Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 046, 16 pages      arXiv:1502.02948      https://doi.org/10.3842/SIGMA.2015.046
Contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet

On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces

Sébastien Bertrand a, Alfred M. Grundland bc and Alexander J. Hariton c
a) Department of Mathematics and Statistics, Université de Montréal, Montréal CP 6128 (QC) H3C 3J7, Canada
b) Department of Mathematics and Computer Science, Université du Québec, Trois-Rivières, CP 500 (QC) G9A 5H7, Canada
c) Centre de Recherches Mathématiques, Université de Montréal, Montréal CP 6128 (QC) H3C 3J7, Canada

Received February 11, 2015, in final form June 09, 2015; Published online June 17, 2015

Abstract
The paper presents the bosonic and fermionic supersymmetric extensions of the structural equations describing conformally parametrized surfaces immersed in a Grasmann superspace, based on the authors' earlier results. A detailed analysis of the symmetry properties of both the classical and supersymmetric versions of the Gauss-Weingarten equations is performed. A supersymmetric generalization of the conjecture establishing the necessary conditions for a system to be integrable in the sense of soliton theory is formulated and illustrated by the examples of supersymmetric versions of the sine-Gordon equation and the Gauss-Codazzi equations.

Key words: supersymmetric models; Lie superalgebras; symmetry reduction; conformally parametrized surfaces; integrability.

pdf (398 kb)   tex (26 kb)

