25. For any open subset s ⊂ c, we obtain a natural marked Weinstein manifold
(Ms, θs,Λs) by restriction

θs = θ|Ms , Λs = Λ ∩Ms.

Proof. We must produce a Morse function hs : Ms → R such that Zs = Z|Ms is gradient-like
with respect to hs. By induction, it suffices to assume that c \ s is a single maximal critical
point p, so the corresponding coisotropic cell Cp ⊂M is closed.

Let h : M → R be a Morse function such that Z is gradient-like with respect to h. Choose
a defining function mp : M → [0, 1] for the closed coisotropic cell Cp = M \Ms. Consider the
new function

hs = h+ 1/mp : Ms
// R .

By construction, we have

dhs(Zs) = dh(Z)− dmp(Z)/m2
p ≥ 0

with equality if and only if dh = 0 hence if and only if we are at a point of s. Furthermore, there
is a neighborhood of s on which dmp = 0, and so since Z is gradient-like with respect to h, we
conclude Zs is gradient-like with respect to hs. �

Remark 2.26. In the case when Λ∞ = ∅ so that Λ = K, we have Λs = K ∩Ms. Note that the
core Ks ⊂Ms is contained in K ∩Ms, with equality if and only if Ms = M .

3 Fukaya category

In this section, we survey the construction and basic properties of the stable infinitesimal Fukaya
category of a Weinstein manifold [41, 42, 43, 52, 55].
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3.1 Background structures

Let (M, θ) be a Weinstein manifold. We briefly review the standard additional data needed to
consider Lagrangian branes and the Fukaya category.

We will work with compatible almost complex structures J ∈ End(TM) that are invariant
under dilations near infinity. The corresponding Riemannian metrics present M near infinity as
a metric cone over the projectivization M∞. The space of all such compatible almost complex
structures is nonempty and convex.

Given an almost complex structure J ∈ End(TM), we can speak about the complex canonical
line bundle κM = (∧dimM/2T holM)−1. A bicanonical trivialization η is an identification of
the tensor-square κ⊗2

M with the trivial complex line bundle. The obstruction to a bicanonical
trivialization is twice the first Chern class 2c1(M) ∈ H2(M,Z), and all bicanonical trivializations
form a torsor over the gauge group Map(M,S1). Forgetting the specific almost complex structure
J ∈ End(TM), we will use the term bicanonical trivialization to refer to a section of bicanonical
trivializations over the space of compatible almost complex structures.

Any symplectic manifold M is canonically oriented, or in other words, after choosing a Rie-
mannian metric, the structure group of TM is the special orthogonal group. A spin structure σ
is a further lift of the structure group to the spin group. The obstruction to a spin structure is
the second Stiefel–Whitney class w2(M) ∈ H2(M,Z/2Z), and all spin structures form a torsor
over the group H1(M,Z/2Z).

Definition 3.1. A Weinstein target (M, θ, η, σ) is a Weinstein manifold (M, θ) together with
a bicanonical trivialization η and spin structure σ. We will often suppress mention of the latter
structures when they are fixed throughout.

3.2 Lagrangian branes

By an exact Lagrangian submanifold L ⊂ M , we mean a closed but not necessarily compact
submanifold of dimension dimM/2 such that the restriction θ|L is an exact one-form, so in
particular, ω|L = 0 where ω = dθ.

To ensure reasonable behavior near infinity, we place two assumptions on our exact Lag-
rangian submanifolds L ⊂M . First, we insist that the compactification L ⊂M is a subanalytic
subset. Along with other nice properties, this implies the following two facts:

1. The boundary at infinity ∂∞L ⊂M∞ is an isotropic subvariety.

2. For h : M → R a Morse function such that Z is gradient-like with respect to h, there is
a real number r > 0 such that the restricted function

h : L ∩ h−1(r,∞) // R

has no critical points.

Second, we also assume the existence of a perturbation ψ that moves L to a nearby exact
Lagrangian submanifold that is tame (in the sense of [63]) with respect to a conic metric.

Definition 3.2. Fix a field k.
A brane structure on an exact Lagrangian submanifold L ⊂ M is a three-tuple (E , α, [)

consisting of a flat finite-dimensional k-vector bundle E → L, along with a grading α (with
respect to the given compatible class of bicanonical trivializations) and a pin structure [.

A Lagrangian brane in M is a four-tuple (L, E , α, [) of an exact Lagrangian submanifold
L ⊂ M equipped with a brane structure (E , α, [). When there is no chance for confusion, we
often write L alone to signify the Lagrangian brane.

The objects of the Fukaya category ObF (M) comprise all Lagrangian branes L ⊂M .
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Here is a brief reminder on what a grading and pin structure entail. First, consider the bundle
of Lagrangian planes LagM →M , and the squared phase map

α : LagM // C×, α(L) = η(∧dimM/2L)2 .

Given a Lagrangian submanifold L ⊂M , we obtain the restricted map

α : L // C×, α(x) = α(TxL) .

A grading of L is a lift

α : L // C, α = exp ◦α .

The obstruction to a grading is the Maslov class [α] ∈ H1(L,Z), and all gradings form a torsor
over the group H0(L,Z).

Second, and recall that the (positive) pin group Pin+(n) is the double cover of the orthogonal
group O(n) with center Z/2Z × Z/2Z. A pin structure [ on a Riemannian manifold L of
dimension n is a lift of the structure group of TL along the map

Pin+(n) // // O(n).

The obstruction to a pin structure is the second Stiefel–Whitney class w2(L) ∈ H2(L,Z/2Z),
and all possible pin structures form a torsor over the group H1(L,Z/2Z).

3.3 Intersections

Graded linear spans of intersection points provide the morphisms in the Fukaya category F (M).
Given a finite collection of Lagrangians branes L0, . . . , Ld ∈ ObF (M), we must perturb them
so that their intersections occur in some bounded domain. To organize the perturbations, we
recall the inductive notion of a fringed set.

A fringed set R1 ⊂ R+ is any interval of the form (0, r) for some r > 0. A fringed set
Rd+1 ⊂ Rd+1

+ is a subset satisfying the following:

1. Rd+1 is open in Rd+1
+ .

2. Under the projection π : Rd+1 → Rd forgetting the last coordinate, the image π(Rd+1) is
a fringed set.

3. If (r1, . . . , rd, rd+1) ∈ Rd+1, then (r1, . . . , rd, r
′
d+1) ∈ Rd+1 for 0 < r′d+1 < rd+1.

A Hamiltonian function H : M → R is said to be controlled if near infinity it is equal to
a conical coordinate. Given a finite collection of Lagrangians branes L0, . . . , Ld ∈ ObF (M),
and controlled Hamiltonian functions H0, . . . ,Hd, we may choose a fringed set R ⊂ Rd+1 such
that for (δd, . . . , δ0) ∈ R, there is a compact region W ⊂M such that for any i 6= j, we have

ϕHi,δi(Li) ∩ ϕHj ,δj (Lj) lies in W .

By a further compactly supported Hamiltonian perturbation, we may also arrange so that the
intersections are transverse.

We consider finite collections of Lagrangian branes L0, . . . , Ld ∈ ObF (M) to come equipped
with such perturbation data, with the brane structures (Ei, αi, [i) and taming perturbations ψi
transported via the perturbations.
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Definition 3.3. Given a finite collection of Lagrangian branes L0, . . . , Ld ∈ ObF (M), for
branes Li, Lj with i < j, the graded vector space of morphisms between them is the direct sum

homF (M)(Li, Lj) =
⊕

p∈ψi(ϕHi,δi (Li))∩ψj(ϕHj,δj (Lj))

Hom(Ei|p, Ej |p)[−deg(p)].

where the integer deg(p) denotes the Maslov grading at the intersection.

It is worth emphasizing that the salient aspect of the above perturbation procedure is the
relative position of the perturbed branes rather than their absolute position. The following
informal viewpoint can be a useful mnemonic to keep the conventions straight. In general, we
always think of morphisms as “propagating forward in time”. Thus to calculate the morphisms
homF (M)(L0, L1), we have required that L0, L1 are perturbed near infinity so that L1 is further
in the future than L0. But what is important is not that they are both perturbed forward in
time, only that L1 is further along the timeline than L0. So for example, we could perturb L0, L1

near infinity in the opposite direction as long as L0 is further in the past than L1.

It is also worth noting the basic asymmetry of morphisms devolving from this definition.
Because of the directionality of perturbations near infinity, there is no general comparison of
homF (M)(L0, L1) and homF (M)(L1, L0) unlike when the branes are compact and a Calabi–Yau
relation holds.

3.4 Compositions

Signed counts of pseudoholomorphic polygons provide the differential and higher composition
maps of the A∞-structure of the Fukaya category F (M). We use the following approach of
Sikorav [63] (or equivalently, Audin–Lalonde–Polterovich [5]) to ensure that the relevant moduli
spaces are compact, and hence the corresponding counts are finite.

First, a Weinstein manifold (M, θ) equipped with a compatible almost complex structure
conic near infinity is tame in the sense of [63]. To see this, it is easy to derive an upper bound
on its curvature and a positive lower bound on its injectivity radius.

