Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 004, 78 pages      arXiv:1404.4392      https://doi.org/10.3842/SIGMA.2015.004

Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case

Simon N.M. Ruijsenaars
School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

Received April 19, 2014, in final form January 10, 2015; Published online January 13, 2015

Abstract
The 'relativistic' Heun equation is an 8-coupling difference equation that generalizes the 4-coupling Heun differential equation. It can be viewed as the time-independent Schrödinger equation for an analytic difference operator introduced by van Diejen. We study Hilbert space features of this operator and its 'modular partner', based on an in-depth analysis of the eigenvectors of a Hilbert-Schmidt integral operator whose integral kernel has a previously known relation to the two difference operators. With suitable restrictions on the parameters, we show that the commuting difference operators can be promoted to a modular pair of self-adjoint commuting operators, which share their eigenvectors with the integral operator. Various remarkable spectral symmetries and commutativity properties follow from this correspondence. In particular, with couplings varying over a suitable ball in ${\mathbb R}^8$, the discrete spectra of the operator pair are invariant under the $E_8$ Weyl group. The asymptotic behavior of an 8-parameter family of orthonormal polynomials is shown to be shared by the joint eigenvectors.

Key words: relativistic Heun equation; van Diejen operator; Hilbert-Schmidt operators; isospectrality; spectral asymptotics.

pdf (993 kb)   tex (84 kb)

References

  1. Chalykh O., Bethe ansatz for the Ruijsenaars model of $BC_1$-type, SIGMA 3 (2007), 028, 9 pages, math.QA/0702676.
  2. Helffer B., Spectral theory and its applications, Cambridge Studies in Advanced Mathematics, Vol. 139, Cambridge University Press, Cambridge, 2013.
  3. Hörmander L., An introduction to complex analysis in several variables, D. Van Nostrand Co., London, 1966.
  4. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  5. Komori Y., Noumi M., Shiraishi J., Kernel functions for difference operators of Ruijsenaars type and their applications, SIGMA 5 (2009), 054, 40 pages, arXiv:0812.0279.
  6. Kuijlaars A.B.J., McLaughlin K.T.-R., Van Assche W., Vanlessen M., The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$, Adv. Math. 188 (2004), 337-398, math.CA/0111252.
  7. Rains E., Ruijsenaars S., Difference operators of Sklyanin and van Diejen type, Comm. Math. Phys. 320 (2013), 851-889, arXiv:1203.0042.
  8. Reed M., Simon B., Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York - London, 1972.
  9. Reed M., Simon B., Methods of modern mathematical physics. III. Scattering theory, Academic Press, New York - London, 1979.
  10. Ruijsenaars S.N.M., First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38 (1997), 1069-1146.
  11. Ruijsenaars S.N.M., A generalized hypergeometric function satisfying four analytic difference equations of Askey-Wilson type, Comm. Math. Phys. 206 (1999), 639-690.
  12. Ruijsenaars S.N.M., Generalized Lamé functions. I. The elliptic case, J. Math. Phys. 40 (1999), 1595-1626.
  13. Ruijsenaars S.N.M., Relativistic Lamé functions: the special case $g=2$, J. Phys. A: Math. Gen. 32 (1999), 1737-1772.
  14. Ruijsenaars S.N.M., Hilbert space theory for reflectionless relativistic potentials, Publ. Res. Inst. Math. Sci. 36 (2000), 707-753.
  15. Ruijsenaars S.N.M., Relativistic Lamé functions: completeness vs. polynomial asymptotics, Indag. Math. (N.S.) 14 (2003), 515-544.
  16. Ruijsenaars S.N.M., Integrable $BC_N$ analytic difference operators: hidden parameter symmetries and eigenfunctions, in New Trends in Integrability and Partial Solvability, NATO Sci. Ser. II Math. Phys. Chem., Vol. 132, Kluwer Acad. Publ., Dordrecht, 2004, 217-261.
  17. Ruijsenaars S.N.M., Elliptic integrable systems of Calogero-Moser type: some new results on joint eigenfunctions, in Proceedings of the Kyoto 2004 Workshop ''Elliptic Integrable Systems'', Rokko Lectures in Math., Vol. 18, Editors M. Noumi, K. Takasaki, Kobe University, 2005, 223-240.
  18. Ruijsenaars S.N.M., Isometric reflectionless eigenfunction transforms for higher-order A$\Delta$Os, J. Nonlinear Math. Phys. 12 (2005), suppl. 1, 565-598.
  19. Ruijsenaars S.N.M., The Hilbert space asymptotics of a class of orthogonal polynomials on a bounded interval, in Theory and Applications of Special Functions, Dev. Math., Vol. 13, Springer, New York, 2005, 367-381.
  20. Ruijsenaars S.N.M., Hilbert-Schmidt operators vs. integrable systems of elliptic Calogero-Moser type. I. The eigenfunction identities, Comm. Math. Phys. 286 (2009), 629-657.
  21. Ruijsenaars S.N.M., Hilbert-Schmidt operators vs. integrable systems of elliptic Calogero-Moser type. II. The $A_{N-1}$ case: first steps, Comm. Math. Phys. 286 (2009), 659-680.
  22. Ruijsenaars S.N.M., Hilbert-Schmidt operators vs. integrable systems of elliptic Calogero-Moser type. III. The Heun case, SIGMA 5 (2009), 049, 21 pages, arXiv:0904.3250.
  23. Ruijsenaars S.N.M., On positive Hilbert-Schmidt operators, Integral Equations Operator Theory 75 (2013), 393-407.
  24. Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165-229.
  25. Sklyanin E.K., Some algebraic structures connected with the Yang-Baxter equation, Funct. Anal. Appl. 16 (1982), 263-270.
  26. Sklyanin E.K., Some algebraic structures connected with the Yang-Baxter equation. Representations of a quantum algebra, Funct. Anal. Appl. 17 (1983), 273-284.
  27. Takasaki K., Painlevé-Calogero correspondence revisited, J. Math. Phys. 42 (2001), 1443-1473, math.QA/0004118.
  28. Takemura K., Heun equation and Painlevé equation, in Proceedings of the Kyoto 2004 Workshop ''Elliptic Integrable Systems'', Rokko Lectures in Math., Vol. 18, Editors M. Noumi, K. Takasaki, Kobe University, 2005, 305-322, math.CA/0503288.
  29. van de Bult F.J., Rains E.M., Stokman J.V., Properties of generalized univariate hypergeometric functions, Comm. Math. Phys. 275 (2007), 37-95, math.CA/0607250.
  30. van Diejen J.F., Integrability of difference Calogero-Moser systems, J. Math. Phys. 35 (1994), 2983-3004.
  31. Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.
  32. Zabrodin A., Zotov A., Quantum Painlevé-Calogero correspondence for Painlevé VI, J. Math. Phys. 53 (2012), 073508, 19 pages, arXiv:1107.5672.

Previous article  Next article   Contents of Volume 11 (2015)