Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 105, 22 pages      arXiv:1411.4223      https://doi.org/10.3842/SIGMA.2014.105

Everywhere Equivalent 3-Braids

Alexander Stoimenow
Gwangju Institute of Science and Technology, School of General Studies, GIST College, 123 Cheomdan-gwagiro, Gwangju 500-712, Korea

Received July 08, 2014, in final form November 04, 2014; Published online November 16, 2014

Abstract
A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.

Key words: 3-braid group; Jones polynomial; Kauffman bracket; Burau representation; adequate diagram.

pdf (434 kb)   tex (76 kb)

References

  1. Bae Y., Morton H.R., The spread and extreme terms of Jones polynomials, J. Knot Theory Ramifications 12 (2003), 359-373, math.GT/0012089.
  2. Birman J.S., Menasco W.W., Studying links via closed braids. III. Classifying links which are closed 3-braids, Pacific J. Math. 161 (1993), 25-113.
  3. Cromwell P.R., Knots and links, Cambridge University Press, Cambridge, 2004.
  4. Fiedler T., On the degree of the Jones polynomial, Topology 30 (1991), 1-8.
  5. Franks J., Williams R.F., Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), 97-108.
  6. Garside F.A., The braid group and other groups, Quart. J. Math. Oxford 20 (1969), 235-254.
  7. Jones V.F.R., Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388.
  8. Kauffman L.H., State models and the Jones polynomial, Topology 26 (1987), 395-407.
  9. Lickorish W.B.R., Millett K.C., The reversing result for the Jones polynomial, Pacific J. Math. 124 (1986), 173-176.
  10. Lickorish W.B.R., Millett K.C., A polynomial invariant of oriented links, Topology 26 (1987), 107-141.
  11. Lickorish W.B.R., Thistlethwaite M.B., Some links with nontrivial polynomials and their crossing-numbers, Comment. Math. Helv. 63 (1988), 527-539.
  12. Morton H.R., Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), 107-109.
  13. Murasugi K., On closed 3-braids, Memoirs of the American Mathmatical Society, Vol. 151, Amer. Math. Soc., Providence, R.I., 1974.
  14. Rolfsen D., Knots and links, Publish or Perish, Berkeley, Calif., 1976.
  15. Stoimenow A., The skein polynomial of closed 3-braids, J. Reine Angew. Math. 564 (2003), 167-180, math.GT/0103041.
  16. Stoimenow A., On unknotting numbers and knot trivadjacency, Math. Scand. 94 (2004), 227-248.
  17. Stoimenow A., Properties of closed 3-braids, math.GT/0606435.
  18. Stoimenow A., Coefficients and non-triviality of the Jones polynomial, J. Reine Angew. Math. 657 (2011), 1-55.
  19. Stoimenow A., Everywhere equivalent and everywhere different knot diagrams, Asian J. Math. 17 (2013), 95-137.
  20. Stoimenow A., On the crossing number of semiadequate links, Forum Math. 26 (2014), 1187-1246.
  21. Stoimenow A., Everywhere equivalent 2-component links, Preprint.
  22. Thistlethwaite M.B., On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1988), 285-296.
  23. Wolfram S., Mathematica - a system for doing mathematics by computer, Addison-Wesley, Reading, MA, 1988.

Previous article  Next article   Contents of Volume 10 (2014)