Next, given a finite collection of branes L0, . . . , Ld ∈ ObF (M), denote by L the union of
their perturbations ψi(ϕHi,δi(Li)) as described above. By construction, the intersection of L
with the region M \W is a tame submanifold (in the sense of [63]). Namely, there exists ρL > 0
such that for every x ∈ L, the set of points y ∈ L of distance d(x, y) ≤ ρL is contractible, and
there exists CL giving a two-point distance condition dL(x, y) ≤ CLd(x, y) whenever x, y ∈ L
with d(x, y) < ρL.

Now, consider a fixed topological type of pseudoholomorphic map

u : (D, ∂D) // (M,L).

Assume that all u(D) intersect a fixed compact region, and there is an a priori area bound
Area(u(D)) < A. Then as proven in [63], one has compactness of the moduli space of such
maps u. In fact, one has a diameter bound (depending only on the given constants) constraining
how far the image u(D) can stretch from the compact set.

In the situation at hand, for a given A∞-structure constant, we must consider pseudoholo-
morphic maps u from polygons with labeled boundary edges. In particular, all such maps u
have image intersecting the compact set given by a single intersection point. The area of the
image u(D) can be expressed as the contour integral

Area(u(D)) =

∫
u(∂D)

θ.
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Since each of the individual Lagrangian branes making up L is exact, the contour integral only
depends upon the integral of θ along minimal paths between intersection points. Thus such
maps u satisfy an a priori area bound. We conclude that for each A∞-structure constant, the
moduli space defining the structure constant is compact, and its points are represented by
maps u with image bounded by a fixed distance from any of the intersection points.

Definition 3.4. Given a finite collection of Lagrangian branes L0, . . . , Ld ∈ ObF (M), the
composition map

md : homF (M)(L0, L1)⊗ · · · ⊗ homF (M)(Ld−1, Ld)→ homF (M)(L0, Ld)[2− d]

is defined as follows. Consider elements pi ∈ hom(Li, Li+1), for i = 0, . . . , d − 1, and pd ∈
hom(L0, Ld). Then the coefficient of pd in md(p0, . . . , pd−1) is defined to be the signed sum
over pseudoholomorphic maps from a disk with d+1 counterclockwise cyclically ordered marked
points mapping to the pi and corresponding boundary arcs mapping to the perturbations of Li+1.
Each map contributes according to the holonomy of its boundary, where adjacent perturbed
components Li and Li+1 are glued with pi.

3.5 Coherence

In the preceding sections, we have described the objects, morphisms, and compositions of the
Fukaya category F (M). As explained in the fundamental sources [22, 55], there are a large num-
ber of details to organize to be sure to obtain an honest A∞-category. In particular, calculations
require branes be in general position, and hence must be invariant under suitable perturbations.
In the setting of noncompact branes, we have additional perturbations near infinity to keep
track of. In particular, at first pass, the constructions given only provide what might be called
a compatible collection of directed An-categories, for all n. Here An denotes Stasheff’s operad
of partial associative operations [64, 65], and we use the term directed as in [55]. The former
arises since we only define finitely many composition coefficients at one time, and the latter
since our perturbations near infinity are directed “forward in time”. To confirm the coherence
of the definitions, one can appeal to a refined version of the well-known invariance of Floer
calculations under Hamiltonian isotopies. We include a brief discussion here (largely borrowed
from [42]) to explain the key ideas behind this approach.

Let h : M → R be a Morse function compatible with the Weinstein structure, in particular,
providing a conical coordinate near infinity.

Definition 3.5. By a one-parameter family of closed (but not necessarily compact) submanifolds
(without boundary) of M , we mean a closed submanifold

L ↪→ R×M

satisfying the following:

1. The restriction of the projection pR : R×M → R to the submanifold L is nonsingular.

2. There is a real number r > 0, such that the restriction of the product pR×h : R×M → R×R
to the subset {h > r} ∩ L is proper and nonsingular.

3. There is a compact interval [a, b] ↪→ R such that the restriction of the projection pM :
R×M →M to the submanifold p−1

R ([R \ [a, b]) ∩ L is locally constant.

Remark 3.6. Conditions (1) and (2) will be satisfied if the restriction of the projection pR :
R×M → R to the closure L ↪→M is nonsingular as a stratified map, but the weaker condition
stated is a useful generalization. It implies in particular that the fibers Ls = p−1

R (s) ∩ L ↪→ M
are all diffeomorphic, but imposes no requirement that their boundaries at infinity should all
be homeomorphic as well.
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Definition 3.7. By a one-parameter family of tame Lagrangian branes in M , we mean a one-
parameter family of closed submanifolds L ↪→ R×M such that the fibers Ls = p−1

R (s)∩L ↪→M
also satisfy:

1. The fibers Ls are exact tame Lagrangians with respect to the symplectic structure and
any almost complex structure conical near infinity.

2. The fibers Ls are equipped with a locally constant brane structure (Es, αs, [s) with respect
to the given background classes.

Remark 3.8. Note that if we assume that L0 is an exact Lagrangian, then Ls being an exact
Lagrangian is equivalent to the family L being given by the flow ϕHs of the vector field of
a time-dependent Hamiltonian Hs : M → R. Note as well that a brane structure consists of
topological data, so can be transported unambiguously along the fibers of such a family.

Remark 3.9. It is important for various applications of the theory of this section that we
consider one-parameter families of tame Lagrangian branes L ↪→ R ×M such that the fiber
branes Ls ⊂ M are not constant near infinity. Thus in general the fiber branes will not be
isomorphic objects of F (M), though we will see that their Floer-pairing with respect to certain
test branes will be invariant.

The rest of this section will be devoted to the following statement of Floer invariance. It is
the basic instance (going beyond the foundational results of [22, 55]) of the general pattern that
confirms F (M) is a well-defined A∞-category.

Proposition 3.10. Suppose Ls is a one-parameter family of tame Lagrangian branes in M .
Suppose L′ is a fixed test brane which is disjoint from Ls near infinity for all s. Suppose Ls is
transverse to L′ except for finitely many points.

Then for any a, b with La and Lb transverse to L′, the Floer chain complexes CF(La, L
′) and

CF(Lb, L
′) are quasi-isomorphic.

Before proving the proposition in general, it is convenient to first prove the following special
case.

Lemma 3.11. Suppose Ls is one-parameter family of tame Lagrangian branes in M . Suppose L′

is a f ixed test object which is disjoint from Ls near inf inity for all s.
Fix s0 and assume Ls0 is transverse to L′. Then there is an ε > 0 so that for all s1 ∈

(s0 − ε, s0 + ε), the Floer chain complexes CF(Ls0 , L
′) and CF(Ls1 , L

′) are quasi-isomorphic.

Proof. By our assumptions on the tame behavior (in the sense of [63]) of Ls0 and L′ near
infinity, the moduli spaces giving the differential of CF(Ls0 , L

′) are compact. This follows from
the a priori C0-bound: there is some r0 � 0, such that no disk in the moduli space leaves the
region h < r0, where h : M → R is a compatible Morse function.

Choose some r1 > r0. Then for very small ε > 0 and any s1 ∈ (s0 − ε, s0 + ε), we may
decompose the motion Ls0  Ls1 into two parts: first, a motion Ls0  L supported in the
region h > r1; and then second, a compactly supported motion L  Ls1 . We must show that
each of the above two motions leads to a quasi-isomorphism.

First, for the motion Ls0  L, since we have not changed Ls0 or L′ in the region h < r0,
the same a priori C0-bounds of [63] hold (they only depend on the Lagrangians in the region
h < r0), and the pseudoholomorphic strips for the pair (Ls0 , L

′) and for the pair (L,L′) are in
fact exactly the same (we could perversely attach “wild” non-intersecting ends to either and it
would not make a difference.) Thus we can take the continuation map to be the identity.

Second, the motion L  Ls1 is compactly supported, so standard PDE techniques provide
a continuation map. �
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Remark 3.12. In the proof of the lemma, one should probably not use the term “continuation
map” for the quasi-isomorphism associated to the first motion Ls0  L. Rather, it is an example
of the more general setup of parameterized moduli spaces. In the above setting, one can obtain
a uniform C0-bound over the family, so the parameterized moduli space is compact, and hence
one can apply standard cobordism arguments to prove the matrix coefficients at the initial and
final time are the same.

Proof of Proposition 3.10. By the previous lemma, it suffices to show that for any s0

with Ls0 not (necessarily) transverse to L′, there is a small ε > 0 such that the Floer chain
complexes CF(Ls0−ε, L

′) and CF(Ls0+ε, L
′) are quasi-isomorphic.

To see this, fix a compatible Morse function h : M → R, and a bump function b : R → R
such that the composition b ◦ h : M → R is identically 0 near infinity and 1 on a compact
set containing all of the critical points of h and (possibly non-transverse) intersection points
Ls0 ∩ L′.