References

  1. Aratyn H., Gomes J.F., Ymai L.H., Zimerman A.H., A class of soliton solutions for the $N=2$ super mKdV/sinh-Gordon hierarchy, J. Phys. A: Math. Theor. 41 (2008), 312001, 7 pages, arXiv:0712.0626.
  2. Ayari M.A., Hussin V., Winternitz P., Group invariant solutions for the $N=2$ super Korteweg-de Vries equation, J. Math. Phys. 40 (1999), 1951-1965.
  3. Bandos I.A., Doubly supersymmetric geometric approach for heterotic string: from generalized action principle to exactly solvable nonlinear equations, hep-th/9510213.
  4. Bandos I.A., Pasti P., Sorokin D., Tonin M., Volkov D.V., Superstrings and supermembranes in the doubly supersymmetric geometrical approach, Nuclear Phys. B 446 (1995), 79-118, hep-th/9501113.
  5. Bandos I.A., Sorokin D., Volkov D.V., New supersymmetric generalization of the Liouville equation, Phys. Lett. B 372 (1996), 77-82, hep-th/9510220.
  6. Berezin F.A., The method of second quantization, Pure and Applied Physics, Vol. 24, Academic Press, New York - London, 1966.
  7. Berezin F.A., Introduction to superanalysis, Mathematical Physics and Applied Mathematics, Vol. 9, D. Reidel Publishing Co., Dordrecht, 1987.
  8. Bergner Y., Jackiw R., Integrable supersymmetric fluid mechanics from superstrings, Phys. Lett. A 284 (2001), 146-151, physics/0103092.
  9. Bertrand S., Grundland A.M., Hariton A.J., Supersymmetric versions of the equations of conformally parametrized surfaces, J. Phys. A: Math. Theor. 48 (2015), 175208, 37 pages, arXiv:1504.08260.
  10. Binétruy P., Supersymmetry: theory, experiment, and cosmology, Oxford Graduate Texts, Oxford University Press, Oxford, 2006.
  11. Chaichian M., Kulish P., On the method of the inverse scattering problem and Bäcklund transformations for supersymmetric equations, Phys. Lett. B 78 (1978), 413-416.
  12. Cieśliński J., Lie symmetries as a tool to isolate integrable geometries, in Nonlinear Evolution Equations and Dynamical Systems (Baia Verde, 1991), World Sci. Publ., River Edge, NJ, 1992, 260-268.
  13. Cieśliński J., Goldstein P., Sym A., On integrability of the inhomogeneous Heisenberg ferromagnet model: examination of a new test, J. Phys. A: Math. Gen. 27 (1994), 1645-1664.
  14. Coleman S., Quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11 (1975), 2088-2097, hep-th/0509123.
  15. Cornwell J.F., Group theory in physics, Vol. III. Supersymmetries and infinite-dimensional algebras, Techniques of Physics, Vol. 10, Academic Press, Inc., London, 1989.
  16. Das A., Popowicz Z., Supersymmetric polytropic gas dynamics, Phys. Lett. A 296 (2002), 15-26, hep-th/0109223.
  17. de Crombrugghe M., Rittenberg V., Supersymmetric quantum mechanics, Ann. Physics 151 (1983), 99-126.
  18. DeWitt B., Supermanifolds, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984.
  19. Dine M., Supersymmetry and string theory. Beyond the standard model, Cambridge University Press, Cambridge, 2007.
  20. Fatyga B.W., Kostelecký V.A., Truax D.R., Grassmann-valued fluid dynamics, J. Math. Phys. 30 (1989), 1464-1472.
  21. Fokas A.S., Gel'fand I.M., Surfaces on Lie groups, on Lie algebras, and their integrability, Comm. Math. Phys. 177 (1996), 203-220.
  22. Fokas A.S., Gel'fand I.M., Finkel F., Liu Q.M., A formula for constructing infinitely many surfaces on Lie algebras and integrable equations, Selecta Math. (N.S.) 6 (2000), 347-375.
  23. Freed D.S., Five lectures on supersymmetry, Amer. Math. Soc., Providence, RI, 1999.
  24. Gomes J.F., Ymai L.H., Zimerman A.H., Permutability of Bäcklund transformations for $N=2$ supersymmetric sine-Gordon, J. Math. Phys. 51 (2010), 033501, 21 pages, arXiv:0908.3651.
  25. Grammaticos B., Ramani A., Carstea A.S., Bilinearization and soliton solutions of the $N=1$ supersymmetric sine-Gordon equation, J. Phys. A: Math. Gen. 34 (2001), 4881-4886.
  26. Grundland A.M., Hariton A.J., Supersymmetric formulation of polytropic gas dynamics and its invariant solutions, J. Math. Phys. 52 (2011), 043501, 21 pages, arXiv:1102.1181.
  27. Grundland A.M., Hariton A.J., Šnobl L., Invariant solutions of the supersymmetric sine-Gordon equation, J. Phys. A: Math. Theor. 42 (2009), 335203, 23 pages, arXiv:0812.3862.
  28. Grundland A.M., Post S., Riglioni D., Soliton surfaces and generalized symmetries of integrable systems, J. Phys. A: Math. Theor. 47 (2014), 015201, 14 pages, arXiv:1302.6887.
  29. Hariton A.J., Supersymmetric extension of the scalar Born-Infeld equation, J. Phys. A: Math. Gen. 39 (2006), 7105-7114.
  30. Henkel M., Unterberger J., Supersymmetric extensions of Schrödinger-invariance, Nuclear Phys. B 746 (2006), 155-201, math-ph/0512024.
  31. Jackiw R., Lectures on fluid dynamics. A particle theorist's view of supersymmetric, non-abelian, noncommutative fluid mechanics and $d$-branes, CRM Series in Mathematical Physics, Springer-Verlag, New York, 2002.
  32. Kac V.G., Classification of supersymmetries, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing, 319-344, math-ph/0302016.
  33. Labelle P., Mathieu P., A new $N=2$ supersymmetric Korteweg-de Vries equation, J. Math. Phys. 32 (1991), 923-927.
  34. Levi D., Sym A., Tu G., A working algorithm to isolate integrable surfaces in $E^3$, Preprint DF-INFN, no. 761, 1990.
  35. Liu Q.P., Ma\ nas M., Pfaffian solutions for the Manin-Radul-Mathieu SUSY KdV and SUSY sine-Gordon equations, Phys. Lett. B 436 (1998), 306-310, solv-int/9806005.
  36. Manin Yu.I., Radul A.O., A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy, Comm. Math. Phys. 98 (1985), 65-77.
  37. Mathieu P., Supersymmetric extension of the Korteweg-de Vries equation, J. Math. Phys. 29 (1988), 2499-2506.
  38. Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
  39. Rogers A., A global theory of supermanifolds, J. Math. Phys. 21 (1980), 1352-1365.
  40. Rogers A., Super Lie groups: global topology and local structure, J. Math. Phys. 22 (1981), 939-945.
  41. Siddiq M., Hassan M., On the linearization of the super sine-Gordon equation, Europhys. Lett. 70 (2005), 149-154, hep-th/0605095.
  42. Siddiq M., Hassan M., Saleem U., On Darboux transformation of the supersymmetric sine-Gordon equation, J. Phys. A: Math. Gen. 39 (2006), 7313-7318, hep-th/0605094.
  43. Sorokin D., Superbranes and superembeddings, Phys. Rep. 329 (2000), 1-101, hep-th/9906142.
  44. Sym A., Soliton surfaces, Lett. Nuovo Cimento 33 (1982), 394-400.
  45. Tafel J., Surfaces in ${\mathbb R}^3$ with prescribed curvature, J. Geom. Phys. 17 (1995), 381-390.
  46. Terning J., Modern supersymmetry. Dynamics and duality, International Series of Monographs on Physics, Vol. 132, The Clarendon Press, Oxford University Press, Oxford, 2006.
  47. Tian K., Liu Q.P., A supersymmetric Sawada-Kotera equation, Phys. Lett. A 373 (2009), 1807-1810, arXiv:0802.4011.
  48. Varadarajan V.S., Reflections on quanta, symmetries, and supersymmetries, Springer, New York, 2011.
  49. Weinberg S., The quantum theory of fields. Vol. III. Supersymmetry, Cambridge University Press, Cambridge, 2005.
  50. Winternitz P., Lie groups and solutions of nonlinear partial differential equations, in Integrable Systems, Quantum Groups, and Quantum Field Theories (Salamanca, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 409, Kluwer Acad. Publ., Dordrecht, 1993, 429-495.
  51. Witten E., Non-abelian bosonization in two dimensions, Comm. Math. Phys. 92 (1984), 455-472.

Previous article  Next article   Contents of Volume 11 (2015)