Let Hs : M → R be a (time-dependent) Hamiltonian giving the motion Ls. The product
Hamiltonian H̃s = (b ◦ h) · Hs : M → R gives a family L̃s through the base object Ls0 satis-
fying: (1) L̃s is transverse to L′ whenever |s − s0| is small and nonzero, and (2) L̃s is equal
to Ls0 near infinity. Therefore since the motion of L̃s is compactly supported, standard PDE
techniques provide a continuation map giving a quasi-isomorphism between CF(L̃s0−ε, L

′) and
CF(L̃s0+ε, L

′), for small enough ε > 0.
Finally, returning to the bump function b, one can construct motions Ls0−ε  L̃s0−ε and

L̃s0+ε  Ls0+ε which are supported near infinity and thus in particular always transverse to L′.
Thus we may apply the previous lemma to obtain quasi-isomorphisms between CF(Ls0−ε, L

′)
and CF(L̃s0−ε, L

′), and similarly, between CF(L̃s0+ε, L
′) and CF(Ls0+ε, L

′). Putting together
the above, we obtain a quasi-isomorphism between CF(Ls0−ε, L

′) and CF(Ls0+ε, L
′). �

Remark 3.13. The above proposition (which is a condensed form of arguments of [41, 43]
and appears explicitly in [42] for cotangent bundles) is closely related to Question 1.3 of Oh’s
paper [44] which asks whether a homology-level continuation map constructed by a careful
limiting argument with PDE techniques is induced by a chain-level morphism. While we have
not investigated this, it is not hard to believe that the quasi-isomorphism of the above proposition
provides the desired lift.

3.6 Stabilization

It is convenient to work interchangeably with small idempotent-complete pre-triangulated k-
linear A∞-categories [22, 55] when thinking about Fukaya categories and small stable idempo-
tent-complete k-linear ∞-categories [34, 35] when thinking about abstract constructions. They
have equivalent homotopy theories, and we lose nothing by going back and forth. In what
follows, all of the specific assertions we will use can be found in [10].

Definition 3.14. Let C, C′ be stable ∞-categories. A functor F : C → C′ is said to be

(1) continuous if it preserves coproducts,

(2) proper if it preserves compact objects,

(3) exact if it preserves zero objects and exact triangles (equivalently, finite colimits).

It is convenient to work alternatively within two related k-linear contexts.

Definition 3.15. We denote by Stk the symmetric monoidal ∞-category of stable presentable
k-linear∞-categories with morphisms continuous functors. The monoidal unit is the∞-category
Mod k of k-chain complexes.
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We denote by stk the symmetric monoidal ∞-category of small stable idempotent-complete
k-linear ∞-categories with morphisms exact functors. The monoidal unit is the ∞-category
Perf k of perfect k-chain complexes.

Definition 3.16. The big stabilization Mod C ∈ Stk of a small k-linear ∞-category C is the
stable presentable k-linear differential graded category of A∞-right modules

Cop //Mod k.

The small stabilization Perf C ∈ stk is the small k-linear full ∞-subcategory of Mod C con-
sisting of compact objects (summands of finite colimits of representable objects).

Lemma 3.17. For a small k-linear ∞-category C, the Yoneda embedding is fully faithful

Y : C �
� // Perf C, YL(P ) = homC(P,L) .

If C ∈ stk, then the Yoneda embedding is an equivalence.

Corollary 3.18. For a small k-linear ∞-category C, forming its stabilization canonically com-
mutes with forming its opposite category

Perf(Cop) ' Perf(C)op.

Lemma 3.19. Forming big stabilizations is a faithful symmetric monoidal functor

Mod : stk // Stk .

The monoidal dual of C ∈ stk is the opposite category Cop.
The monoidal dual of Mod C ∈ Stk is the restricted opposite category Mod(Cop).

Remark 3.20. We can recover C ∈ stk from Mod C ∈ Stk by passing to compact objects
C = (Mod C)c. The image of the morphism Mod : homstk(C, C′) → homStk(Mod C,Mod C′)
comprises proper functors.

Corollary 3.21. For C, C′ ∈ stk, there are canonical equivalences

Cop ⊗ C′ ∼ // homstk(C, C′) ,

Mod(Cop ⊗ C′) ' Mod(Cop)⊗Mod(C′) ∼ // homStk(Mod C,Mod C′) .

Definition 3.22. The perfect Fukaya category Perf F (M) is the small stabilization of F (M).
The stable Fukaya category ModF (M) is the big stabilization of F (M).

3.7 Singular support

While calculations among Lagrangian branes reflect quantum topology, we nevertheless have
access to their underlying Lagrangian submanifolds. We take advantage of this in the following
definition.

Definition 3.23. Fix an object L ∈ Perf F (M).

(1) The null locus n(L) ⊂ M is the conic open subset of points x ∈ M for which there exists
a conic open set U ⊂M containing x such that we have the vanishing

homF (M)(L,P ) ' 0, for any P ∈ F (M) with P ⊂ U, ∂∞P ⊂ U∞.
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(2) The singular support ss(L) ⊂M is the conic closed complement

ss(L) = M \ n(L).

Remark 3.24. For cotangent bundles, under the equivalence of branes and constructible sheaves
recalled in the next section, the above notion of singular support for branes coincides with the
traditional notion of singular support of sheaves.

Definition 3.25. Let (M, θ,Λ) be a marked Weinstein manifold.
We define the full subcategory PerfΛ F (M) ⊂ Perf F (M) to comprise objects L ∈ Perf F (M)

with singular support satisfying ss(L) ⊂ Λ.

Lemma 3.26. PerfΛ F (M) is a small stable idempotent-complete k-linear ∞-category.
If Λ1 ⊂ Λ2, then PerfΛ1 F (M) ⊂ PerfΛ2 F (M), and Perf F (M) = ∪Λ PerfΛ F (M).

Proof. The singular support condition is clearly preserved by extensions and summands. �

In the remainder of this section, we explain (without proof) how to calculate the projectiviza-
tion of the singular support. By induction using recollement, this provides a complete picture of
the singular support. We will not need this material for any further developments, but include
it to help orient the reader.

Fix a finite collection of Lagrangian branes Li ∈ F (M), for i ∈ I, and let V = ∪i∈ILi ⊂ M
denote the Lagrangian subvariety given by their union.

Lemma 3.27. The boundary at infinity ∂∞V ⊂M∞ is a closed Legendrian subvariety.

Proof. By dilation, we can contract V ⊂M to a conical Lagrangian subvariety V c ⊂M . Then
we need only observe that ∂∞V = ∂∞V c. �

Let ∂∞smV ⊂ ∂∞V denote the smooth locus. Given a point x ∈ ∂∞smV , we can find a small
Legendrian sphere S(x) ⊂ M∞ centered at x, and simply linked around ∂∞smV . Then we can
find a Lagrangian brane B(x) ⊂ M diffeomorphic to a ball, and with boundary at infinity
∂∞B(x) = S(x). The particular grading on B(x) will play no role.

Proposition 3.28. For an object L ∈ Perf F (M) in the perfect envelope of the finite collection
Li ∈ F (M), for i ∈ I, the projectivization of its singular support ss(L)∞ ⊂ M∞ is the closure
of the subset{

x ∈ ∂∞smV | homF (M)(L,B(x)) 6' 0
}
.

Corollary 3.29. The projectivization of the singular support ss(L)∞ ⊂ M∞ is a Legendrian
subvariety.

3.8 Cotangent bundles

We briefly remind the reader of the equivalence between branes in a cotangent bundle and
constructible sheaves on the base manifold.

Let X be a compact manifold with cotangent bundle π : T ∗X → X and projectivization
π∞ : T∞X → X. For simplicity, let us assume that X is equipped with an orientation and
spin structure. Then as explained for instance in Example 2.6, we can view T ∗X as a Weinstein
manifold with a canonically trivial canonical bundle and canonical spin structure.

Definition 3.30. Let Sh(X) denote the differential graded category of complexes of sheaves
on X with constructible cohomology.
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Definition 3.31. Given an object F ∈ Sh(X), we write ssF ⊂ T ∗X for its singular support,
and ss∞F ⊂ T∞X for the projectivization of its singular support.

Given a Whitney stratification S = {Xα}α∈A, we define its conormal bundle and projec-
tivized conormal bundle to be the unions

T ∗SX =
∐
α∈A

T ∗XαX ⊂ T
∗X, T∞S X =

∐
α∈A

T∞XαX ⊂ T
∞X.

Definition 3.32. Suppose Λ ⊂ T ∗X is a conical Lagrangian subvariety. Let ShΛ(X) ⊂ Sh(X)
denote the full subcategory of complexes of sheaves with ssF ⊂ Λ.

Suppose S = {Xα}α∈A is a Whitney stratification of X. Let ShS(X) ⊂ Sh(X) denote the
full subcategory of complexes of sheaves with S-constructible cohomology.

Lemma 3.33. For a Whitney stratification S, we have ShS(X) = ShT ∗SX(X).

Now let i : Y → X be a locally closed submanifold with frontier ∂Y = Y \ Y . On the one
hand, we have the standard and costandard extensions i∗kY , i!kY ∈ Sh(X).

On the other hand, we have corresponding Lagrangian branes constructed as follows. Choose
a non-negative function m : X → R≥0 with zero-set precisely ∂Y ⊂ X.

Definition 3.34. We define the standard and costandard Lagrangians LY ∗, LY ! ∈ F (T ∗X) to
be the fiberwise translations

LY ∗ = Γd logm + T ∗YX, LY ! = −Γd logm + T ∗YX

equipped with the orientation bundle orY , and canonical gradings and spin structures.

We have the following from [41, 42, 43].

Theorem 3.35. There is a canonical equivalence

µX : Sh(X)
∼ // Perf F (T ∗X)

such that µX(i∗kY ) ' LY ∗, µX(i!kY ) ' LY !.
Furthermore, we have ss∞F = ss∞ µX(F), and hence for a conical Lagrangian subvariety

Λ ⊂ T ∗X containing the zero section, µX restricts to an equivalencez

µX : ShΛ(X)
∼ // PerfΛ F (T ∗X) .

There are various extensions of the above result to noncompact manifolds X, but we will
only call upon the following expected generalization in support of the anticipated recollement
pattern sketched in the next section.

Suppose X is a manifold whose noncompactness is concentrated at single conical end. In
other words, we have a manifold Y with boundary ∂Y such that Y = Y

∐
∂Y is compact, and

an identification

X ' Y
∐
∂Y

(∂Y × [0,∞)).

We can equivalently assume X is equipped with a Morse function fX : X → R and Riemannian
metric g such that the flow of the gradient ∇gfX exhibits the conical end as a metric product.

Consider the fiberwise linear function FX : T ∗X → R defined by FX(x, ξ) = ξ(∇gfX |x), and
the Morse function h = g + π∗XfX : T ∗X → R defined by h(x, ξ) = |ξ|2g + fX(x). For ε > 0
sufficiently small, the pair (T ∗X, θX + εdFX) should form a Weinstein manifold exhibited by
the Morse function h.
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Now suppose in addition that S = {Xα}α∈A is a Whitney stratification with strata Xα ⊂ X
that are conical near the end. In other words, we assume that the strata Xα are transverse
to ∂Y inside of X, and the above identification restricts to an identification

Xα = (Xα ∩ Y )
∐

(Xα∩∂Y )

((Xα ∩ ∂Y )× [0,∞)).

We can equivalently assume the strata are invariant under the flow of the gradient of our Morse
function along the conical end.

Now let i : Y → X be a union of strata. On the one hand, we have the standard and
costandard extensions i∗kY , i!kY ∈ ShS(X).

On the other hand, we have the corresponding standard and costandard branes LY ∗, LY ! ∈
F (T ∗X) constructed with a non-negative function m : X → R≥0 invariant under the flow of the
gradient of our Morse function along the conical end.

With only slight modifications, the arguments used to establish Theorem 3.35 should provide
the following proposition. To realize it, one could embed X as an open submanifold of a compact
manifold Z and interpret all of the calculations to take place there. In particular, one could
extend all sheaves by zero off of X and work with the corresponding branes in T ∗Z as prescribed
by Theorem 3.35. Thanks to our perturbation framework and diameter bounds on disks, the
relevant geometry should be equivalent to that within T ∗X.

Now we expect there is a canonical functor

µX : ShS(X) // Perf F (T ∗X)

such that µX(i∗kY ) ' LY ∗, µX(i!kY ) ' LY !.

Remark 3.36. We will return to the above in the special situation when X itself is a Wein-
stein manifold, with fX a Morse function compatible with its Liouville vector field, and S the
stratification by coisotropic cells.

4 Adjunctions for branes

Due to the technical demands of the material, this section will be more informal than the
others. We outline the expected recollement pattern of diagrams (1.1) and (1.2), only sketching
the constructions and results that we anticipate should hold.

4.1 Bimodules via correspondences

Definition 4.1. Let (M, θ) be an exact symplectic manifold. The opposite exact symplectic
manifold (Mop,−θ) is the same underlying manifold M equipped with the negative Liouville
form, and hence negative symplectic form −ω = −dθ.

When (M, θ) is equipped with background structures, we transport them by the identity to
obtain background structures on (Mop,−θ). In particular, given a compatible almost complex
structure J ∈ End(TM), we take −J ∈ End(TMop). Thus we have an identity of bicanonical
line bundles κMop ' κ−1

M and so a bicanonical trivialization for (M, θ) induces one for (Mop,−θ).

Lemma 4.2. If (M, θ) is a Weinstein manifold, its opposite (Mop,−θ) is a Weinstein manifold
with the same Liouville vector field.

Proof. If θ = iZω, then −θ = iZ(−ω). �
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Proposition 4.3. There is a canonical identification

F (M)
∼ // F (Mop)op

given on Lagrangian branes by the duality

L = (L, E , α, [) � // L′ = (L, E∨,−α, [) .

Proof. Our perturbation framework is compatible with the assertion. �

Definition 4.4. Suppose M , N are Weinstein targets.
A Lagrangian correspondence is an object K ∈ F (Mop ×N). The dual correspondence K′ ∈

F (Nop ×M) is the matched object under the equivalence F (Mop ×N) ' F (Nop ×M)op.

Suppose M,N are Weinstein targets, and K ∈ F (Mop × N) a Lagrangian correspondence.
Let L ∈ F (M), P ∈ F (N) be test branes.

One should be able to obtain a functor

fK : F (M) //ModF (N)

or equivalently a morphism

fK ∈ homStk(ModF (M),ModF (N)) ' Mod(F (Mop)⊗ F (N))

given by the functorial construction

fK(L)(P ) = homF (Mop×N)(L
′ × P,K).

There are (at least) two approaches one might take to confirm that the above definition
is sensible. The two approaches we will mention here should lead to homotopically equivalent
theories.

On the one hand, one could adopt the geometric formalism of Lagrangian correspondences
as developed by Wehrheim and Woodward [67, 68, 69, 70, 71, 72] and Ma’u [39] and count
pseudoholomorphic quilts to provide the structure constants of an A∞-functor.

On the other hand, one should be able to adopt the algebraic formalism of bimodules. To
implement this, unwinding the Yoneda embedding, one needs to know that the product on
branes induces a bilinear functor

F (Mop)× F (N) // F (Mop ×N) .

With this in hand, one could then define the module fK(L) as the composition

fK(L) : F (N) //Mod k, fK(L)(P ) = homF (Mop×N)(L
′ × P,K).

This should have the simultaneous functoriality in P to make fK(L) a module, and the functo-
riality in L to make fK a functor. Note that establishing the existence of the product functor is
much less than proving that the induced linear functor

F (Mop)⊗ F (N) // F (Mop ×N)

is an equivalence. Coupled with Corollary 3.21 in mind, this stronger assertion would show
all functors are given by kernels, but this is not necessary for the aims outlined above. As
far as we know, the existence of the product functor is not in the literature, though related
homotopical algebra is available [31, 38, 49, 50] and some readers may prefer this point of view
to the intricacies of Lagrangian correspondences and pseudoholomorphic quilts.

With the appropriate brane structure, the diagonal ∆M ⊂ Mop × M Lagrangian
correspondence should give an endofunctor f∆M

of F (M) canonically equivalent to the iden-
tity idF (M). A similar assertion in parallel settings can be found in many places inclu-
ding [67, 68, 69, 70, 71, 72].
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Remark 4.5. The above integral transform formalism is tuned to constructing right adjoints.
There is an alternative dual formalism suited to constructing left adjoints.

Given a Lagrangian correspondence K ∈ F (Mop×N), and test branes L ∈ F (M), P ∈ F (N),
one should be able also to obtain a functor

gK : F (M)op //Mod(F (N)op)

given by the functorial construction

gK(L)(P ) = homF (Mop×N)(K, L
′ × P ).

Note this should be contravariant in the Lagrangian correspondence K.

If the above produces a proper functor, then in turn it can be interpreted as a functor
gK : Perf F (M)→ Perf F (N).

With the appropriate brane structure, the diagonal ∆M ⊂ Mop ×M Lagrangian correspon-
dence should give an endofunctor g∆M

of F (M) canonically equivalent to the identity idF (M).
(One should not expect the same brane structure on ∆M to result in both functors f∆M

and g∆M

being the identity.)

4.2 Closed cell correspondences

Fix a maximal critical point p ∈ c, so that the corresponding coisotropic cell is closed, and
consider the Hamiltonian reduction diagram

Mp Cp
qpoooo � � ip //M,

where ip is the inclusion of the coisotropic cell, and qp is the quotient by the integrable isotropic
foliation determined by ip.

Define the closed cell correspondence

Cp ∈ F (Mop
p ×M)

to be the Lagrangian submanifold Cp ⊂ Mop
p ×M equipped with a brane structure. Since we

are only sketching constructions, we will not specify the details of particular brane structures
throughout what follows.

We will sketch that the correspondence construction

fCp : ModF (Mp) //ModF (M)

in fact should restrict to a fully faithful representable functor

i : F (Mp) // F (M).

Observe that the geometric composition of a Lagrangian brane L ⊂Mp with the correspon-
dence Cp is nothing more than the pullback i−1

p L ⊂ M . The object i(L) representing fCp(L)
should be the pullback i−1

p L ⊂ M with an induced brane structure. This is a geometric asser-
tion whose proof should be similar to the statement that the diagonal brane gives the identity
correspondence.

To see why the functor should be fully faithful, consider the fiber Fp = i−1
p (p) ⊂ Cp and its

cotangent bundle T ∗Fp. We can find a small open neighborhood N (Cp) ⊂M of the coisotropic
cell Cp ⊂ M and a symplectic identification N (Cp) ' Mp × Up, where the factor Up ⊂ T ∗Fp is
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a small open neighborhood of the zero section. Now observe that with this setup, the functor i
should be given by taking the product with the zero section

F (Mp) // F (Mp × Up), L � // L× Fp.

Following our perturbation framework, near infinity we perturb such products by a product of
a perturbation of L and a perturbation of Fp. For the latter, the perturbation will be to the
graph of the differential of a function on Fp which is linear at infinity. In particular, we can
take the function on Fp to have a single critical point.

Now it should suffice to show that all disks involved in the calculation of morphisms between
such products lie in N (Cp). Following for example [41, 43], this can be accomplished as follows.
First, by contracting the first factor with the Liouville vector field of Mp, we can ensure arbi-
trarily small energy bounds on the disks. Then we can invoke [63] so that the energy bounds
provide sufficient diameter bounds.

Remark 4.6. For a fixed marking Λp ⊂Mp, consider the induced marking

Λp+ = K ∪ q−1
p (Λp) ⊂M.

The functor i should restrict to a functor

i : FΛp(Mp) // FΛp+(M).

Remark 4.7. One can alternatively apply the above discussion within the dual formalism of
integral transforms suited to constructing left adjoints. As above, with the appropriate brane
structure, the closed cell correspondence Cp ∈ F (Mop

p ×M) should give a fully faithful functor gCp
that is also equivalent to i. (One should not expect the same brane structure on Cp to lead to
both functors fCp and gCp being the functor i.)

Next, there should exist a right adjoint

i! : ModF (M) //ModF (Mp)

given by the correspondence construction fC′p with an appropriate brane structure on C′p. Once
one knows that i is given by the dual correspondence construction gCp , it should be a formal
consequence that its right adjoint is given by fC′p . Following patterns for constructible sheaves,

we expect that i! should in fact be proper.

Remark 4.8. One can alternatively apply the above discussion within the dual formalism of
integral transforms suited to constructing left adjoints.

First, one can regard the functor i as a proper continuous functor

Mod(F (Mp)
op) //Mod(F (M)op).

Then there should exist an additional adjoint i∗ given by the correspondence construction gC′p
with an appropriate brane structure on C′p. Once one knows that i is given by the correspondence
construction fCp , it should be a formal consequence that the additional adjoint is given by gC′p .

Moreover, following patterns for constructible sheaves, we expect that i∗ should in fact be
proper. Thus in turn it could be regarded as a functor Perf F (M)→ Perf F (Mp), which should
provide a left adjoint to the original functor i.
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4.3 Open complements

We continue with a maximal critical point p ∈ c, so that the corresponding coisotropic cell
Cp ⊂M is closed. Now let us consider the open subset s = c \ {p}, and the corresponding open
union of coisotropic cells

Ms =
∐
q∈s

Cq = M \ Cp.

Before proceeding further, it will be convenient to pin down the choice of a defining function
mp : M → [0, 1] for the coisotropic cell Cp ⊂ M more specifically. All of what follows can be
achieved by applications of the Lagrangian and coisotropic neighborhood theorems [25, 73, 74]
and the fact that Cp ⊂M is a minimal unstable cell.

First, let us return to constructions seen in the preceding section. Consider the fiber Fp =
i−1
p (p) ⊂ Cp and its cotangent bundle T ∗Fp. We can find a small open neighborhoodN (Cp) ⊂M

and a symplectic identification N (Cp) ' Mp × Up, where the factor Up ⊂ T ∗Fp is a small
open neighborhood of the zero section. Refining the cell Mp of the first factor, we can choose
a Lagrangian Lp ⊂ Mp and identifications Lp ' Rk and T ∗Lp ' Mp, where k = dimMp/2.
Refining the normal second factor Up, we can choose a fiber Np ⊂ Up of the projection T ∗Fp →
Fp and identifications Np ' Rn and Up ' T ∗Np, where n = dimM − dimCp. Thus altogether,
we have identifications N (Cp) ' T ∗(Lp × Np) ' T ∗(Rk × Rn). Finally, we can choose the
defining function mp : M → [0, 1] so that outside of the open neighborhood N (Cp) ⊂ M , it is
identically one, and near to Cp ⊂ N (Cp), it is simply the sum of the squares of the coordinates
of the normal factor Np ' Rn.

Consider the Hamiltonian function logmp : Ms → R, and the symplectomorphisms

Ξs! : Ms
//Ms, Ξs∗ : Ms

//Ms

resulting from the Hamiltonian flow of logmp for negative unit time and unit time respec-
tively. To ensure good behavior near infinity, it is technically useful to introduce a sufficiently
small η > 0 and the Hamiltonian function log(mp − η) : Ms,>η → R on the domain Ms,>η =
{x ∈Ms |mp(x) > η}, and the symplectomorphisms

Ξs,η! : Ms,>η
//Ms,>η, Ξs,η∗ : Ms,>η

//Ms,>η

resulting from the Hamiltonian flow of log(mp − η) for negative unit time and unit time re-
spectively. By subanalytic theory, any subanalytic subset Y ⊂ M must be transverse to the
closed ball Ms,η ⊂ M , given by the closure of the open ball Ms,η = {x ∈ Ms |mp(x) = η}, for
sufficiently small η > 0.

Now for fixed † =! or ∗, we expect that given a brane L ∈ F (Ms), for all sufficiently small
η > 0, the pushforwards

Ξs,η†(L ∩Ms,η)

are well-defined objects of F (M) and all mutually diffeomorphic.
They also should all be diffeomorphic to the limit pushforward

Ξs,0+†(L) = lim
η→0+

Ξs,η†(L ∩Ms,η)

which also should be a well-defined object of F (M).
We expect a proof to proceed along the following lines. By construction, Ξs,η†(L ∩Ms,η) is

diffeomorphic to L and coincides with it on a common subset that is a deformation retract of
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each. Thus to see Ξs,η†(L∩Ms,η) is a well-defined brane, we should check that it is closed in M .
Suppose not: then there would be a sequence of points along the boundary at infinity of L at
which dmp is a negative scale of the contact form α for the boundary of Ms. By the curve
selection lemma, there should be a curve γ of such points, and hence 0 > dmp(γ

′) = cα(γ′) for
some negative function c. But this would contradict the fact that the boundary at infinity of L
must be isotropic.

Now we expect that for † =!, ∗, there is a fully faithful functor

F (Ms) // F (M)

with continuous extension

j† : ModF (Ms) //ModF (M)

given on Lagrangian branes L ∈ F (Ms) by the limit

j†L = Ξs,0+†(L).

The existence of the functor j† and the fact that it is fully faithful should all follow from
some simple observations. Consider a finite collection of branes in Ms and finite collection of
A∞-compositions. Observe that the construction Ξs,0+† is compatible with our perturbation
framework: near infinity, perturbing forward in time is compatible with applying Ξs,0+∗, and
backward in time with Ξs,0+!. Thus we can compare calculations before and after applying Ξs,0+†
by collectively using the appropriate direction of perturbation. Next, observe that the relevant
intersections and disks in all calculations are constrained to a compact subset K ⊂ Ms thanks
to diameter bounds depending only on a smaller compact set. Thus changes to the target and
branes outside of K ⊂ Ms are immaterial. In particular, since the construction Ξs,0+† takes
place outside of Ms,η, for sufficiently small η, it has no effect on any calculations. Thus the
extension of branes given by Ξs,0+† should be a fully faithful embedding.

Remark 4.9. Recall the induced markings

Λs = Λ ∩Ms ⊂Ms, Λp = qp(Λ ∩ Cp) ⊂Mp, Λp+ = Λ ∪ q−1
p (Λp) ⊂M.

The functor j† should restrict to a functor

j† : FΛs(Ms) // FΛp+(M).

In the framework of Lagrangian correspondences, the functor j! should be given by the corre-
spondence construction gΓs!

where we write Γs! ⊂Mop
s ×M for the graph of Ξs! equipped with

an appropriate brane structure. This is a geometric assertion whose proof should be similar to
the statement that the diagonal brane gives the identity correspondence.

Next, j! should admit a right adjoint

j! : ModF (M) //ModF (Ms)

given by the correspondence constructions fΓ′s!
with an appropriate brane structure on Γ′s!. Once

one knows that j! is given by the dual correspondence construction gΓs!
, it should be a formal

consequence that its right adjoint is given by fΓ′s!
. Following patterns for constructible sheaves,

we expect that j! should in fact be proper.
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Remark 4.10. One can alternatively apply the above discussion within the dual formalism of
integral transforms suited to constructing left adjoints.

First, the functor j∗ should be given by the correspondence construction fΓs∗ where we write
Γs∗ ⊂Mop

s ×M for the graph of Ξs∗ equipped with an appropriate brane structure.

Then there should exist an additional adjoint j∗ given by the correspondence construction gΓ′s∗
with an appropriate brane structure on Γ′s∗. Moreover, following patterns for constructible
sheaves, we expect that j∗ should in fact be proper. Thus in turn it could be regarded as a functor
Perf F (Ms)→ Perf F (M) which should provide a left adjoint to the original functor j∗.

4.4 Simple identities

We mention here some simple relations that should hold between the functors introduced in the
previous sections. There should be vanishing

j!i ' 0 : F (Mp) // F (Ms), i!j∗ ' 0 : F (Ms) // F (Mp)

since thanks to our perturbation framework, given test branes, each of the above compositions
should result in a configuration with non-intersecting branes.

Remark 4.11. Within the dual formalism of integral transforms suited to constructing left
adjoints, one should similarly have identities

j∗i ' 0, i∗j! ' 0.

4.5 Geometry of diagonal

We continue with the previous setup: a maximal critical point p ∈ c corresponding to a closed
coisotropic cell Cp ⊂M , and open subset s = c \ {p} corresponding to the open complement

Ms =
∐
q∈s

Cq = M \ Cp.

Let us sketch the existence of an open neighborhood N (∆M ∪ (Cp ×Mp Cp)) ⊂Mop ×M , an
open neighborhood N (T ∗MM ∪ T ∗CpM) ⊂ T ∗M , and a symplectomorphism

ψ : N (∆M ∪ (Cp ×Mp Cp))
∼ // N (T ∗MM ∪ T ∗CpM),

such that we have identifications

ψ(∆M ) = T ∗MM, ψ(Cp ×Mp Cp) = T ∗CpM,

ψ(Γs!) = −Γd logmp , ψ(Γs∗) = Γd logmp .

For concreteness, let us return to the identifications introduced earier. Namely, we have an
open neighborhood N (Cp) ⊂M , and identifications

N (Cp) 'Mp × Up ' T ∗(Lp ×Np) ' T ∗(Rk × Rn),

where Lp ⊂ Mp, Np ⊂ Up are Lagrangian cells. Under these identifications, the coisotropic
cell Cp goes over to the coisotropic cell T ∗Rk×T ∗{0}R

n ' T ∗(Rk×Rn)|Rk×{0}. Furthermore, the

support of d logmp is contained within N (Cp).
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Let us simplify the notation and write V = Rk × Rn, and W = Rk × {0}. Let us further
introduce notation for elements x, y ∈ V , ξ, η ∈ V ∗, and consider the symplectomorphism

(V × V ∗)op × (V × V ∗) ' (T ∗V )op × T ∗V ∼ // T ∗(T ∗V ) ' (V × V ∗)× (V ∗ × V ),

(x, ξ, y, η) � // 1√
2
(x+ y, ξ + η, η − ξ, x− y).

It takes the coisotropic cell (T ∗V |W )×T ∗W (T ∗V |W ) to the coisotropic cell T ∗T ∗V |W (T ∗V ).

Now working first near Cp×Mp Cp ⊂Mop×M , we can use the above constructions to define
ψ satisfying the requirements. To extend it to a neighborhood around the rest of ∆M , we can
use the Lagrangian neighborhood theorem [73, 74].

Next define the closed cell projector

Πp ∈ F (Mop ×M)

to be the Lagrangian submanifold Cp ×Mp Cp ⊂Mop ×M equipped with an appropriate brane
structure.

For † =!, ∗, define the open complement projector

Πs† ∈ F (Mop ×M)

to be the Lagrangian graph ΓΞ† ⊂Mop ×M equipped with an appropriate brane structure.

Let us next sketch how inside of F (Mop ×M), we should have exact triangles of branes

Πp
// ∆M

// Πs∗
[1] // , Πs!

// ∆M
// Πp

[1] //

with the appropriate brane structures.

On the one hand, given any open neighborhood N (∆M ) ⊂Mop×M , and any finite number
of A∞-compositions among the branes in the assertion of the theorem, we can arrange so that
all relevant geometry lies in N (∆M ).

On the other hand, using the microlocalization functor

µM : Sh(M) // F (T ∗M)

we can transport the standard exact triangles

i!i
!DM // DM // j∗j

∗DM
[1] // , j!j

!kM // kM // i∗i
∗kM

[1] // ,

where kM denotes the constant sheaf and DM the Verdier dualizing sheaf, to exact triangles of
branes

Πp
// ∆M

// Πs∗
[1] // , Πs!

// ∆M
// Πp

[1] //

with the appropriate brane structures.

Furthermore, we can arrange so that all relevant geometry lies in any neighborhood N (∆M ∪
(Cp ×Mp Cp)) ⊂Mop ×M . Thus choosing a neighborhood and symplectomorphism as sketched
above, we obtain a matching of all calculations.

It follows that any object L ∈ ModF (M) should fit into an exact triangle

ii!L // L // j∗j
∗L

[1] // .
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To see this, apply the integral transform formalism to the first exact triangle of branes above
to obtain an exact triangle

fΠp(L) // L // fΠs∗(L)
[1] // .

Then it remains to establish equivalences

fΠp ' i ◦ i! ∈ Fun(ModF (M),ModF (M)),

fΠs∗ ' j∗ ◦ j! ∈ Fun(ModF (M),ModF (M)).

These should admit direct verification or alternatively as a non-compact variation on the theory
of Lagrangian correspondences of Wehrheim and Woodward [67, 68, 69, 70, 71, 72].

Remark 4.12. The other expected triangle should result from taking the second triangle of
branes above

Πs!
// ∆M

// Πp
[1] //

and applying the dual formalism of integral transforms suited to constructing left adjoints. We
expect all functors should be proper, and so for any object L ∈ Mod(F (M)op), what should
result is an exact triangle

j!j
!L // L // ii∗L

[1] //

of objects of F (M).

4.6 A further identity

We also expect to have an equivalence j! ' j∗. To see this, we seek a natural equivalence

homPerf F (Ms)(j
!L,P ) ' homF (M)(L, j∗P ).

Since both sides vanish for objects of the form L = iL′, it suffices to assume that L = j!P
′, and

to establish a natural equivalence

homF (Ms)(P
′, P ) ' homF (M)(j!P

′, j∗P ).

This should follow from the compatibility of the perturbation framework with the construction
of the functors.

5 Localization

We return now to a more traditional presentation. The constructions of this section will not
depend on the recollement pattern of diagrams (1.1) and (1.2) of the introduction as sketched
in the preceding section. But verifying their good properties in Section 5.4 will.

We continue to suppose throughout this section that (M, θ, η, σ) is a fixed Weinstein target,
so a Weinstein manifold (M, θ) with a bicanonical trivialization η and spin structure σ. We
will also suppose as well that each of its Weinstein cells (Mp, θp) is equipped with a bicanonical
trivialization ηp and the (necessarily) trivial spin structure σp.
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5.1 Preliminaries

Definition 5.1. The conic topology of M is the category Mcon with objects conic open suban-
alytic subsets of M and morphisms inclusions.

Recall that stk denotes the ∞-category of small stable idempotent-complete k-linear ∞-
categories.

Definition 5.2. (1) A stk-valued presheaf on the conic topology of M is an ∞-functor

Fpre : Mop
con

// stk .

(2) A stk-valued sheaf on the conic topology of M is a continuous stk-valued presheaf.

Definition 5.3. The sheafification F = (Fpre)+ of a presheaf Fpre is a sheaf equipped with
a universal presheaf morphism

Fpre // F .

In our arguments, we will only need the following elementary functoriality. Throughout what
follows, F always denotes a stk-valued presheaf or sheaf on the conic topology of M .

Definition 5.4. Let j : U →M be the inclusion of a conic open set.
The restriction j∗F = F|U is obtained by pullback along the induced functor j : Ucon →Mcon.

In other words, it assigns j∗F(V ) = F(V ) to any conic open set V ⊂ U .

Definition 5.5. Let π : M → N be a conic map.
The pushforward π∗F is obtained by pullback along the induced functor π−1 : Ncon →Mcon.

In other words, it assigns π∗F(U) = F(π−1(U)) to any conic open set U ⊂ N .

Remark 5.6. Restriction evidently commutes with sheafification, while pushforward does not
in general.

Remark 5.7. Note that the global sections of a presheaf or sheaf are simply its pushforward
to a point.

Definition 5.8. The support of F is the smallest conic closed set S ⊂M such that F|M\S ' 0.

Remark 5.9. To see that the support is well-defined, note that if S1, S2 ⊂M are conic closed
sets such that F|M\S1

' F|M\S2
' 0, then the sheaf property implies F|M\(S1∩S2) ' 0.

5.2 Construction of sheaf

Definition 5.10. Let U ⊂M be a conic open subset.
We define the full subcategory of U -null branes Null(M,U) ⊂ Perf F (M) to comprise objects

L ∈ Perf F (M) with singular support satisfying

ss(L) ∩ U = ∅,

or equivalently, null locus satisfying

U ⊂ n(L).

Remark 5.11. As a special case of the above definition, if we start with a characteristic cone
Λ ⊂M , and then set U = M \Λ, we have by definition N(M,U) = PerfΛ F (M). In particular,
Null(M,∅) = Perf F (M).

Note as well in general U1 ⊂ U2 implies Null(M,U2) ⊂ Null(M,U1).
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Remark 5.12. As a consequence of our main results, we will deduce the nontrivial identity

Null(M,M) ' 0.

In other words, if a brane L ∈ Perf F (M) has empty singular support ss(L) = ∅, then it itself
is trivial L ' 0.

Definition 5.13. (1) We define the stk-valued presheaf Fpre
M on the conic topology of M by the

assignment

Fpre
M (U) = Perf F (M)/Null(M,U)

for conic open subsets U ⊂M .
(2) We define the stk-valued sheaf FM of localized branes to be the sheafification of Fpre

M .

Remark 5.14. In order to obtain the essential gluing property of a sheaf, it is important that
we follow Step (2) of the above definition and sheafify the naive quotient Fpre

M . To see this
explicitly, we recommend the reader continue on and consult Example 5.18 below where we
illustrate this in the easiest possible situation.

For conic open subsets U ⊂M , we have the canonical localization morphism

LocU : Perf F (M) // Fpre
M (U) // FM (U).

Lemma 5.15. To each conic open subset U ⊂ M , and localized brane L ∈ FM (U), there is
a unique conic closed subvariety ssU (L) ⊂ U called the localized singular support characterized
by the properties:

(1) For conic open subsets V ⊂ U ⊂M , we have compatibility with restriction

ssV (L|V ) = ssU (L) ∩ V.

(2) For a brane L ∈ Perf F (M), we have compatibility with global singular support

ssU (LocU (L)) = ss(L) ∩ U.

Proof. The assertion is evident for sections of the presheaf Fpre
M . Since conic closed subvarieties

form a sheaf, the assertion follows for sections of the sheaf FM . �

5.3 Case of Weinstein cells

Let (N, θ) be a Weinstein cell.

Lemma 5.16. If L ∈ Perf F (N) has empty singular support ss(L) = ∅, then it itself is trivial
L ' 0. In other words, we have Null(N,N) ' 0.

Proof. By assumption, the unique zero p ∈ N of the Liouville form lies in the null locus
n(L) ⊂ N . Hence by definition, there exists a conic open set U ⊂ N containing p such that
for any test brane P ∈ F (N) with P ⊂ U , we have homPerf F (M)(L,P ) ' 0. But N itself is the
unique conic open set U ⊂ N containing p. Thus homPerf F (M)(L,P ) ' 0 for any P ∈ F (M),
and hence L ' 0. �

Proposition 5.17. Global localization is an equivalence

LocN : Perf F (N)
∼ // FN (N).
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Proof. Note that N itself is the unique conic open set containing the unique zero p ∈ N of the
Liouville form. Hence any cover of N by conic open sets must contain N itself as a constituent.
Thus the canonical map is an equivalence

Fpre
N (N)

∼ // FN (N).

Finally, by the previous lemma Null(N,N) ' 0, hence the canonical map is an equivalence

Perf F (N)
∼ // Fpre

N (N). �

Example 5.18. Returning to Definition 5.13, let us see the impact of sheafifying via the easiest
possible example. Consider the two-dimensional Weinstein cell M = C with standard Liouville
form θ and projectivization M∞ ' S1. Its core is the single point K = {0} ⊂ C, and its ether
is the complement E = C∗ ⊂ C.

On the one hand, one can check that Null(C,C∗) ' 0, and hence Fpre
M (C∗) ' Perf F (C). On

the other hand, one can check that FM (C∗) '
∏
x∈S1

Perf k, where the product is taken in stk.

The image of the canonical morphism

Perf F (C) ' Fpre
M (C∗) // FM (C∗) '

∏
x∈S1

Perf k

consists of sequences of objects whose underlying object (when we forget the labeling by points
of S1) is of the form V ⊕V [1] ∈ Perf k. Informally speaking, the canonical morphism remembers
the “ends” of branes near infinity, and any exact Lagrangian curve in C will have an even number
of ends at infinity. More concretely, a brane L ∈ Fpre

M (C∗) ' Perf F (C) supported along the real
line R ⊂ C, equipped with a rank one local system, will have endomorphisms k, but its image
in FM (C∗) '

∏
x∈S1

Perf k will have endomorphisms k ⊕ k.

Since FM is a sheaf, we see that Fpre
M is not a sheaf, and hence it was important that we

sheafified it.

5.4 Compatibility with recollement

Now assume the recollement pattern of diagrams (1.1) and (1.2) of the introduction as sketched
in the preceding section.

Let (M, θ) be a Weinstein manifold.
Let C ⊂M be a closed coisotropic cell and consider the Hamiltonian reduction diagram

N C
qoooo � � i //M,

where i is the inclusion of the coisotropic cell, and q is the quotient by the integrable isotropic
foliation determined by i.

Consider as well the complementary open

j : M◦ = M \ C �
� //M.

Proposition 5.19. Let U◦ ⊂M◦ ⊂M be a conic open subset.
Then the recollement functors restrict to a diagram of adjunctions

Perf F (N)
i // Null(M,U◦)

i!
dd

i∗

zz
j!'j∗ // Null(M◦, U◦)

j∗

ee

j!

yy
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Proof. To avoid possible confusion, given a conic subset A ⊂ M◦ ⊂ M , we will write A∞M
and A∞M◦ for its projectivizations as a subset of M and M◦ respectively. Sinilarly, given a closed
subset A ⊂ M◦ ⊂ M , we will write ∂∞MA and ∂∞M◦A for its boundaries at infinity as a subset
of M and M◦ respectively.

To see that the functor i lands in Null(M,U◦), note first that U◦∩C = ∅ and (U◦)∞M ∩C∞ =
∅. Then any test brane P ∈ F (M) with P ⊂ U◦ and ∂∞MP ⊂ (U◦)∞M will not intersect a brane
of the form i(L) ∈ F (M), for any L ∈ F (N).

From here, it suffices to see that the functor j∗ takes Null(M,U◦) to Null(M◦, U◦). Fix
a brane L ∈ Null(M,U◦), and any point x ∈ U◦. We must confirm that x ∈ n(j∗(L)).

Fix a conic open set V ⊂ U◦ containing x that exhibits x ∈ n(L). We will show that V
regarded as a subset of M◦ also exhibits x ∈ n(j∗(L)).

Fix a test brane P ∈ F (M◦) with P ⊂ V and ∂∞M◦V ⊂ V∞M◦ . Then we seek to show that

homPerf F (M◦)(j
∗(L), P ) ' 0.

By adjunction, this is the same as to show that

homPerf F (M)(L, j∗(P )) ' 0.

By construction, we have j∗(P ) ⊂ V . After the small perturbation required to compute the
above morphisms, we also have ∂∞M (j∗(P )) ⊂ V∞M . Thus since V exhibits x ∈ n(L), the above
morphisms vanish, and hence V also exhibits x ∈ n(j∗(L)). �

Corollary 5.20. Restriction induces a canonical equivalence

j! ' j∗ : FM |M◦ ∼ // FM◦ .

Proof. It suffices to show the analogous statement for presheaves

Fpre
M |M◦

∼ // Fpre
M◦ .

In other words, for conic open subsets U◦ ⊂M◦, it suffices to show that the restriction descends
to compatible equivalences

Perf F (M)/Null(M,U◦)
∼ // Perf F (M◦)/Null(M◦, U◦).

This follows immediately from the recollement compatibility of Proposition 5.19. �

Proposition 5.21. Let U ⊂ M be a conic open subset containing C, and let U◦ ⊂ M◦ denote
the conic open subset U◦ = U ∩M◦.

Then the recollement functors restrict to a diagram of equivalences

Null(M,U) ∼
j!'j∗ // Null(M◦, U◦)

j∗
∼

ee

j!
∼

yy

Proof. It is evident that j!, j∗ take Null(M◦, U◦) to Null(M,U), and also that Null(M,U) ∩
i(Perf F (M)) = 0. �
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Corollary 5.22. Let U ⊂M be a conic open subset containing C, and let U◦ ⊂M◦ denote the
conic open subset U◦ = U ∩M◦.

Then the recollement functors induce a diagram of adjunctions

Perf F (N)
i!'i∗ // Fpre

M (U)

i!
cc

i∗

{{
j!'j∗ // Fpre

M◦(U
◦)

j∗

cc

j!

{{

Consequently, we have an equivalence

Fpre
M (U) ' ModT

(
Fpre
M◦(U

◦)⊕ Perf F (N)
)
,

where T = RL ∈ End(Fpre
M◦(U)⊕ Perf F (N)) is the monad of the adjunction

L = j! ⊕ i! : Fpre
M◦(U

◦)⊕ Perf F (N) // Fpre
M (U) : R = j! ⊕ i!.oo

Proof. The first part follows immediately from the recollement compatibility of Proposi-
tion 5.21. The second part is an immediate application of the Barr–Beck theorem. �

Remark 5.23. While the abstract monadic language is convenient, little of the sophisticated
theory it represents is needed. More simply, we can say that Fpre

M (U) is equivalent to the
∞-category of triples L◦ ∈ Fpre

M◦(U
◦), LN ∈ Perf F (N) and a morphism

r ∈ homPerf F (N)(i
!j!L
◦, LN ).

5.5 Global sections

Continue to assume the recollement pattern of diagrams (1.1) and (1.2) of the introduction.
Let (M, θ) be a Weinstein manifold.
Let C ⊂M be a closed coisotropic cell and consider the Hamiltonian reduction diagram

N C
qoooo � � i //M,

where i is the inclusion of the coisotropic cell, and q is the quotient by the integrable isotropic
foliation determined by i.

Consider as well the complementary open

j : M◦ = M \ C �
� //M.

To find a natural context for Corollaries 5.20 and 5.22, let us consider the conic quotient

π : M //M∼ = M◦ ∪ ∗,

where we collapse C ⊂ M to a point denoted by ∗. Observe that the inverse-image under π
provides an equivalence from the category of conic open sets U∼ ⊂M∼ to the category of conic
open sets U ⊂M such that U ∩ C is either all of C or empty.

Let us introduce the pushforward presheaves π∗Fpre
M and π∗j∗Fpre

M◦ , and denote by Perf F (N)∗
the skyscraper sheaf with fiber Perf F (N) supported at ∗. Then we can reformulate Corolla-
ries 5.20 and 5.22 as a diagram of adjunctions of presheaves

Perf F (N)∗
i!'i∗ // π∗Fpre

M

i!
cc

i∗

{{
j!'j∗ // π∗j∗Fpre

M◦

j∗

cc

j!

{{
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Consequently, we have an equivalence

π∗Fpre
M ' ModT

(
π∗j∗Fpre

M◦ ⊕ Perf F (N)∗
)
,

where T = RL ∈ End(π∗j∗Fpre
M◦ ⊕ Perf F (N)∗) is the monad of the adjunction

L = j! ⊕ i! : π∗j∗Fpre
M◦ ⊕ Perf F (N)∗

// π∗Fpre
M : R = j! ⊕ i!.oo

In concrete terms, to any conic open set U∼ ⊂ M∼, we have that π∗Fpre
M (U∼) is equivalent

to the ∞-category of triples L◦ ∈ Fpre
M◦(U

◦) where U◦ = U∼ ∩M◦, LN ∈ Perf F (N) nonzero
only if ∗ ∈ U∼, and a morphism

r ∈ homPerf F (N)

(
i!j!L

◦, LN
)
.

Now we will check that the above description is compatible with sheafification.

Lemma 5.24. The canonical morphism is an equivalence of sheaves

(π∗Fpre
M )+ ∼ // π∗FM .

Proof. This is evident over the open set M◦ ⊂ M∼. It suffices to check that the canonical
morphism induces an equivalence on stalks at ∗. This follows from the further observation that
any conic open set U ⊂M containing the zero p ∈ π−1(∗) = C in fact contains all of C. �

Theorem 5.25. The pushforward π∗FM admits the canonical description

π∗FM ' ModT (π∗j∗FM◦ ⊕ Perf F (N)∗),

where T = RL ∈ End(π∗j∗FM◦ ⊕ Perf F (N)∗) is the monad of the adjunction

L = j! ⊕ i! : π∗j∗Fpre
M◦ ⊕ Perf F (N)∗

// FM : R = j! ⊕ i!.oo

Proof. By our previous results reformulated above, the sheafification (π∗Fpre
M )+ clearly admits

the asserted description. Thus by the previous lemma, the pushforward π∗FM does as well. �

Corollary 5.26. Global localization is an equivalence

LocM : Perf F (M)
∼ // FM (M).

Proof. Note that π∗FM (M∼) ' FM (M) and π∗j∗FM◦(M∼) ' FM◦(M◦). By induction, global
localization is an equivalence on the open Weinstein manifold

LocM◦ : Perf F (M◦)
∼ // FM◦(M◦).

Hence by Theorem 5.25, we have an equivalence on global sections

FM (M) ' ModT (Perf F (M◦)⊕ Perf F (N)),

where T = RL ∈ End(Perf F (M◦)⊕ Perf F (N)) is the monad of the adjunction

L = j! ⊕ i! : Perf F (M◦)⊕ Perf F (N) // FM (M) : R = j! ⊕ i!.oo

Comparison with the similar monadic description of Perf F (M) yields the theorem. �
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Corollary 5.27. For L ∈ Perf F (M), if ss(L) = ∅, then L ' 0.

Proof. The localization of L is a null brane for any conic open set. �

Remark 5.28. We will not need the following discussion but include it to help further orient
the interested reader.

One might ask whether a recollement description similar to that of Theorem 5.25 might exist
for the sheaf FM itself rather than its pushforward π∗FM . The immediate answer is negative
since the key functors j!, j∗ are not local. But one need not pass all the way to the quotient
M → M∼ induced by the collapse C → ∗. Rather it is possible to pass to the intermediate
quotient M → ′M∼ induced by the natural collapse C → N . More broadly, the sheaf which
admits a natural recollement pattern is the pushforward of FM along the quotient of M where
each coisotropic cell is collapsed to its corresponding Weinstein cell.

In another direction, one might also ask which aspects of the recollement pattern can be
lifted to the sheaf FM itself. First, we can consider the full subsheaf i!q

∗FN ⊂ FM generated
by objects of the form i(L) ∈ Perf F (M), for objects L ∈ Perf F (N). There is a canonical
equivalence on global sections

Perf F (N) ' FN (N)
∼ // i!q

∗FN (M).

Second, we have seen that there is a canonical morphism FM → j∗FM◦ that induces an
equivalence

FM |M◦ ∼ // FM◦ .

Unfortunately, as mentioned above, there are no evident adjoint maps of sheaves. The following
related construction provides a partial solution. For † =! or ∗, we can consider the full subsheaf
FM◦† ⊂ FM generated by objects of the form j†L ∈ Perf F (M), for objects L ∈ Perf F (M◦).
(We caution the reader that FM◦† is not the same as the pushforward j†FM .) Then restriction
induces a canonical equivalence

FM†|M◦
∼ // FM◦ .

Furthermore, it also induces a canonical equivalence on global sections

FM†(M)
∼ // FM◦(M◦).

5.6 Prescribed support

Continue to assume the recollement pattern of diagrams (1.1) and (1.2) of the introduction.

Now let us introduce a characteristic cone Λ ⊂ M so that we have a marked Weinstein
manifold (M, θ,Λ). Recall by Lemma 5.15, we have the notion of singular support for localized
branes.

Definition 5.29. We define the full subsheaf FΛ ⊂ FM to consist of those localized branes
L ⊂ FM (U) such that

ssU (L) ⊂ Λ ∩ U

for any conic open set U ⊂M .

We now have the following assertion from the introduction.
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Theorem 5.30. Assume the recollement pattern of diagrams (1.1) and (1.2) of the introduction.

Let (M, θ,Λ) be a marked Weinstein manifold.

The stk-valued sheaf FΛ on the conic topology of M has the following properties:

(1) The support of FΛ is the characteristic cone Λ ⊂M .

(2) The global sections of FΛ are canonically equivalent to PerfΛ(M).

(3) The restriction of FΛ to an open Weinstein submanifold M◦ ⊂M is canonically equivalent
to the sheaf FΛ◦ constructed with respect to Λ◦ = Λ ∩M◦.

(4) For each zero p ∈ c, the sections of FΛ lying strictly above the unstable cell Cp ⊂ M are
canonically equivalent to PerfΛp(Mp).

Example 5.31. Let us return to the setting of Example 5.18 and add a characteristic cone to
the mix.

Recall the two-dimensional Weinstein cell M = C with standard Liouville form θ and projec-
tivization M∞ ' S1. Its core is the single point K = {0} ⊂ C, and its ether is the complement
E = C∗ ⊂ C. Any characteristic cone Λ ⊂ C will be the union of K = {0} with finitely many
rays. Let us denote by Λn ⊂ C the characteristic cone with n rays, for n = 0, 1, 2, . . ..

Then as is well known, PerfΛn F (C) is equivalent to finite-dimensional modules over the
An−1-quiver (in particular, for n = 0 and n = 1, it is the zero category). This is also the stalk of
the sheaf FΛn at the point 0 ∈ C. Its stalk at other points x ∈ C is (not necessarily canonically)
equivalent to Perf k when x ∈ Λn, and the zero category otherwise.
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